Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 8.832
Filtrer
1.
Subcell Biochem ; 104: 101-117, 2024.
Article de Anglais | MEDLINE | ID: mdl-38963485

RÉSUMÉ

Yeast COMPASS (complex of proteins associated with Set1) and human MLL (mixed-lineage leukemia) complexes are histone H3 lysine 4 methyltransferases with critical roles in gene regulation and embryonic development. Both complexes share a conserved C-terminal SET domain, responsible for catalyzing histone H3 K4 methylation on nucleosomes. Notably, their catalytic activity toward nucleosomes is enhanced and optimized with assembly of auxiliary subunits. In this review, we aim to illustrate the recent X-ray and cryo-EM structures of yeast COMPASS and human MLL1 core complexes bound to either unmodified nucleosome core particle (NCP) or H2B mono-ubiquitinated NCP (H2Bub.NCP). We further delineate how each auxiliary component of the complex contributes to the NCP and ubiquitin recognition to maximize the methyltransferase activity.


Sujet(s)
Histone-lysine N-methyltransferase , Protéine de la leucémie myéloïde-lymphoïde , Nucléosomes , Protéines de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Humains , Nucléosomes/métabolisme , Histone-lysine N-methyltransferase/composition chimique , Histone-lysine N-methyltransferase/métabolisme , Histone-lysine N-methyltransferase/génétique , Protéine de la leucémie myéloïde-lymphoïde/métabolisme , Protéine de la leucémie myéloïde-lymphoïde/composition chimique , Protéine de la leucémie myéloïde-lymphoïde/génétique , Saccharomyces cerevisiae/génétique , Saccharomyces cerevisiae/métabolisme , Protéines de Saccharomyces cerevisiae/métabolisme , Protéines de Saccharomyces cerevisiae/composition chimique , Protéines de Saccharomyces cerevisiae/génétique , Histone/métabolisme , Histone/composition chimique , Histone/génétique , Cryomicroscopie électronique/méthodes
2.
Cell ; 187(13): 3303-3318.e18, 2024 Jun 20.
Article de Anglais | MEDLINE | ID: mdl-38906101

RÉSUMÉ

Gamete formation and subsequent offspring development often involve extended phases of suspended cellular development or even dormancy. How cells adapt to recover and resume growth remains poorly understood. Here, we visualized budding yeast cells undergoing meiosis by cryo-electron tomography (cryoET) and discovered elaborate filamentous assemblies decorating the nucleus, cytoplasm, and mitochondria. To determine filament composition, we developed a "filament identification" (FilamentID) workflow that combines multiscale cryoET/cryo-electron microscopy (cryoEM) analyses of partially lysed cells or organelles. FilamentID identified the mitochondrial filaments as being composed of the conserved aldehyde dehydrogenase Ald4ALDH2 and the nucleoplasmic/cytoplasmic filaments as consisting of acetyl-coenzyme A (CoA) synthetase Acs1ACSS2. Structural characterization further revealed the mechanism underlying polymerization and enabled us to genetically perturb filament formation. Acs1 polymerization facilitates the recovery of chronologically aged spores and, more generally, the cell cycle re-entry of starved cells. FilamentID is broadly applicable to characterize filaments of unknown identity in diverse cellular contexts.


Sujet(s)
Gamétogenèse , Mitochondries , Protéines de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Aldehyde dehydrogenase/métabolisme , Aldehyde dehydrogenase/composition chimique , Noyau de la cellule/métabolisme , Noyau de la cellule/ultrastructure , Coenzyme A ligases/métabolisme , Cryomicroscopie électronique , Cytoplasme/métabolisme , Tomographie en microscopie électronique , Méiose , Mitochondries/métabolisme , Mitochondries/ultrastructure , Saccharomyces cerevisiae/métabolisme , Saccharomyces cerevisiae/ultrastructure , Protéines de Saccharomyces cerevisiae/métabolisme , Protéines de Saccharomyces cerevisiae/composition chimique , Spores fongiques/métabolisme , Modèles moléculaires , Structure quaternaire des protéines
3.
J Phys Chem B ; 128(25): 5935-5949, 2024 Jun 27.
Article de Anglais | MEDLINE | ID: mdl-38864552

RÉSUMÉ

Lys-ligated cytochromes make up an emerging family of heme proteins. Density functional theory calculations on the amine/imidazole-ligated c-type ferric heme were employed to develop force-field parameters for molecular dynamics (MD) simulations of structural and dynamic features of these proteins. The new force-field parameters were applied to the alkaline form of yeast iso-1 cytochrome c to rationalize discrepancies resulting from distinct experimental conditions in prior structural studies and to provide insights into the mechanisms of the alkaline transition. Our simulations have revealed the dynamic nature of Ω-loop C in the Lys-ligated protein and its unfolding in the Lys-ligated conformer having this loop in the same position as in the native Met-ligated protein. The proximity of Tyr67 or Tyr74 to the Lys ligand of ferric heme iron suggests a possible mechanism of the backward alkaline transition where a proton donor Tyr assists in Lys dissociation. The developed force-field parameters will be useful in structural and dynamic characterization of other native or engineered Lys-ligated heme proteins.


