Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 59
Filtrer
Plus de filtres











Gamme d'année
1.
Life Sci ; 278: 119563, 2021 Aug 01.
Article de Anglais | MEDLINE | ID: mdl-33930364

RÉSUMÉ

AIM: There is growing evidence about the ability of cyclic adenosine monophosphate (cAMP) signaling and nonselective phosphodiesterase (PDE) inhibitors on mitigate muscle atrophy. PDE4 accounts for the major cAMP hydrolyzing activity in skeletal muscles, therefore advances are necessary about the consequences of treatment with PDE4 inhibitors on protein breakdown in atrophied muscles. We postulated that rolipram (selective PDE4 inhibitor) may activate cAMP downstream effectors, inhibiting proteolytic systems in skeletal muscles of diabetic rats. MAIN METHODS: Streptozotocin-induced diabetic rats were treated with 2 mg/kg rolipram for 3 days. Changes in the levels of components belonging to the proteolytic machineries in soleus and extensor digitorum longus (EDL) muscles were investigated, as well as cAMP effectors. KEY FINDINGS: Treatment of diabetic rats with rolipram decreased the levels of atrogin-1 and MuRF-1 in soleus and EDL, and reduced the activities of calpains and caspase-3; these findings partially explains the low ubiquitin conjugates levels and the decreased proteasome activity. The inhibition of muscle proteolysis may be occurring due to phosphorylation and inhibition of forkhead box O (FoxO) factors, probably as a consequence of the increased cAMP levels, followed by the activation of PKA and Akt effectors. Akt activation may be associated with the increased levels of exchange protein directly activated by cAMP (EPAC). As a result, rolipram treatment spared muscle mass in diabetic rats. SIGNIFICANCE: The antiproteolytic responses associated with PDE4 inhibition may be helpful to motivate future investigations about the repositioning of PDE4 inhibitors for the treatment of muscle wasting conditions.


Sujet(s)
3',5'-Cyclic-AMP Phosphodiesterases/antagonistes et inhibiteurs , Cyclic AMP-Dependent Protein Kinases/métabolisme , Diabète expérimental/métabolisme , Muscles squelettiques/métabolisme , Protéines de tissu nerveux/antagonistes et inhibiteurs , Inhibiteurs de la phosphodiestérase-4/pharmacologie , Protéines proto-oncogènes c-akt/métabolisme , Animaux , Calpain/métabolisme , Caspase-3/métabolisme , AMP cyclique/métabolisme , Mâle , Amyotrophie/métabolisme , Phosphorylation , Proteasome endopeptidase complex/métabolisme , Rats , Rat Wistar , Rolipram/pharmacologie , Transduction du signal/effets des médicaments et des substances chimiques
2.
Oxid Med Cell Longev ; 2021: 2678134, 2021.
Article de Anglais | MEDLINE | ID: mdl-33688389

RÉSUMÉ

Deletion of pannexin-1 (Panx-1) leads not only to a reduction in endothelium-derived hyperpolarization but also to an increase in NO-mediated vasodilation. Therefore, we evaluated the participation of Panx-1-formed channels in the control of membrane potential and [Ca2+]i of endothelial cells. Changes in NO-mediated vasodilation, membrane potential, superoxide anion (O2 ·-) formation, and endothelial cell [Ca2+]i were analyzed in rat isolated mesenteric arterial beds and primary cultures of mesenteric endothelial cells. Inhibition of Panx-1 channels with probenecid (1 mM) or the Panx-1 blocking peptide 10Panx (60 µM) evoked an increase in the ACh (100 nM)-induced vasodilation of KCl-contracted mesenteries and in the phosphorylation level of endothelial NO synthase (eNOS) at serine 1177 (P-eNOSS1177) and Akt at serine 473 (P-AktS473). In addition, probenecid or 10Panx application activated a rapid, tetrodotoxin (TTX, 300 nM)-sensitive, membrane potential depolarization and [Ca2+]i increase in endothelial cells. Interestingly, the endothelial cell depolarization was converted into a transient spike after removing Ca2+ ions from the buffer solution and in the presence of 100 µM mibefradil or 10 µM Ni2+. As expected, Ni2+ also abolished the increment in [Ca2+]i. Expression of Nav1.2, Nav1.6, and Cav3.2 isoforms of voltage-dependent Na+ and Ca2+ channels was confirmed by immunocytochemistry. Furthermore, the Panx-1 channel blockade was associated with an increase in O2 ·- production. Treatment with 10 µM TEMPOL or 100 µM apocynin prevented the increase in O2 ·- formation, ACh-induced vasodilation, P-eNOSS1177, and P-AktS473 observed in response to Panx-1 inhibition. These findings indicate that the Panx-1 channel blockade triggers a novel complex signaling pathway initiated by the sequential activation of TTX-sensitive Nav channels and Cav3.2 channels, leading to an increase in NO-mediated vasodilation through a NADPH oxidase-dependent P-eNOSS1177, which suggests that Panx-1 may be involved in the endothelium-dependent control of arterial blood pressure.