Sujet(s)
Cytochromes c , Lysine , Simulation de dynamique moléculaire , Lysine/composition chimique , Cytochromes c/composition chimique , Cytochromes c/métabolisme , Hème/composition chimique , Théorie de la fonctionnelle de la densité , Saccharomyces cerevisiae/enzymologie , Saccharomyces cerevisiae/composition chimique , Ligands , Protéines de Saccharomyces cerevisiae/composition chimique , Protéines de Saccharomyces cerevisiae/métabolisme
4.
Nat Commun ; 15(1): 5335, 2024 Jun 24.
Article de Anglais | MEDLINE | ID: mdl-38914563

RÉSUMÉ

The NuA3 complex is a major regulator of gene transcription and the cell cycle in yeast. Five core subunits are required for complex assembly and function, but it remains unclear how these subunits interact to form the complex. Here, we report that the Taf14 subunit of the NuA3 complex binds to two other subunits of the complex, Yng1 and Sas3, and describe the molecular mechanism by which the extra-terminal domain of Taf14 recognizes the conserved motif present in Yng1 and Sas3. Structural, biochemical, and mutational analyses show that two motifs are sandwiched between the two extra-terminal domains of Taf14. The head-to-toe dimeric complex enhances the DNA binding activity of Taf14, and the formation of the hetero-dimer involving the motifs of Yng1 and Sas3 is driven by sequence complementarity. In vivo assays in yeast demonstrate that the interactions of Taf14 with both Sas3 and Yng1 are required for proper function of the NuA3 complex in gene transcription and DNA repair. Our findings suggest a potential basis for the assembly of three core subunits of the NuA3 complex, Taf14, Yng1 and Sas3.


Sujet(s)
Liaison aux protéines , Protéines de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Protéines de Saccharomyces cerevisiae/métabolisme , Protéines de Saccharomyces cerevisiae/génétique , Protéines de Saccharomyces cerevisiae/composition chimique , Saccharomyces cerevisiae/génétique , Saccharomyces cerevisiae/métabolisme , Facteur de transcription TFIID/métabolisme , Facteur de transcription TFIID/génétique , Facteur de transcription TFIID/composition chimique , Sous-unités de protéines/métabolisme , Sous-unités de protéines/génétique , Facteurs associés à la protéine de liaison à la boite TATA/métabolisme , Facteurs associés à la protéine de liaison à la boite TATA/génétique , Facteurs associés à la protéine de liaison à la boite TATA/composition chimique , Histone acetyltransferases/métabolisme , Histone acetyltransferases/génétique , Multimérisation de protéines , Modèles moléculaires , Transcription génétique , Séquence d'acides aminés
5.
Nat Commun ; 15(1): 5140, 2024 Jun 17.
Article de Anglais | MEDLINE | ID: mdl-38886375

RÉSUMÉ

Holliday junction resolution is a crucial process in homologous recombination and DNA double-strand break repair. Complete Holliday junction resolution requires two stepwise incisions across the center of the junction, but the precise mechanism of metal ion-catalyzed Holliday junction cleavage remains elusive. Here, we perform a metal ion-triggered catalysis in crystals to investigate the mechanism of Holliday junction cleavage by MOC1. We capture the structures of MOC1 in complex with a nicked Holliday junction at various catalytic states, including the ground state, the one-metal ion binding state, and the two-metal ion binding state. Moreover, we also identify a third metal ion that may aid in the nucleophilic attack on the scissile phosphate. Further structural and biochemical analyses reveal a metal ion-mediated allosteric regulation between the two active sites, contributing to the enhancement of the second strand cleavage following the first strand cleavage, as well as the precise symmetric cleavage across the Holliday junction. Our work provides insights into the mechanism of metal ion-catalyzed Holliday junction resolution by MOC1, with implications for understanding how cells preserve genome integrity during the Holliday junction resolution phase.


Sujet(s)
ADN cruciforme , ADN cruciforme/métabolisme , ADN cruciforme/composition chimique , ADN cruciforme/génétique , Métaux/métabolisme , Métaux/composition chimique , Holliday junction resolvases/métabolisme , Holliday junction resolvases/composition chimique , Domaine catalytique , Protéines de Saccharomyces cerevisiae/métabolisme , Protéines de Saccharomyces cerevisiae/composition chimique , Protéines de Saccharomyces cerevisiae/génétique , Cristallographie aux rayons X , Ions/métabolisme , Cassures double-brin de l'ADN , Modèles moléculaires , Régulation allostérique
6.
Protein Sci ; 33(7): e5085, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38923199

RÉSUMÉ

Eukaryotic cells have developed intricate mechanisms for biomolecule transport, particularly in stressful conditions. This interdisciplinary study delves into unconventional protein secretion (UPS) pathways activated during starvation, facilitating the export of proteins bypassing most of the components of the classical secretory machinery. Specifically, we focus on the underexplored mechanisms of the GRASP's role in UPS, particularly in biogenesis and cargo recruitment for the vesicular-like compartment for UPS. Our results show that liquid-liquid phase separation (LLPS) plays a key role in the coacervation of Grh1, the GRASP yeast homologue, under starvation-like conditions. This association seems a precursor to the Compartment for Unconventional Protein Secretion (CUPS) biogenesis. Grh1's self-association is regulated by electrostatic, hydrophobic, and hydrogen-bonding interactions. Importantly, our study demonstrates that phase-separated states of Grh1 can recruit UPS cargo under starvation-like situations. Additionally, we explore how the coacervate liquid-to-solid transition could impact cells' ability to return to normal post-stress states. Our findings offer insights into intracellular protein dynamics and cell adaptive responses to stress.


Sujet(s)
Protéines de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Protéines de Saccharomyces cerevisiae/métabolisme , Protéines de Saccharomyces cerevisiae/composition chimique , Saccharomyces cerevisiae/métabolisme , Transport des protéines ,
7.
Nat Commun ; 15(1): 4491, 2024 May 27.
Article de Anglais | MEDLINE | ID: mdl-38802374

RÉSUMÉ

Actin nucleotide-dependent actin remodeling is essential to orchestrate signal transduction and cell adaptation. Rapid energy starvation requires accurate and timely reorganization of the actin network. Despite distinct treadmilling mechanisms of ADP- and ATP-actin filaments, their filament structures are nearly identical. How other actin-binding proteins regulate ADP-actin filament assembly is unclear. Here, we show that Spa2 which is the polarisome scaffold protein specifically remodels ADP-actin upon energy starvation in budding yeast. Spa2 triggers ADP-actin monomer nucleation rapidly through a dimeric core of Spa2 (aa 281-535). Concurrently, the intrinsically disordered region (IDR, aa 1-281) guides Spa2 undergoing phase separation and wetting on the surface of ADP-G-actin-derived F-actin and bundles the filaments. Both ADP-actin-specific nucleation and bundling activities of Spa2 are actin D-loop dependent. The IDR and nucleation core of Spa2 are evolutionarily conserved by coexistence in the fungus kingdom, suggesting a universal adaptation mechanism in the fungal kingdom in response to glucose starvation, regulating ADP-G-actin and ADP-F-actin with high nucleotide homogeneity.


Sujet(s)
Actines , ADP , Glucose , Protéines de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Cytosquelette d'actine/métabolisme , Actines/métabolisme , ADP/métabolisme , ADP/analogues et dérivés , Glucose/métabolisme , Protéines des microfilaments/métabolisme , Protéines des microfilaments/génétique , Protéines des microfilaments/composition chimique , Saccharomyces cerevisiae/métabolisme , Saccharomyces cerevisiae/génétique , Protéines de Saccharomyces cerevisiae/métabolisme , Protéines de Saccharomyces cerevisiae/génétique , Protéines de Saccharomyces cerevisiae/composition chimique
8.
Protein Sci ; 33(6): e4996, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38747383

RÉSUMÉ

The Sec61 translocon allows the translocation of secretory preproteins from the cytosol to the endoplasmic reticulum lumen during polypeptide biosynthesis. These proteins possess an N-terminal signal peptide (SP) which docks at the translocon. SP mutations can abolish translocation and cause diseases, suggesting an essential role for this SP/Sec61 interaction. However, a detailed biophysical characterization of this binding is still missing. Here, optical tweezers force spectroscopy was used to characterize the kinetic parameters of the dissociation process between Sec61 and the SP of prepro-alpha-factor. The unbinding parameters including off-rate constant and distance to the transition state were obtained by fitting rupture force data to Dudko-Hummer-Szabo models. Interestingly, the translocation inhibitor mycolactone increases the off-rate and accelerates the SP/Sec61 dissociation, while also weakening the interaction. Whereas the translocation deficient mutant containing a single point mutation in the SP abolished the specificity of the SP/Sec61 binding, resulting in an unstable interaction. In conclusion, we characterize quantitatively the dissociation process between the signal peptide and the translocon, and how the unbinding parameters are modified by a translocation inhibitor.