Sujet(s)
Connexines/métabolisme , Cellules endothéliales/métabolisme , Protéines de tissu nerveux/métabolisme , Monoxyde d'azote/métabolisme , Transduction du signal , Vasodilatation , Animaux , Artères/effets des médicaments et des substances chimiques , Canaux calciques/métabolisme , Signalisation calcique , Connexines/antagonistes et inhibiteurs , Cellules endothéliales/effets des médicaments et des substances chimiques , Mâle , Potentiels de membrane/effets des médicaments et des substances chimiques , NADPH oxidase/métabolisme , Protéines de tissu nerveux/antagonistes et inhibiteurs , Nitric oxide synthase type III/métabolisme , Phosphorylation/effets des médicaments et des substances chimiques , Protéines proto-oncogènes c-akt/métabolisme , Rat Sprague-Dawley , Transduction du signal/effets des médicaments et des substances chimiques , Fractions subcellulaires/métabolisme , Superoxydes/métabolisme , Tétrodotoxine/pharmacologie , Résistance vasculaire/effets des médicaments et des substances chimiques , Vasodilatation/effets des médicaments et des substances chimiques
3.
Metab Brain Dis ; 36(4): 711-722, 2021 04.
Article de Anglais | MEDLINE | ID: mdl-33528752

RÉSUMÉ

Fluoxetine is the foremost prescribed antidepressant. Drugs acting on monoaminergic system may also regulate glutamatergic system. Indeed, the investigation of proteins associated with this system, such as Narp (neuronal activity-dependent pentraxin) and GluA4 subunit of AMPA receptor may reveal poorly explored modulations triggered by conventional antidepressants. This study aimed to uncover neurochemical mechanisms underlying the chronic fluoxetine treatment, mainly by evaluating these protein targets in the prefrontal cortex and in the hippocampus. Mice received a daily administration of fluoxetine (0.1, 1 or 10 mg/kg, p.o.) or potable water (vehicle group) for 21 days. These animals were submitted to the forced swim test (FST) to verify antidepressant-like responses and the open-field test (OFT) to assess locomotor activity. Modulation of signaling proteins was analyzed by western blot. Chronic treatment with fluoxetine (1 and 10 mg/kg) was effective, since it reduced the immobility time in the FST, without altering locomotor activity. Fluoxetine 10 mg/kg increased CREB phosphorylation and BDNF expression in the prefrontal cortex and hippocampus. Noteworthy, in the hippocampus fluoxetine also promoted Akt activation and augmented Narp expression. In the prefrontal cortex, a significant decrease in the expression of the GluA4 subunit and Narp were observed following fluoxetine administration (10 mg/kg). The results provide evidence of novel molecular targets potentially involved in the antidepressant effects of fluoxetine, since in mature rodents Narp and GluA4 are mainly expressed in the GABAergic parvalbumin-positive (PV+) interneurons. This may bring new insights into the molecular elements involved in the mechanisms underlying the antidepressant effects of fluoxetine.


Sujet(s)
Antidépresseurs de seconde génération/administration et posologie , Protéine C-réactive/antagonistes et inhibiteurs , Systèmes de délivrance de médicaments/méthodes , Fluoxétine/administration et posologie , Protéines de tissu nerveux/antagonistes et inhibiteurs , Récepteur de l'AMPA/antagonistes et inhibiteurs , Animaux , Encéphale/effets des médicaments et des substances chimiques , Encéphale/métabolisme , Protéine C-réactive/métabolisme , Relation dose-effet des médicaments , Mâle , Souris , Protéines de tissu nerveux/métabolisme , Récepteur de l'AMPA/métabolisme
4.
Horm Behav ; 127: 104880, 2021 01.
Article de Anglais | MEDLINE | ID: mdl-33129833

RÉSUMÉ

Alamandine (Ala1-Arg2-Val3-Tyr4-Ile5-His6-Pro7), a heptapeptide hormone of the renin-angiotensin system (RAS), exerts its effects through the Mas-related G-protein coupled receptor of the type D, MrgD, which is expressed in different tissues, including the brain. In the present study, we tested the hypothesis that alamandine could attenuate the depression-like behavior observed in transgenic rats with low brain angiotensinogen, TGR (ASrAOGEN)680. Transgenic rats exhibited a significant increase in the immobility time in forced swim test, a phenotype reversed by intracerebroventricular infusion of alamandine. Pretreatment with D-Pro7-Ang-(1-7), a Mas/MrgD receptor antagonist, prevented the antidepressant-like effect induced by this peptide demonstrating, for the first time, that alamandine through MrgD receptor, can modulate depression-like behavior in TGR (ASrAOGEN)680. This result shows an action of alamandine which strengthens the importance of the counter-regulatory arms of the RAS in fight and treatment of neuropsychiatric diseases.


Sujet(s)
Angiotensinogène/génétique , Antidépresseurs/pharmacologie , Encéphale/effets des médicaments et des substances chimiques , Protéines de tissu nerveux/physiologie , Oligopeptides/pharmacologie , Récepteurs couplés aux protéines G/physiologie , Angiotensine-I/pharmacologie , Angiotensinogène/métabolisme , Animaux , Encéphale/métabolisme , Injections ventriculaires , Mâle , Protéines de tissu nerveux/antagonistes et inhibiteurs , Oligopeptides/administration et posologie , Fragments peptidiques/pharmacologie , Rats , Rat Sprague-Dawley , Rats transgéniques , Récepteurs couplés aux protéines G/antagonistes et inhibiteurs , Récepteurs couplés aux protéines G/métabolisme
5.
Int J Mol Sci ; 21(22)2020 Nov 13.
Article de Anglais | MEDLINE | ID: mdl-33202963

RÉSUMÉ

Epilepsy is a chronic brain disease that affects approximately 65 million people worldwide. However, despite the continuous development of antiepileptic drugs, over 30% patients with epilepsy progress to drug-resistant epilepsy. For this reason, it is a high priority objective in preclinical research to find novel therapeutic targets and to develop effective drugs that prevent or reverse the molecular mechanisms underlying epilepsy progression. Among these potential therapeutic targets, we highlight currently available information involving signaling pathways (Wnt/ß-catenin, Mammalian Target of Rapamycin (mTOR) signaling and zinc signaling), enzymes (carbonic anhydrase), proteins (erythropoietin, copine 6 and complement system), channels (Transient Receptor Potential Vanilloid Type 1 (TRPV1) channel) and receptors (galanin and melatonin receptors). All of them have demonstrated a certain degree of efficacy not only in controlling seizures but also in displaying neuroprotective activity and in modifying the progression of epilepsy. Although some research with these specific targets has been done in relation with epilepsy, they have not been fully explored as potential therapeutic targets that could help address the unsolved issue of drug-resistant epilepsy and develop new antiseizure therapies for the treatment of epilepsy.