Sujet(s)
Pinces optiques , Canaux de translocation SEC , Protéines de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Cinétique , Liaison aux protéines , Signaux de triage des protéines , Transport des protéines , Canaux de translocation SEC/composition chimique , Canaux de translocation SEC/métabolisme , Protéines de Saccharomyces cerevisiae/composition chimique , Protéines de Saccharomyces cerevisiae/métabolisme , Saccharomyces cerevisiae/composition chimique , Saccharomyces cerevisiae/métabolisme
9.
Elife ; 132024 May 29.
Article de Anglais | MEDLINE | ID: mdl-38809771

RÉSUMÉ

The yeast SWR1C chromatin remodeling enzyme catalyzes the ATP-dependent exchange of nucleosomal histone H2A for the histone variant H2A.Z, a key variant involved in a multitude of nuclear functions. How the 14-subunit SWR1C engages the nucleosomal substrate remains largely unknown. Studies on the ISWI, CHD1, and SWI/SNF families of chromatin remodeling enzymes have demonstrated key roles for the nucleosomal acidic patch for remodeling activity, however a role for this nucleosomal epitope in nucleosome editing by SWR1C has not been tested. Here, we employ a variety of biochemical assays to demonstrate an essential role for the acidic patch in the H2A.Z exchange reaction. Utilizing asymmetrically assembled nucleosomes, we demonstrate that the acidic patches on each face of the nucleosome are required for SWR1C-mediated dimer exchange, suggesting SWR1C engages the nucleosome in a 'pincer-like' conformation, engaging both patches simultaneously. Loss of a single acidic patch results in loss of high affinity nucleosome binding and nucleosomal stimulation of ATPase activity. We identify a conserved arginine-rich motif within the Swc5 subunit that binds the acidic patch and is key for dimer exchange activity. In addition, our cryoEM structure of a Swc5-nucleosome complex suggests that promoter proximal, histone H2B ubiquitylation may regulate H2A.Z deposition. Together these findings provide new insights into how SWR1C engages its nucleosomal substrate to promote efficient H2A.Z deposition.


Sujet(s)
Adenosine triphosphatases , Histone , Nucléosomes , Protéines de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Histone/métabolisme , Histone/composition chimique , Nucléosomes/métabolisme , Saccharomyces cerevisiae/génétique , Saccharomyces cerevisiae/métabolisme , Protéines de Saccharomyces cerevisiae/métabolisme , Protéines de Saccharomyces cerevisiae/génétique , Protéines de Saccharomyces cerevisiae/composition chimique , Adenosine triphosphatases/métabolisme , Adenosine triphosphatases/composition chimique , Adenosine triphosphatases/génétique , Assemblage et désassemblage de la chromatine , Liaison aux protéines , Multimérisation de protéines
10.
J Mol Biol ; 436(12): 168606, 2024 Jun 15.
Article de Anglais | MEDLINE | ID: mdl-38729258

RÉSUMÉ

Eukaryotes express at least three nuclear DNA dependent RNA polymerases (Pols). Pols I, II, and III synthesize ribosomal (r) RNA, messenger (m) RNA, and transfer (t) RNA, respectively. Pol I and Pol III have intrinsic nuclease activity conferred by the A12.2 and C11 subunits, respectively. In contrast, Pol II requires the transcription factor (TF) IIS to confer robust nuclease activity. We recently reported that in the absence of the A12.2 subunit Pol I reverses bond formation by pyrophosphorolysis in the absence of added PPi, indicating slow PPi release. Thus, we hypothesized that Pol II, naturally lacking TFIIS, would reverse bond formation through pyrophosphorolysis. Here we report the results of transient-state kinetic experiments to examine the addition of nine nucleotides to a growing RNA chain catalyzed by Pol II. Our results indicate that Pol II reverses bond formation by pyrophosphorolysis in the absence of added PPi. We propose that, in the absence of endonuclease activity, this bond reversal may represent kinetic proofreading. Thus, given the hypothesis that Pol I evolved from Pol II through the incorporation of general transcription factors, pyrophosphorolysis may represent a more ancient form of proofreading that has been evolutionarily replaced with nuclease activity.