Sujet(s)
Anticonvulsivants/usage thérapeutique , Encéphale , Systèmes de délivrance de médicaments , Épilepsie , Protéines de tissu nerveux , Transduction du signal/effets des médicaments et des substances chimiques , Animaux , Encéphale/métabolisme , Encéphale/anatomopathologie , Épilepsie/traitement médicamenteux , Épilepsie/métabolisme , Épilepsie/anatomopathologie , Humains , Protéines de tissu nerveux/antagonistes et inhibiteurs , Protéines de tissu nerveux/métabolisme
6.
Biochem Pharmacol ; 180: 114190, 2020 10.
Article de Anglais | MEDLINE | ID: mdl-32768401

RÉSUMÉ

The renin-angiotensin system, one of the main regulators of vascular function, controls vasoconstriction, inflammation and vascular remodeling. Antagonistic actions of the counter-regulatory renin-angiotensin system, which include vasodilation, anti-proliferative, anti-inflammatory and anti-remodeling effects, have also been described. However, little is known about the direct effects of angiotensin-(1-9), a peptide of the counter-regulatory renin-angiotensin system, on vascular smooth muscle cells. Here, we studied the anti-vascular remodeling effects of angiotensin-(1-9), with special focus on the control of vascular smooth muscle cell phenotype. Angiotensin-(1-9) decreased blood pressure and aorta media thickness in spontaneously hypertensive rats. Reduction of media thickness was associated with decreased vascular smooth muscle cell proliferation. In the A7r5 VSMC cell line and in primary cultures of rat aorta smooth muscle cells, angiotensin-(1-9) did not modify basal proliferation. However, angiotensin-(1-9) inhibited proliferation, migration and contractile protein decrease induced by platelet derived growth factor-BB. Moreover, angiotensin-(1-9) reduced Akt and FoxO1 phosphorylation at 30 min, followed by an increase of total FoxO1 protein content. Angiotensin-(1-9) effects were blocked by the AT2R antagonist PD123319, Akt-Myr overexpression and FoxO1 siRNA. These data suggest that angiotensin-(1-9) inhibits vascular smooth muscle cell dedifferentiation by an AT2R/Akt/FoxO1-dependent mechanism.


Sujet(s)
Angiotensine-I/pharmacologie , Antihypertenseurs/pharmacologie , Dédifférenciation cellulaire/effets des médicaments et des substances chimiques , Muscles lisses vasculaires/effets des médicaments et des substances chimiques , Protéines de tissu nerveux/antagonistes et inhibiteurs , Remodelage vasculaire/effets des médicaments et des substances chimiques , Angiotensine-I/usage thérapeutique , Animaux , Antihypertenseurs/usage thérapeutique , Dédifférenciation cellulaire/physiologie , Lignée cellulaire , Hypertension artérielle/traitement médicamenteux , Hypertension artérielle/métabolisme , Mâle , Muscles lisses vasculaires/cytologie , Muscles lisses vasculaires/métabolisme , Protéines de tissu nerveux/métabolisme , Rats , Rats de lignée SHR , Rat Wistar , Remodelage vasculaire/physiologie
7.
J Neurosci ; 40(11): 2246-2258, 2020 03 11.
Article de Anglais | MEDLINE | ID: mdl-32001613

RÉSUMÉ

The ependyma of the adult spinal cord is a latent stem cell niche that is reactivated by spinal cord injury contributing new cells to the glial scar. The cellular events taking place in the early stages of the reaction of the ependyma to injury remain little understood. Ependymal cells are functionally heterogeneous with a mitotically active subpopulation lining the lateral domains of the central canal (CC) that are coupled via gap junctions. Gap junctions and connexin hemichannels are key regulators of the biology of neural progenitors during development and in adult neurogenic niches. Thus, we hypothesized that communication via connexins in the CC is developmentally regulated and may play a part in the reactivation of this latent stem cell niche after injury. To test these possibilities, we combined patch-clamp recordings of ependymal cells with immunohistochemistry for various connexins in the neonatal and the adult (P > 90) normal and injured spinal cord of male and female mice. We find that coupling among ependymal cells is downregulated as postnatal development proceeds but increases after injury, resembling the immature CC. The increase in gap junction coupling in the adult CC was paralleled by upregulation of connexin 26, which correlated with the resumption of proliferation and a reduction of connexin hemichannel activity. Connexin blockade reduced the injury-induced proliferation of ependymal cells. Our findings suggest that connexins are involved in the early reaction of ependymal cells to injury, representing a potential target to improve the contribution of the CC stem cell niche to repair.SIGNIFICANCE STATEMENT Ependymal cells in the adult spinal cord are latent progenitors that react to injury to support some degree of endogenous repair. Understanding the mechanisms by which these progenitor-like cells are regulated in the aftermath of spinal cord injury is critical to design future manipulations aimed at improving healing and functional recovery. Gap junctions and connexin hemichannels are key regulators of the biology of neural progenitors during development and in adult neurogenic niches. We find here that connexin signaling in the ependyma changes after injury of the adult spinal cord, functionally resembling the immature active-stem cell niche of neonatal animals. Our findings suggest that connexins in ependymal cells are potential targets to improve self-repair of the spinal cord.


Sujet(s)
Connexines/physiologie , Protéines de tissu nerveux/physiologie , Traumatismes de la moelle épinière/physiopathologie , Niche de cellules souches/physiologie , Facteurs âges , Séquence d'acides aminés , Animaux , Animaux nouveau-nés , Membrane cellulaire/physiologie , Perméabilité des membranes cellulaires , Connexines/antagonistes et inhibiteurs , Épendyme/cytologie , Épendyme/croissance et développement , Femelle , Colorants fluorescents/pharmacocinétique , Jonctions communicantes/physiologie , Hydrogels , Techniques in vitro , Mâle , Souris , Souris de lignée C57BL , Protéines de tissu nerveux/antagonistes et inhibiteurs , Techniques de patch-clamp , Peptides/composition chimique , Peptides/pharmacologie , Poloxamère/pharmacologie , Répartition aléatoire
8.
Article de Anglais | MEDLINE | ID: mdl-30195060

RÉSUMÉ

Fluoxetine (FLX) is a selective serotonin reuptake inhibitor (SSRI) antidepressant widely used in clinics and very often found in environmental samples of urban aquatic ecosystems in concentrations ranging from ng/L to µg/L. Fish populations might be especially susceptible to FLX due to the presence of conserved cellular receptors of serotonin. Neurotoxic effects on fish biota of polluted water bodies may be expected, but there are no sufficient studies in the current literature to elucidate this hypothesis. Batteries of embryo larval assays with zebrafish were performed to evaluate the potential effects of FLX exposure, including environmentally relevant concentrations. Evaluated parameters included survival, development, behaviour and neuronal biochemical markers. Regarding acute toxicity, a 168 h-LC50 value of 1.18 mg/L was obtained. Moreover, hatching delay and loss of equilibrium were observed, but at a concentration level much higher than FLX measured environmental concentrations (>100 µg/L). On the other hand, effects on locomotor and acetylcholinesterase activity (≥0.88 and 6 µg/L, respectively) were found at levels close to the maximum reported FLX concentration in surface waters. Altogether, these results suggest that FLX is neurotoxic to early life stages of zebrafish, in a short period of time causing changes in important ecological attributes which can probably be linked from molecular to population level.


Sujet(s)
Comportement animal/effets des médicaments et des substances chimiques , Anticholinestérasiques/toxicité , Embryon non mammalien/effets des médicaments et des substances chimiques , Développement embryonnaire/effets des médicaments et des substances chimiques , Fluoxétine/toxicité , Protéines de tissu nerveux/antagonistes et inhibiteurs , Polluants chimiques de l'eau/toxicité , Acetylcholinesterase/composition chimique , Acetylcholinesterase/métabolisme , Animaux , Antidépresseurs de seconde génération/effets indésirables , Marqueurs biologiques/métabolisme , Résistance aux substances , Embryon non mammalien/enzymologie , Larve/effets des médicaments et des substances chimiques , Larve/enzymologie , Larve/croissance et développement , Dose létale 50 , Protéines de tissu nerveux/métabolisme , Concentration osmolaire , Inbiteurs sélectifs de la recapture de la sérotonine/effets indésirables , Spécificité d'espèce , Tests de toxicité aigüe , Danio zébré/embryologie , Danio zébré/croissance et développement , Protéines de poisson-zèbre/antagonistes et inhibiteurs , Protéines de poisson-zèbre/métabolisme
9.
Cell Rep ; 21(5): 1129-1139, 2017 Oct 31.
Article de Anglais | MEDLINE | ID: mdl-29091753

RÉSUMÉ

During aging, the brain undergoes changes that impair cognitive capacity and circuit plasticity, including a marked decrease in production of adult-born hippocampal neurons. It is unclear whether development and integration of those new neurons are also affected by age. Here, we show that adult-born granule cells (GCs) in aging mice are scarce and exhibit slow development, but they display a remarkable potential for structural plasticity. Retrovirally labeled 3-week-old GCs in middle-aged mice were small, underdeveloped, and disconnected. Neuronal development and integration were accelerated by voluntary exercise or environmental enrichment. Similar effects were observed via knockdown of Lrig1, an endogenous negative modulator of neurotrophin receptors. Consistently, blocking neurotrophin signaling by Lrig1 overexpression abolished the positive effects of exercise. These results demonstrate an unparalleled degree of plasticity in the aging brain mediated by neurotrophins, whereby new GCs remain immature until becoming rapidly recruited to the network by activity.


Sujet(s)
Vieillissement , Hippocampe/métabolisme , Plasticité neuronale/physiologie , Animaux , Calbindines/métabolisme , Protéines de liaison à l'ADN , Dendrites/physiologie , Gyrus denté/métabolisme , Femelle , Techniques in vitro , Glycoprotéines membranaires/antagonistes et inhibiteurs , Glycoprotéines membranaires/génétique , Glycoprotéines membranaires/métabolisme , Souris , Souris de lignée C57BL , Souris transgéniques , Microscopie confocale , Facteurs de croissance nerveuse/métabolisme , Protéines de tissu nerveux/antagonistes et inhibiteurs , Protéines de tissu nerveux/génétique , Protéines de tissu nerveux/métabolisme , Neurones/physiologie , Protéines nucléaires/métabolisme , Techniques de patch-clamp , Conditionnement physique d'animal , Interférence par ARN , Petit ARN interférent/métabolisme , Transduction du signal
10.
Neuroscience ; 357: 264-272, 2017 08 15.
Article de Anglais | MEDLINE | ID: mdl-28602919

RÉSUMÉ

During postnatal development, neural circuits are extremely dynamic and develop precise connection patterns that emerge as a result of the elimination of synaptic terminals, a process instructed by molecular cues and patterns of electrical activity. In the rodent visual system, this process begins during the first postnatal week and proceeds during the second and third postnatal weeks as spontaneous retinal activity and finally use-dependent fine tuning takes place. Reelin is a large extracellular matrix glycoprotein able to affect several steps of brain development, from neuronal migration to the maturation of dendritic spines and use-dependent synaptic development. In the present study, we investigated the role of reelin on the topographical refinement of primary sensory connections studying the development of retinal ganglion cell axon terminals in the rat superior colliculus. We found that reelin levels in the visual layers of the superior colliculus are the highest between the second and third postnatal weeks. Blocking reelin signaling with a neutralizing antibody (CR-50) from PND 7 to PND 14 induced a non-specific sprouting of ipsilateral retinocollicular axons outside their typical distribution of discrete patches of axon terminals. Also we found that reelin blockade resulted in reduced levels of phospho-GAP43, increased GluN1 and GluN2B-NMDA subunits and decreased levels of GAD65 content in the visual layers of the superior colliculus. The results suggest that reelin signaling is associated with the maturation of excitatory and inhibitory synaptic machinery influencing the development and fine tuning of topographically organized neural circuits during postnatal development.