Sujet(s)
Diphosphates , RNA polymerase II , Saccharomyces cerevisiae , RNA polymerase II/métabolisme , RNA polymerase II/génétique , Cinétique , Saccharomyces cerevisiae/génétique , Saccharomyces cerevisiae/métabolisme , Diphosphates/métabolisme , Nucléotides/métabolisme , Protéines de Saccharomyces cerevisiae/métabolisme , Protéines de Saccharomyces cerevisiae/génétique , Protéines de Saccharomyces cerevisiae/composition chimique
11.
Mol Cell ; 84(9): 1811-1815.e3, 2024 May 02.
Article de Anglais | MEDLINE | ID: mdl-38701742

RÉSUMÉ

Post-translational modifications of proteins (PTMs) introduce an extra layer of complexity to cellular regulation. Although phosphorylation of serine, threonine, and tyrosine residues is well-known as PTMs, lysine is, in fact, the most heavily modified amino acid, with over 30 types of PTMs on lysine having been characterized. One of the most recently discovered PTMs on lysine residues is polyphosphorylation, which sees linear chains of inorganic polyphosphates (polyP) attached to lysine residues. The labile nature of phosphoramidate bonds raises the question of whether this modification is covalent in nature. Here, we used buffers with very high ionic strength, which would disrupt any non-covalent interactions, and confirmed that lysine polyphosphorylation occurs covalently on proteins containing PASK domains (polyacidic, serine-, and lysine-rich), such as the budding yeast protein nuclear signal recognition 1 (Nsr1) and the mammalian protein nucleolin. This Matters Arising Response paper addresses the Neville et al. (2024) Matters Arising paper, published concurrently in Molecular Cell.


Sujet(s)
Lysine , Phosphoprotéines , Maturation post-traductionnelle des protéines , Protéines de liaison à l'ARN , Phosphorylation , Lysine/métabolisme , Phosphoprotéines/métabolisme , Phosphoprotéines/composition chimique , Phosphoprotéines/génétique , Humains , Protéines de liaison à l'ARN/métabolisme , Protéines de liaison à l'ARN/génétique , Protéines de liaison à l'ARN/composition chimique , , Protéines de Saccharomyces cerevisiae/métabolisme , Protéines de Saccharomyces cerevisiae/génétique , Protéines de Saccharomyces cerevisiae/composition chimique , Animaux , Saccharomyces cerevisiae/métabolisme , Saccharomyces cerevisiae/génétique , Polyphosphates/métabolisme , Polyphosphates/composition chimique , Concentration osmolaire
12.
Proc Natl Acad Sci U S A ; 121(20): e2319115121, 2024 May 14.
Article de Anglais | MEDLINE | ID: mdl-38709931

RÉSUMÉ

The endosomal sorting complexes required for transport (ESCRTs) are responsible for membrane remodeling in many cellular processes, such as multivesicular body biogenesis, viral budding, and cytokinetic abscission. ESCRT-III, the most abundant ESCRT subunit, assembles into flat spirals as the primed state, essential to initiate membrane invagination. However, the three-dimensional architecture of ESCRT-III flat spirals remained vague for decades due to highly curved filaments with a small diameter and a single preferred orientation on the membrane. Here, we unveiled that yeast Snf7, a component of ESCRT-III, forms flat spirals on the lipid monolayers using cryogenic electron microscopy. We developed a geometry-constrained Euler angle-assigned reconstruction strategy and obtained moderate-resolution structures of Snf7 flat spirals with varying curvatures. Our analyses showed that Snf7 subunits recline on the membrane with N-terminal motifs α0 as anchors, adopt an open state with fused α2/3 helices, and bend α2/3 gradually from the outer to inner parts of flat spirals. In all, we provide the orientation and conformations of ESCRT-III flat spirals on the membrane and unveil the underlying assembly mechanism, which will serve as the initial step in understanding how ESCRTs drive membrane abscission.


Sujet(s)
Cryomicroscopie électronique , Complexes de tri endosomique requis pour le transport , Protéines de Saccharomyces cerevisiae , Membrane cellulaire/métabolisme , Complexes de tri endosomique requis pour le transport/métabolisme , Complexes de tri endosomique requis pour le transport/composition chimique , Saccharomyces cerevisiae/métabolisme , Protéines de Saccharomyces cerevisiae/métabolisme , Protéines de Saccharomyces cerevisiae/composition chimique , Protéines de Saccharomyces cerevisiae/ultrastructure
13.
Nat Struct Mol Biol ; 31(5): 742-746, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38769465

RÉSUMÉ

Hexasomes are non-canonical nucleosomes that package DNA with six instead of eight histones. First discovered 40 years ago as a consequence of transcription, two near-atomic-resolution cryo-EM structures of the hexasome in complex with the chromatin remodeler INO80 have now started to unravel its mechanistic impact on the regulatory landscape of chromatin. Loss of one histone H2A-H2B dimer converts inactive nucleosomes into distinct and favorable substrates for ATP-dependent chromatin remodeling.