Sujet(s)
Molécules d'adhérence cellulaire neuronale/métabolisme , Protéines de la matrice extracellulaire/métabolisme , Protéines de tissu nerveux/métabolisme , Cellules ganglionnaires rétiniennes/métabolisme , Serine endopeptidases/métabolisme , Colliculus supérieurs/croissance et développement , Colliculus supérieurs/métabolisme , Animaux , Animaux nouveau-nés , Technique de Western , Molécules d'adhérence cellulaire neuronale/antagonistes et inhibiteurs , Protéines de la matrice extracellulaire/antagonistes et inhibiteurs , Protéine GAP-43/métabolisme , Glutamate decarboxylase/métabolisme , Immunohistochimie , Protéines de tissu nerveux/antagonistes et inhibiteurs , Techniques de traçage neuroanatomique , Phosphorylation/physiologie , Rats , Récepteurs du N-méthyl-D-aspartate/métabolisme , Protéine reeline , Cellules ganglionnaires rétiniennes/cytologie , Colliculus supérieurs/cytologie , Voies optiques/cytologie , Voies optiques/croissance et développement , Voies optiques/métabolisme
11.
Mol Pharm ; 14(7): 2197-2208, 2017 07 03.
Article de Anglais | MEDLINE | ID: mdl-28494157

RÉSUMÉ

A1899 is a potent and selective inhibitor of the two-pore domain potassium (K2P) channel TASK-1. It was previously reported that A1899 acts as an open-channel blocker and binds to residues of the P1 and P2 regions, the M2 and M4 segments, and the halothane response element. The recently described crystal structures of K2P channels together with the newly identified side fenestrations indicate that residues relevant for TASK-1 inhibition are not purely facing the central cavity as initially proposed. Accordingly, the TASK-1 binding site and the mechanism of inhibition might need a re-evaluation. We have used TASK-1 homology models based on recently crystallized K2P channels and molecular dynamics simulation to demonstrate that the highly potent TASK-1 blocker A1899 requires binding to residues located in the side fenestrations. Unexpectedly, most of the previously described residues that interfere with TASK-1 blockade by A1899 project their side chains toward the fenestration lumina, underlining the relevance of these structures for drug binding in K2P channels. Despite its hydrophobicity, A1899 does not seem to use the fenestrations to gain access to the central cavity from the lipid bilayer. In contrast, binding of A1899 to residues of the side fenestrations might provide a physical "anchor", reflecting an energetically favorable binding mode that after pore occlusion stabilizes the closed state of the channels.


Sujet(s)
Benzamides/pharmacologie , Benzèneacétamides/pharmacologie , Simulation de dynamique moléculaire , Protéines de tissu nerveux/antagonistes et inhibiteurs , Canaux potassiques à pores à domaines en tandem/antagonistes et inhibiteurs , Animaux , Benzamides/composition chimique , Benzèneacétamides/composition chimique , Sites de fixation , Humains , Interactions hydrophobes et hydrophiles , Protéines de tissu nerveux/composition chimique , Protéines de tissu nerveux/métabolisme , Canaux potassiques à pores à domaines en tandem/composition chimique , Canaux potassiques à pores à domaines en tandem/métabolisme
12.
Biol Trace Elem Res ; 180(2): 275-284, 2017 Dec.
Article de Anglais | MEDLINE | ID: mdl-28389902

RÉSUMÉ

This study investigated the toxicity of rats exposed to lead acetate (AcPb) during the second phase of brain development (8-12 days postnatal) in hematological and cerebral parameters. Moreover, the preventive effect of zinc chloride (ZnCl2) and N-acetylcysteine (NAC) was investigated. Pups were injected subcutaneously with saline (0.9% NaCl solution), ZnCl2 (27 mg/kg/day), NAC (5 mg/kg/day) or ZnCl2 plus NAC for 5 days (3rd-7th postnatal days), and with saline (0.9% NaCl solution) or AcPb (7 mg/kg/day) in the five subsequent days (8th-12th postnatal days). Animals were sacrificed 21 days after the last AcPb exposure. Pups exposed to AcPb presented inhibition of blood porphobilinogen-synthase (PBG-synthase) activity without changes in hemoglobin content. ZnCl2 pre-exposure partially prevented PBG-synthase inhibition. Regarding neurotoxicity biomarkers, animals exposed to AcPb presented a decrease in cerebrum acetylcholinesterase (AChE) activity and an increase in Pb accumulation in blood and cerebrum. These changes were prevented by pre-treatment with ZnCl2, NAC, and ZnCl2 plus NAC. AcPb exposure caused no alteration in behavioral tasks. In short, results show that AcPb inhibited the activity of two important enzymatic biomarkers up to 21 days after the end of the exposure. Moreover, ZnCl2 and NAC prevented the alterations induced by AcPb.