Sujet(s)
Assemblage et désassemblage de la chromatine , Cryomicroscopie électronique , Histone , Nucléosomes , Nucléosomes/métabolisme , Nucléosomes/composition chimique , Nucléosomes/ultrastructure , Histone/métabolisme , Histone/composition chimique , Modèles moléculaires , Humains , Protéines de Saccharomyces cerevisiae/métabolisme , Protéines de Saccharomyces cerevisiae/composition chimique , ADN/métabolisme , ADN/composition chimique
14.
Nat Commun ; 15(1): 4622, 2024 May 30.
Article de Anglais | MEDLINE | ID: mdl-38816438

RÉSUMÉ

The 5'-end capping of nascent pre-mRNA represents the initial step in RNA processing, with evidence demonstrating that guanosine addition and 2'-O-ribose methylation occur in tandem with early steps of transcription by RNA polymerase II, especially at the pausing stage. Here, we determine the cryo-EM structures of the paused elongation complex in complex with RNGTT, as well as the paused elongation complex in complex with RNGTT and CMTR1. Our findings show the simultaneous presence of RNGTT and the NELF complex bound to RNA polymerase II. The NELF complex exhibits two conformations, one of which shows a notable rearrangement of NELF-A/D compared to that of the paused elongation complex. Moreover, CMTR1 aligns adjacent to RNGTT on the RNA polymerase II stalk. Our structures indicate that RNGTT and CMTR1 directly bind the paused elongation complex, illuminating the mechanism by which 5'-end capping of pre-mRNA during transcriptional pausing.


Sujet(s)
Cryomicroscopie électronique , Coiffes des ARN , RNA polymerase II , Transcription génétique , RNA polymerase II/métabolisme , RNA polymerase II/composition chimique , Coiffes des ARN/métabolisme , Précurseurs des ARN/métabolisme , Précurseurs des ARN/génétique , Humains , Liaison aux protéines , Modèles moléculaires , ARN messager/métabolisme , ARN messager/génétique , Protéines de Saccharomyces cerevisiae/métabolisme , Protéines de Saccharomyces cerevisiae/génétique , Protéines de Saccharomyces cerevisiae/composition chimique
15.
Food Chem ; 453: 139691, 2024 Sep 30.
Article de Anglais | MEDLINE | ID: mdl-38781904

RÉSUMÉ

Yeast extract is increasingly becoming an attractive source for unraveling novel umami peptides that are healthier and more nutritious than traditional seasonings. In the present study, a strategy for screening novel umami peptides was established using mass spectrometry-based peptidomics combined with molecular interaction modeling, emphasizing on smaller peptides than previously reported. Four representative novel umami peptides of FE, YDQ, FQEY, and SPFSQ from yeast extract (Saccharomyces cerevisiae) were identified and validated by sensory evaluation, with thresholds determined as 0.234 ± 0.045, 0.576 ± 0.175, 0.327 ± 0.057 and 0.456 ± 0.070 mmol/L, respectively. Hydrogen and ionic bonds were the main characteristic interactions between the umami peptides and the well-recognized receptor T1R1/T1R3, in which Asp 110, Thr 112, Arg 114, Arg 240, Lys 342, and Glu 264 were the key sites in ligand-receptor recognition. Our study provides accurate sequences of umami peptides and molecular interaction mechanism for the umami effect.


Sujet(s)
Peptides , Saccharomyces cerevisiae , Saccharomyces cerevisiae/composition chimique , Saccharomyces cerevisiae/métabolisme , Peptides/composition chimique , Humains , Goût , Modèles moléculaires , Aromatisants/composition chimique , Aromatisants/métabolisme , Protéines de Saccharomyces cerevisiae/composition chimique , Protéines de Saccharomyces cerevisiae/métabolisme , Protéines de Saccharomyces cerevisiae/génétique , Mâle , Protéomique , Femelle , Séquence d'acides aminés
16.
Cell Mol Life Sci ; 81(1): 216, 2024 May 13.
Article de Anglais | MEDLINE | ID: mdl-38740643

RÉSUMÉ

p50RhoGAP is a key protein that interacts with and downregulates the small GTPase RhoA. p50RhoGAP is a multifunctional protein containing the BNIP-2 and Cdc42GAP Homology (BCH) domain that facilitates protein-protein interactions and lipid binding and the GAP domain that regulates active RhoA population. We recently solved the structure of the BCH domain from yeast p50RhoGAP (YBCH) and showed that it maintains the adjacent GAP domain in an auto-inhibited state through the ß5 strand. Our previous WT YBCH structure shows that a unique kink at position 116 thought to be made by a proline residue between alpha helices α6 and α7 is essential for the formation of intertwined dimer from asymmetric monomers. Here we sought to establish the role and impact of this Pro116. However, the kink persists in the structure of P116A mutant YBCH domain, suggesting that the scaffold is not dictated by the proline residue at this position. We further identified Tyr124 (or Tyr188 in HBCH) as a conserved residue in the crucial ß5 strand. Extending to the human ortholog, when substituted to acidic residues, Tyr188D or Tyr188E, we observed an increase in RhoA binding and self-dimerization, indicative of a loss of inhibition of the GAP domain by the BCH domain. These results point to distinct roles and impact of the non-conserved and conserved amino acid positions in regulating the structural and functional complexity of the BCH domain.


Sujet(s)
Proline , Proline/métabolisme , Proline/composition chimique , Proline/génétique , Tyrosine/métabolisme , Tyrosine/composition chimique , Tyrosine/génétique , Domaines protéiques , Protéines de Saccharomyces cerevisiae/métabolisme , Protéines de Saccharomyces cerevisiae/composition chimique , Protéines de Saccharomyces cerevisiae/génétique , Saccharomyces cerevisiae/métabolisme , Saccharomyces cerevisiae/génétique , Séquence d'acides aminés , Protéine G RhoA/métabolisme , Protéine G RhoA/génétique , Protéine G RhoA/composition chimique , Modèles moléculaires , Séquence conservée , Humains , Liaison aux protéines
17.
Nucleic Acids Res ; 52(9): 5226-5240, 2024 May 22.
Article de Anglais | MEDLINE | ID: mdl-38613394

RÉSUMÉ

RNA acetylation is a universal post-transcriptional modification that occurs in various RNAs. Transfer RNA (tRNA) acetylation is found at position 34 (ac4C34) in bacterial tRNAMet and position 12 (ac4C12) in eukaryotic tRNASer and tRNALeu. The biochemical mechanism, structural basis and functional significance of ac4C34 are well understood; however, despite being discovered in the 1960s and identification of Kre33/NAT10 and Tan1/THUMPD1 as modifying apparatuses, ac4C12 modification activity has never been reconstituted for nearly six decades. Here, we successfully reconstituted the ac4C12 modification activity of yeast Kre33 and Tan1. Biogenesis of ac4C12 is primarily dependent on a minimal set of elements, including a canonical acceptor stem, the presence of the 11CCG13 motif and correct D-arm orientation, indicating a molecular ruler mechanism. A single A13G mutation conferred ac4C12 modification to multiple non-substrate tRNAs. Moreover, we were able to introduce ac4C modifications into small RNAs. ac4C12 modification contributed little to tRNA melting temperature and aminoacylation in vitro and in vivo. Collectively, our results realize in vitro activity reconstitution, delineate tRNA substrate selection mechanism for ac4C12 biogenesis and develop a valuable system for preparing acetylated tRNAs as well as non-tRNA RNA species, which will advance the functional interpretation of the acetylation in RNA structures and functions.


Sujet(s)
ARN de transfert , Protéines de liaison à l'ARN , Protéines de Saccharomyces cerevisiae , Acétylation , Mutation , Conformation d'acide nucléique , Maturation post-transcriptionnelle des ARN , ARN de transfert/métabolisme , ARN de transfert/génétique , ARN de transfert/composition chimique , Saccharomyces cerevisiae/génétique , Saccharomyces cerevisiae/métabolisme , Protéines de Saccharomyces cerevisiae/métabolisme , Protéines de Saccharomyces cerevisiae/génétique , Protéines de Saccharomyces cerevisiae/composition chimique , Protéines de liaison à l'ARN/métabolisme
18.
Nucleic Acids Res ; 52(10): 5720-5731, 2024 Jun 10.
Article de Anglais | MEDLINE | ID: mdl-38597680

RÉSUMÉ

The Origin Recognition Complex (ORC) seeds replication-fork formation by binding to DNA replication origins, which in budding yeast contain a 17bp DNA motif. High resolution structure of the ORC-DNA complex revealed two base-interacting elements: a disordered basic patch (Orc1-BP4) and an insertion helix (Orc4-IH). To define the ORC elements guiding its DNA binding in vivo, we mapped genomic locations of 38 designed ORC mutants, revealing that different ORC elements guide binding at different sites. At silencing-associated sites lacking the motif, ORC binding and activity were fully explained by a BAH domain. Within replication origins, we reveal two dominating motif variants showing differential binding modes and symmetry: a non-repetitive motif whose binding requires Orc1-BP4 and Orc4-IH, and a repetitive one where another basic patch, Orc1-BP3, can replace Orc4-IH. Disordered basic patches are therefore key for ORC-motif binding in vivo, and we discuss how these conserved, minor-groove interacting elements can guide specific ORC-DNA recognition.


Sujet(s)
Complexe ORC , Origine de réplication , Protéines de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Sites de fixation , Réplication de l'ADN , ADN fongique/métabolisme , ADN fongique/composition chimique , ADN fongique/génétique , Mutation , Motifs nucléotidiques , Complexe ORC/métabolisme , Complexe ORC/génétique , Complexe ORC/composition chimique , Liaison aux protéines , Saccharomyces cerevisiae/génétique , Saccharomyces cerevisiae/métabolisme , Protéines de Saccharomyces cerevisiae/métabolisme , Protéines de Saccharomyces cerevisiae/génétique , Protéines de Saccharomyces cerevisiae/composition chimique
19.
Structure ; 32(6): 690-705.e6, 2024 Jun 06.
Article de Anglais | MEDLINE | ID: mdl-38565139

RÉSUMÉ

The centromere is epigenetically marked by a histone H3 variant-CENP-A. The budding yeast CENP-A called Cse4, consists of an unusually long N-terminus that is known to be involved in kinetochore assembly. Its disordered chaperone, Scm3 is responsible for the centromeric deposition of Cse4 as well as in the maintenance of a segregation-competent kinetochore. In this study, we show that the Cse4 N-terminus is intrinsically disordered and interacts with Scm3 at multiple sites, and the complex does not gain any substantial structure. Additionally, the complex forms a synergistic association with an essential inner kinetochore component (Ctf19-Mcm21-Okp1-Ame1), and a model has been suggested to this effect. Thus, our study provides mechanistic insights into the Cse4 N-terminus-chaperone interaction and also illustrates how intrinsically disordered proteins mediate assembly of complex multiprotein networks, in general.


Sujet(s)
Protéines chromosomiques nonhistones , Protéines de liaison à l'ADN , Kinétochores , Liaison aux protéines , Protéines de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Kinétochores/métabolisme , Kinétochores/composition chimique , Protéines chromosomiques nonhistones/métabolisme , Protéines chromosomiques nonhistones/composition chimique , Protéines chromosomiques nonhistones/génétique , Protéines de Saccharomyces cerevisiae/métabolisme , Protéines de Saccharomyces cerevisiae/composition chimique , Protéines de Saccharomyces cerevisiae/génétique , Protéines de liaison à l'ADN/métabolisme , Protéines de liaison à l'ADN/composition chimique , Protéines de liaison à l'ADN/génétique , Saccharomyces cerevisiae/métabolisme , Chaperons moléculaires/métabolisme , Chaperons moléculaires/composition chimique , Modèles moléculaires , Protéines intrinsèquement désordonnées/métabolisme , Protéines intrinsèquement désordonnées/composition chimique , Protéine A du centromère/métabolisme , Protéine A du centromère/composition chimique , Sites de fixation , Protéines du cycle cellulaire/métabolisme , Protéines du cycle cellulaire/composition chimique , Protéines du cytosquelette , Protéines associées aux microtubules
20.
J Proteome Res ; 23(6): 2186-2194, 2024 Jun 07.
Article de Anglais | MEDLINE | ID: mdl-38664393

RÉSUMÉ

Tandem mass tags (TMT) are widely used in proteomics to simultaneously quantify multiple samples in a single experiment. The tags can be easily added to the primary amines of peptides/proteins through chemical reactions. In addition to amines, TMT reagents also partially react with the hydroxyl groups of serine, threonine, and tyrosine residues under alkaline conditions, which significantly compromises the analytical sensitivity and precision. Under alkaline conditions, reducing the TMT molar excess can partially mitigate overlabeling of histidine-free peptides, but has a limited effect on peptides containing histidine and hydroxyl groups. Here, we present a method under acidic conditions to suppress overlabeling while efficiently labeling amines, using only one-fifth of the TMT amount recommended by the manufacturer. In a deep-scale analysis of a yeast/human two-proteome sample, we systematically evaluated our method against the manufacturer's method and a previously reported TMT-reduced method. Our method reduced overlabeled peptides by 9-fold and 6-fold, respectively, resulting in the substantial enhancement in peptide/protein identification rates. More importantly, the quantitative accuracy and precision were improved as overlabeling was reduced, endowing our method with greater statistical power to detect 42% and 12% more statistically significant yeast proteins compared to the standard and TMT-reduced methods, respectively. Mass spectrometric data have been deposited in the ProteomeXchange Consortium via the iProX partner repository with the data set identifier PXD047052.


Sujet(s)
Amines , Protéome , Protéomique , Spectrométrie de masse en tandem , Protéome/analyse , Protéome/composition chimique , Protéomique/méthodes , Humains , Amines/composition chimique , Spectrométrie de masse en tandem/méthodes , Saccharomyces cerevisiae/métabolisme , Saccharomyces cerevisiae/composition chimique , Peptides/composition chimique , Peptides/analyse , Analyse coût-bénéfice , Protéines de Saccharomyces cerevisiae/analyse , Protéines de Saccharomyces cerevisiae/composition chimique , Coloration et marquage/méthodes
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...