Sujet(s)
Acétylcystéine/usage thérapeutique , Cerveau/effets des médicaments et des substances chimiques , Chlorures/usage thérapeutique , Troubles neurologiques de l'intoxication par le plomb/prévention et contrôle , Neurones/effets des médicaments et des substances chimiques , Neuroprotecteurs/usage thérapeutique , Composés du zinc/usage thérapeutique , Acetylcholinesterase/métabolisme , Acétylcystéine/administration et posologie , Animaux , Animaux nouveau-nés , Marqueurs biologiques/sang , Marqueurs biologiques/métabolisme , Barrière hémato-encéphalique/effets des médicaments et des substances chimiques , Barrière hémato-encéphalique/métabolisme , Cerveau/enzymologie , Cerveau/métabolisme , Chlorures/administration et posologie , Chlorures/métabolisme , Chlorures/pharmacocinétique , Association de médicaments , Polluants environnementaux/sang , Polluants environnementaux/métabolisme , Polluants environnementaux/toxicité , Protéines liées au GPI/antagonistes et inhibiteurs , Protéines liées au GPI/métabolisme , Injections sous-cutanées , Plomb/sang , Plomb/métabolisme , Plomb/toxicité , Troubles neurologiques de l'intoxication par le plomb/sang , Troubles neurologiques de l'intoxication par le plomb/métabolisme , Protéines de tissu nerveux/antagonistes et inhibiteurs , Protéines de tissu nerveux/métabolisme , Neurones/enzymologie , Neurones/métabolisme , Neuroprotecteurs/administration et posologie , Neuroprotecteurs/métabolisme , Neuroprotecteurs/pharmacocinétique , Composés organométalliques/administration et posologie , Porphobilinogene synthase/antagonistes et inhibiteurs , Porphobilinogene synthase/sang , Répartition aléatoire , Rat Wistar , Distribution tissulaire/effets des médicaments et des substances chimiques , Toxicocinétique , Composés du zinc/administration et posologie , Composés du zinc/métabolisme , Composés du zinc/pharmacocinétique
13.
Vitam Horm ; 104: 459-473, 2017.
Article de Anglais | MEDLINE | ID: mdl-28215304

RÉSUMÉ

Neurotrophins (NTs) have been implicated in generation and modulation of nociceptive pathways. Change in NTs levels is associated with painful conditions and neurological diseases such as migraine. Currently, it is generally recognized that migraine headaches result from the activation and sensitization of trigeminal sensory afferent fibers leading to neuropeptides release such as calcitonin gene-related peptide (CGRP) and substance P (SP). This triggers an inflammatory cascade causing a neurogenic inflammation. The agents responsible for trigeminal activation and release of neuropeptides are still unclear. It is known that the transient receptor potential vanilloid receptor-1 (TRPV1) is an important mediator of CGRP and SP release. TRPV1 is closely associated with tyrosine receptors kinases (Trk), which are NTs receptors. NTs can act on TRPV1 increasing its sensitivity to painful stimuli, therefore predisposing to hyperalgesia. Upregulation of ion channels and pain receptors in dorsal root ganglion neurons may be alternative mechanisms by which NTs contribute to pain development. Only a few studies have been performed to investigate the role of NTs in migraine. These studies have reported changes in NTs levels in migraine patients either during the migraine attack or in free-headache periods.


Sujet(s)
Encéphale/métabolisme , Migraines/métabolisme , Modèles neurologiques , Facteurs de croissance nerveuse/métabolisme , Neurones/métabolisme , Récepteurs facteur croissance nerf/agonistes , Analgésiques/pharmacologie , Analgésiques/usage thérapeutique , Animaux , Encéphale/effets des médicaments et des substances chimiques , Encéphale/immunologie , Médicaments en essais cliniques/pharmacologie , Médicaments en essais cliniques/usage thérapeutique , Ganglions sensitifs des nerfs spinaux/effets des médicaments et des substances chimiques , Ganglions sensitifs des nerfs spinaux/immunologie , Ganglions sensitifs des nerfs spinaux/métabolisme , Humains , Migraines/traitement médicamenteux , Migraines/immunologie , Migraines/physiopathologie , Facteurs de croissance nerveuse/antagonistes et inhibiteurs , Protéines de tissu nerveux/agonistes , Protéines de tissu nerveux/antagonistes et inhibiteurs , Protéines de tissu nerveux/métabolisme , Inflammation neurogénique/étiologie , Inflammation neurogénique/prévention et contrôle , Neurones/effets des médicaments et des substances chimiques , Neurones/immunologie , Neurones afférents/effets des médicaments et des substances chimiques , Neurones afférents/immunologie , Neurones afférents/métabolisme , Douleur nociceptive/étiologie , Douleur nociceptive/prévention et contrôle , Récepteurs facteur croissance nerf/antagonistes et inhibiteurs , Récepteurs facteur croissance nerf/métabolisme , Transduction du signal/effets des médicaments et des substances chimiques , Canaux cationiques TRPV/agonistes , Canaux cationiques TRPV/antagonistes et inhibiteurs , Canaux cationiques TRPV/métabolisme
14.
Br J Pharmacol ; 174(1): 57-69, 2017 01.
Article de Anglais | MEDLINE | ID: mdl-27759880

RÉSUMÉ

BACKGROUND AND PURPOSE: Peptides from venomous animals have long been important for understanding pain mechanisms and for the discovery of pain treatments. Here, we hypothesized that Phα1ß, a peptide from the venom of the armed spider Phoneutria nigriventer, produces analgesia by blocking the TRPA1 channel. EXPERIMENTAL APPROACH: Cultured rat dorsal root ganglion (DRG) neurons, human fetal lung fibroblasts (IMR90) or HEK293 cells expressing the human TRPA1 (hTRPA1-HEK293), human TRPV1 (hTRPV1-HEK293) or human TRPV4 channels (hTRPV4-HEK293), were used for calcium imaging and electrophysiology. Nociceptive responses induced by TRPA1, TRPV1 or TRPV4 agonists or by bortezomib were investigated in mice. KEY RESULTS: Phα1ß selectively inhibited calcium responses and currents evoked by the TRPA1 agonist, allyl isothiocyanate (AITC), on hTRPA1-HEK293, IMR90 fibroblasts and DRG neurons. Phα1ß did not affect calcium responses evoked by selective TRPV1 (capsaicin) or TRPV4 (GSK 1016790A) agonists on the various cell types. Intrathecal (i.t.) and intraplantar (i.pl.) administration of low doses of Phα1ß (up to 300 pmol per paw) attenuated acute nociception and mechanical and cold hyperalgesia evoked by AITC (i.t. or i.pl.), without affecting responses produced by capsaicin or hypotonic solution. Notably, Phα1ß abated the TRPA1-dependent neuropathic pain-like responses induced by bortezomib. In vitro and in vivo inhibition of TRPA1 by Phα1ß was reproduced by a recombinant form of the peptide, CTK 01512-2. CONCLUSIONS AND IMPLICATIONS: Phα1ß and CTK 01512-2 selectively target TRPA1, but not other TRP channels. This specific action underlines the potential of Phα1ß and CTK 01512-2 for pain treatment.


Sujet(s)
Analgésiques/pharmacologie , Protéines de tissu nerveux/antagonistes et inhibiteurs , Nociception/effets des médicaments et des substances chimiques , Venins d'araignée/composition chimique , Canaux cationiques TRP/antagonistes et inhibiteurs , Analgésiques/composition chimique , Animaux , Canaux calciques/métabolisme , Cellules cultivées , Relation dose-effet des médicaments , Fibroblastes/effets des médicaments et des substances chimiques , Ganglions sensitifs des nerfs spinaux/effets des médicaments et des substances chimiques , Cellules HEK293 , Humains , Mâle , Souris , Souris de lignée C57BL , Protéines de tissu nerveux/métabolisme , Névralgie/traitement médicamenteux , Neurones/effets des médicaments et des substances chimiques , Rats , Venins d'araignée/pharmacologie , Araignées , Relation structure-activité , Membre-1 de la sous-famille A de canaux cationiques à potentiel de récepteur transitoire , Canaux cationiques TRP/métabolisme
16.
Toxicon ; 112: 16-21, 2016 Mar 15.
Article de Anglais | MEDLINE | ID: mdl-26802625

RÉSUMÉ

Spider toxins are recognized as useful sources of bioactive substances, showing a wide range of pharmacological effects on neurotransmission. Several spider toxins have been identified biochemically and some of them are specific glutamate receptors antagonists. Previous data indicate that PnTx4-5-5, a toxin isolated from the spider Phoneutria nigriventer, inhibits the N-methyl-d-aspartate receptor (NMDAR), with little or no effect on AMPA, kainate or GABA receptors. In agreement with these results, our findings in this study show that PnTx4-5-5 reduces the amplitude of NMDAR-mediated EPSCs in hippocampal slices. It is well established that glutamate-mediated excitotoxic neuronal cell death occurs mainly via NMDAR activation. Thus, we decided to investigate whether PnTx4-5-5 would protect against various cell death insults. For that, we used primary-cultured corticostriatal neurons from wild type (WT) mice, as well as from a mouse model of Huntington's disease, BACHD. Our results showed that PnTx4-5-5 promotes neuroprotection of WT and BACHD neurons under the insult of high levels of glutamate. Moreover, the toxin is also able to protect WT neurons against amyloid ß (Aß) peptide toxicity. These results indicate that the toxin PnTx4-5-5 is a potential neuroprotective drug.


Sujet(s)
Peptides bêta-amyloïdes/antagonistes et inhibiteurs , Protéines d'arthropode/pharmacologie , Protéines de tissu nerveux/antagonistes et inhibiteurs , Neurones/effets des médicaments et des substances chimiques , Neuroprotecteurs/pharmacologie , Récepteurs du N-méthyl-D-aspartate/antagonistes et inhibiteurs , Venins d'araignée/pharmacologie , Peptides bêta-amyloïdes/toxicité , Animaux , Région CA1 de l'hippocampe/cytologie , Région CA1 de l'hippocampe/effets des médicaments et des substances chimiques , Région CA1 de l'hippocampe/métabolisme , Mort cellulaire/effets des médicaments et des substances chimiques , Cellules cultivées , Corps strié/cytologie , Corps strié/effets des médicaments et des substances chimiques , Corps strié/métabolisme , Corps strié/anatomopathologie , Embryon de mammifère/cytologie , Embryon de mammifère/anatomopathologie , Maladie de Huntington/traitement médicamenteux , Maladie de Huntington/métabolisme , Maladie de Huntington/anatomopathologie , Techniques in vitro , Souris de lignée C57BL , Souris transgéniques , Protéines de tissu nerveux/métabolisme , Neurones/cytologie , Neurones/métabolisme , Neurones/anatomopathologie , Techniques de patch-clamp , Cellules pyramidales/cytologie , Cellules pyramidales/effets des médicaments et des substances chimiques , Cellules pyramidales/métabolisme , Rat Wistar , Récepteurs du N-méthyl-D-aspartate/métabolisme
17.
J Neurochem ; 137(1): 46-61, 2016 Apr.
Article de Anglais | MEDLINE | ID: mdl-26809475

RÉSUMÉ

Stress-responsive neuronal membrane glycoprotein M6a (Gpm6a) functions in neurite extension, filopodium and spine formation and synaptogenesis. The mechanisms of Gpm6a action in these processes are incompletely understood. Previously, we identified the actin regulator coronin-1a (Coro1a) as a putative Gpm6a interacting partner. Here, we used co-immunoprecipitation assays with the anti-Coro1a antibody to show that Coro1a associates with Gpm6a in rat hippocampal neurons. By immunofluorescence microscopy, we demonstrated that in hippocampal neurons Coro1a localizes in F-actin-enriched regions and some of Coro1a spots co-localize with Gpm6a labeling. Notably, the over-expression of a dominant-negative form of Coro1a as well as its down-regulation by siRNA interfered with Gpm6a-induced filopodium formation. Coro1a is known to regulate the plasma membrane translocation and activation of small GTPase Rac1. We show that Coro1a co-immunoprecipitates with Rac1 together with Gpm6a. Pharmacological inhibition of Rac1 resulted in a significant decrease in filopodium formation by Gpm6a. The same was observed upon the co-expression of Gpm6a with the inactive GDP-bound form of Rac1. In this case, the elevated membrane recruitment of GDP-bound Rac1 was detected as well. Moreover, the kinase activity of the p21-activated kinase 1 (Pak1), a main downstream effector of Rac1 that acts downstream of Coro1a, was required for Gpm6a-induced filopodium formation. Taken together, our results provide evidence that a signaling pathway including Coro1a, Rac1, and Pak1 facilitates Gpm6a-induced filopodium formation. Formation of filopodia by membrane glycoprotein M6a (Gpm6a) requires actin regulator coronin-1a (Coro1a), known to regulate plasma membrane localization and activation of Rac1 and its downstream effector Pak1. Coro1a associates with Gpm6a. Blockage of Coro1a, Rac1, or Pak1 interferes with Gpm6a-induced filopodium formation. Moreover, Gpm6a facilitates Rac1 membrane recruitment. Altogether, a mechanistic insight into the process of Gpm6a-induced neuronal filopodium formation is provided.


Sujet(s)
Glycoprotéines membranaires/physiologie , Protéines des microfilaments/physiologie , Protéines de tissu nerveux/physiologie , Neurones/ultrastructure , Pseudopodes/physiologie , p21-Activated Kinases/physiologie , Protéine G rac1/physiologie , Actines/analyse , Animaux , Cellules cultivées , Régulation négative , Gènes rapporteurs , Hippocampe/cytologie , Protéines des microfilaments/génétique , Protéines de tissu nerveux/antagonistes et inhibiteurs , Biogenèse des organelles , Culture de cellules primaires , Petit ARN interférent/génétique , Rats , Rat Sprague-Dawley , Transduction du signal/effets des médicaments et des substances chimiques , Transduction du signal/physiologie , Protéine G rac1/antagonistes et inhibiteurs
19.
Pain ; 155(10): 2108-15, 2014 Oct.
Article de Anglais | MEDLINE | ID: mdl-25102401

RÉSUMÉ

Pannexin 1 (panx1) is a large-pore membrane channel expressed in many tissues of mammals, including neurons and glial cells. Panx1 channels are highly permeable to calcium and adenosine triphosphatase (ATP); on the other hand, they can be opened by ATP and glutamate, two crucial molecules for acute and chronic pain signaling in the spinal cord dorsal horn, thus suggesting that panx1 could be a key component for the generation of central sensitization during persistent pain. In this study, we examined the effect of three panx1 blockers, namely, 10panx peptide, carbenoxolone, and probenecid, on C-reflex wind-up activity and mechanical nociceptive behavior in a spared nerve injury neuropathic rat model involving sural nerve transection. In addition, the expression of panx1 protein in the dorsal horn of the ipsilateral lumbar spinal cord was measured in sural nerve-transected and sham-operated control rats. Sural nerve transection resulted in a lower threshold for C-reflex activation by electric stimulation of the injured hindpaw, together with persistent mechanical hypersensitivity to pressure stimuli applied to the paw. Intrathecal administration of the panx1 blockers significantly depressed the spinal C-reflex wind-up activity in both neuropathic and sham control rats, and decreased mechanical hyperalgesia in neuropathic rats without affecting the nociceptive threshold in sham animals. Western blotting showed that panx1 was similarly expressed in the dorsal horn of lumbar spinal cord from neuropathic and sham rats. The present results constitute the first evidence that panx1 channels play a significant role in the mechanisms underlying central sensitization in neuropathic pain.


Sujet(s)
Carbénoxolone/usage thérapeutique , Connexines/antagonistes et inhibiteurs , Hyperalgésie/traitement médicamenteux , Protéines de tissu nerveux/antagonistes et inhibiteurs , Névralgie/traitement médicamenteux , Probénécide/usage thérapeutique , Réflexe/effets des médicaments et des substances chimiques , Moelle spinale/effets des médicaments et des substances chimiques , Animaux , Carbénoxolone/pharmacologie , Connexines/métabolisme , Hyperalgésie/étiologie , Hyperalgésie/métabolisme , Mâle , Protéines de tissu nerveux/métabolisme , Névralgie/étiologie , Névralgie/métabolisme , Seuil nociceptif/effets des médicaments et des substances chimiques , Lésions des nerfs périphériques/complications , Cellules de la corne dorsale/effets des médicaments et des substances chimiques , Cellules de la corne dorsale/métabolisme , Probénécide/pharmacologie , Rats , Rat Sprague-Dawley , Moelle spinale/métabolisme
20.
Ann Neurol ; 76(3): 457-61, 2014 Sep.
Article de Anglais | MEDLINE | ID: mdl-25042079

RÉSUMÉ

Migrating partial seizures of infancy is an early onset epileptic encephalopathy syndrome that is typically resistant to treatment. The most common cause is a gain of function mutation in the potassium channel KCNT1. The antiarrhythmic drug quinidine is a partial antagonist of KCNT1 and hence may be a candidate drug for treatment of this condition. We report the case of a child with migrating partial seizures of infancy secondary to an activating mutation in KCNT1 treated with quinidine. Treatment with quinidine was correlated with a marked reduction in seizure frequency and improved psychomotor development.


Sujet(s)
Antiarythmiques/pharmacologie , Épilepsies partielles/traitement médicamenteux , Protéines de tissu nerveux/antagonistes et inhibiteurs , Quinidine/pharmacologie , Antiarythmiques/administration et posologie , Enfant d'âge préscolaire , Relation dose-effet des médicaments , Électroencéphalographie , Épilepsies partielles/génétique , Épilepsies partielles/physiopathologie , Exons/génétique , Femelle , Humains , Mutation faux-sens/génétique , Protéines de tissu nerveux/génétique , Canaux potassiques/génétique , Canaux potassiques activés par le sodium , Quinidine/administration et posologie , Résultat thérapeutique
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE