Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 14.408
Filtrer
1.
Front Cell Infect Microbiol ; 14: 1392564, 2024.
Article de Anglais | MEDLINE | ID: mdl-38983116

RÉSUMÉ

Antifungal resistance and antifungal tolerance are two distinct terms that describe different cellular responses to drugs. Antifungal resistance describes the ability of a fungus to grow above the minimal inhibitory concentration (MIC) of a drug. Antifungal tolerance describes the ability of drug susceptible strains to grow slowly at inhibitory drug concentrations. Recent studies indicate antifungal resistance and tolerance have distinct evolutionary trajectories. Superficial candidiasis bothers millions of people yearly. Miconazole has been used for topical treatment of yeast infections for over 40 years. Yet, fungal resistance to miconazole remains relatively low. Here we found different clinical isolates of Candida albicans had different profile of tolerance to miconazole, and the tolerance was modulated by physiological factors including temperature and medium composition. Exposure of non-tolerant strains with different genetic backgrounds to miconazole mainly induced development of tolerance, not resistance, and the tolerance was mainly due to whole chromosomal or segmental amplification of chromosome R. The efflux gene CDR1 was required for maintenance of tolerance in wild type strains but not required for gain of aneuploidy-mediated tolerance. Heat shock protein Hsp90 and calcineurin were essential for maintenance as well as gain of tolerance. Our study indicates development of aneuploidy-mediated tolerance, not resistance, is the predominant mechanism of rapid adaptation to miconazole in C. albicans, and the clinical relevance of tolerance deserves further investigations.


Sujet(s)
Aneuploïdie , Antifongiques , Calcineurine , Candida albicans , Résistance des champignons aux médicaments , Protéines fongiques , Protéines du choc thermique HSP90 , Miconazole , Tests de sensibilité microbienne , Miconazole/pharmacologie , Candida albicans/effets des médicaments et des substances chimiques , Candida albicans/génétique , Candida albicans/métabolisme , Protéines du choc thermique HSP90/métabolisme , Protéines du choc thermique HSP90/génétique , Antifongiques/pharmacologie , Résistance des champignons aux médicaments/génétique , Protéines fongiques/génétique , Protéines fongiques/métabolisme , Calcineurine/métabolisme , Humains , Protéines de transport membranaire/génétique , Protéines de transport membranaire/métabolisme , Candidose/microbiologie , Candidose/traitement médicamenteux , Tolérance aux médicaments
2.
Oncoimmunology ; 13(1): 2370928, 2024.
Article de Anglais | MEDLINE | ID: mdl-38948930

RÉSUMÉ

Deregulation or loss of the human leukocyte antigen class I (HLA-I) molecules on tumor cells leading to inhibition of CD8+ T cell recognition is an important tumor immune escape strategy, which could be caused by a posttranscriptional control of molecules in the HLA-I pathway mediated by RNA-binding proteins (RBPs). So far, there exists only limited information about the interaction of RBPs with HLA-I-associated molecules, but own work demonstrated a binding of the heterogeneous ribonucleoprotein C (hnRNP C) to the 3' untranslated region (UTR) of the TAP-associated glycoprotein tapasin (tpn). In this study, in silico analysis of pan-cancer TCGA datasets revealed that hnRNP C is higher expressed in tumor specimens compared to corresponding normal tissues, which is negatively correlated to tpn expression, T cell infiltration and the overall survival of tumor patients. Functional analysis demonstrated an upregulation of tpn expression upon siRNA-mediated downregulation of hnRNP C, which is accompanied by an increased HLA-I surface expression. Thus, hnRNP C has been identified to target tpn and its inhibition could improve the HLA-I surface expression on melanoma cells suggesting its use as a possible biomarker for T-cell-based tumor immunotherapies.


Sujet(s)
Régions 3' non traduites , Ribonucléoprotéine nucléaire hétérogène du groupe C , Mélanome , Protéines de transport membranaire , Humains , Mélanome/génétique , Mélanome/anatomopathologie , Mélanome/métabolisme , Mélanome/immunologie , Ribonucléoprotéine nucléaire hétérogène du groupe C/métabolisme , Ribonucléoprotéine nucléaire hétérogène du groupe C/génétique , Régions 3' non traduites/génétique , Protéines de transport membranaire/génétique , Protéines de transport membranaire/métabolisme , Lignée cellulaire tumorale , Régulation de l'expression des gènes tumoraux
3.
Subcell Biochem ; 104: 1-16, 2024.
Article de Anglais | MEDLINE | ID: mdl-38963480

RÉSUMÉ

The global emergence of multidrug resistance (MDR) in gram-negative bacteria has become a matter of worldwide concern. MDR in these pathogens is closely linked to the overexpression of certain efflux pumps, particularly the resistance-nodulation-cell division (RND) efflux pumps. Inhibition of these pumps presents an attractive and promising strategy to combat antibiotic resistance, as the efflux pump inhibitors can effectively restore the potency of existing antibiotics. AcrAB-TolC is one well-studied RND efflux pump, which transports a variety of substrates, therefore providing resistance to a broad spectrum of antibiotics. To develop effective pump inhibitors, a comprehensive understanding of the structural aspect of the AcrAB-TolC efflux pump is imperative. Previous studies on this pump's structure have been limited to individual components or in vitro determination of fully assembled pumps. Recent advancements in cellular cryo-electron tomography (cryo-ET) have provided novel insights into this pump's assembly and functional mechanism within its native cell membrane environment. Here, we present a summary of the structural data regarding the AcrAB-TolC efflux pump, shedding light on its assembly pathway and operational mechanism.


Sujet(s)
Antibactériens , Antibactériens/pharmacologie , Antibactériens/métabolisme , Multirésistance bactérienne aux médicaments , Protéines Escherichia coli/métabolisme , Protéines Escherichia coli/composition chimique , Protéines de transport/métabolisme , Protéines de transport/composition chimique , Protéines de la membrane externe bactérienne/métabolisme , Protéines de la membrane externe bactérienne/composition chimique , Protéines de transport membranaire/métabolisme , Protéines de transport membranaire/composition chimique , Cryomicroscopie électronique , Protéines bactériennes/métabolisme , Protéines bactériennes/composition chimique
4.
Int J Mol Sci ; 25(13)2024 Jun 25.
Article de Anglais | MEDLINE | ID: mdl-39000033

RÉSUMÉ

Membrane transporters interact not only with endogenous substrates but are also engaged in the transport of xenobiotics, including drugs. While the coordinated function of uptake (solute carrier family-SLC and SLCO) and efflux (ATP-binding cassette family-ABC, multidrug and toxic compound extrusion family-MATE) transporter system allows vectorial drug transport, efflux carriers alone achieve barrier functions. The modulation of transport functions was proved to be effective in the treatment strategies of various pathological states. Sodium-glucose cotransporter-2 (SGLT2) inhibitors are the drugs most widely applied in clinical practice, especially in the treatment of diabetes mellitus and heart failure. Sodium taurocholate co-transporting polypeptide (NTCP) serves as virus particles (HBV/HDV) carrier, and inhibition of its function is applied in the treatment of hepatitis B and hepatitis D by myrcludex B. Inherited cholestatic diseases, such as Alagille syndrome (ALGS) and progressive familial intrahepatic cholestasis (PFIC) can be treated by odevixibat and maralixibat, which inhibit activity of apical sodium-dependent bile salt transporter (ASBT). Probenecid can be considered to increase uric acid excretion in the urine mainly via the inhibition of urate transporter 1 (URAT1), and due to pharmacokinetic interactions involving organic anion transporters 1 and 3 (OAT1 and OAT3), it modifies renal excretion of penicillins or ciprofloxacin as well as nephrotoxicity of cidofovir. This review discusses clinically approved drugs that affect membrane/drug transporter function.


Sujet(s)
Inhibiteurs du cotransporteur sodium-glucose de type 2 , Humains , Inhibiteurs du cotransporteur sodium-glucose de type 2/usage thérapeutique , Inhibiteurs du cotransporteur sodium-glucose de type 2/pharmacologie , Animaux , Transporteur-2 sodium-glucose/métabolisme , Protéines de transport membranaire/métabolisme
5.
Int J Mol Sci ; 25(13)2024 Jun 27.
Article de Anglais | MEDLINE | ID: mdl-39000123

RÉSUMÉ

Gemcitabine (2',2'-difluoro-2'-deoxycytidine), a widely used anticancer drug, is considered a gold standard in treating aggressive pancreatic cancers. Gamma-proteobacteria that colonize the pancreatic tumors contribute to chemoresistance against gemcitabine by metabolizing the drug to a less active and deaminated form. The gemcitabine transporters of these bacteria are unknown to date. Furthermore, there is no complete knowledge of the gemcitabine transporters in Escherichia coli or any other related proteobacteria. In this study, we investigate the complement of gemcitabine transporters in E. coli K-12 and two common chemoresistance-related bacteria (Klebsiella pneumoniae and Citrobacter freundii). We found that E. coli K-12 has two high-affinity gemcitabine transporters with distinct specificity properties, namely, NupC and NupG, whereas the gemcitabine transporters of C. freundii and K. pneumoniae include the NupC and NupG orthologs, functionally indistinguishable from their counterparts, and, in K. pneumoniae, one additional NupC variant, designated KpNupC2. All these bacterial transporters have a higher affinity for gemcitabine than their human counterparts. The highest affinity (KM 2.5-3.0 µΜ) is exhibited by NupGs of the bacteria-specific nucleoside-H+ symporter (NHS) family followed by NupCs (KM 10-13 µΜ) of the concentrative nucleoside transporter (CNT) family, 15-100 times higher than the affinities reported for the human gemcitabine transporter hENT1/SLC29A1, which is primarily associated with gemcitabine uptake in the pancreatic adenocarcinoma cells. Our results offer a basis for further insight into the role of specific bacteria in drug availability within tumors and for understanding the structure-function differences of bacterial and human drug transporters.


Sujet(s)
Désoxycytidine , , Désoxycytidine/analogues et dérivés , Désoxycytidine/pharmacologie , Humains , Résistance aux médicaments antinéoplasiques/génétique , Protéines de transport membranaire/métabolisme , Protéines de transport membranaire/génétique , Escherichia coli K12/génétique , Escherichia coli K12/métabolisme , Escherichia coli K12/effets des médicaments et des substances chimiques , Gammaproteobacteria/génétique , Gammaproteobacteria/métabolisme , Gammaproteobacteria/effets des médicaments et des substances chimiques , Protéines Escherichia coli/génétique , Protéines Escherichia coli/métabolisme , Résistance bactérienne aux médicaments/génétique , Antimétabolites antinéoplasiques/pharmacologie , Antimétabolites antinéoplasiques/métabolisme
6.
Int J Mol Sci ; 25(13)2024 Jul 04.
Article de Anglais | MEDLINE | ID: mdl-39000444

RÉSUMÉ

The taurine transporter (TauT, SLC6A6) is a member of the solute carrier 6 (SLC6) family, which plays multiple physiological roles. The SLC6 family is divided into four subfamilies: GABA (γ-aminobutyric acid), monoamine, glycine and neutral amino acid transporters. Proteins from the GABA group, including the taurine transporter, are primarily considered therapeutic targets for treating central nervous system disorders. However, recent studies have suggested that inhibitors of SLC6A6 could also serve as anticancer agents. Overexpression of TauT has been associated with the progression of colon and gastric cancer. The pool of known ligands of this transporter is limited and the exact spatial structure of taurine transporter remains unsolved. Understanding its structure could aid in the development of novel inhibitors. Therefore, we utilized homology modelling techniques to create models of TauT. Docking studies and molecular dynamics simulations were conducted to describe protein-ligand interactions. We compared the obtained information for TauT with literature data on other members of the GABA transporter group. Our in silico analysis allowed us to characterize the transporter structure and point out amino acids crucial for ligand binding: Glu406, Gly62 and Tyr138. The significance of selected residues was confirmed through structural studies of mutants. These results will aid in the development of novel taurine transporter inhibitors, which can be explored as anticancer agents.


Sujet(s)
Transporteurs de GABA , Protéines de transport membranaire , Simulation de docking moléculaire , Simulation de dynamique moléculaire , Humains , Transporteurs de GABA/métabolisme , Transporteurs de GABA/composition chimique , Transporteurs de GABA/génétique , Protéines de transport membranaire/composition chimique , Protéines de transport membranaire/métabolisme , Tumeurs/traitement médicamenteux , Tumeurs/métabolisme , Tumeurs/génétique , Glycoprotéines membranaires/métabolisme , Glycoprotéines membranaires/composition chimique , Glycoprotéines membranaires/antagonistes et inhibiteurs , Antinéoplasiques/pharmacologie , Antinéoplasiques/composition chimique , Antinéoplasiques/usage thérapeutique , Ligands , Séquence d'acides aminés , Liaison aux protéines
7.
Nat Commun ; 15(1): 5818, 2024 Jul 10.
Article de Anglais | MEDLINE | ID: mdl-38987265

RÉSUMÉ

A stable mitochondrial pool is crucial for healthy cell function and survival. Altered redox biology can adversely affect mitochondria through induction of a variety of cell death and survival pathways, yet the understanding of mitochondria and their dysfunction in primary human cells and in specific disease states, including asthma, is modest. Ferroptosis is traditionally considered an iron dependent, hydroperoxy-phospholipid executed process, which induces cytosolic and mitochondrial damage to drive programmed cell death. However, in this report we identify a lipoxygenase orchestrated, compartmentally-targeted ferroptosis-associated peroxidation process which occurs in a subpopulation of dysfunctional mitochondria, without promoting cell death. Rather, this mitochondrial peroxidation process tightly couples with PTEN-induced kinase (PINK)-1(PINK1)-Parkin-Optineurin mediated mitophagy in an effort to preserve the pool of functional mitochondria and prevent cell death. These combined peroxidation processes lead to altered epithelial cell phenotypes and loss of ciliated cells which associate with worsened asthma severity. Ferroptosis-targeted interventions of this process could preserve healthy mitochondria, reverse cell phenotypic changes and improve disease outcomes.


Sujet(s)
Asthme , Protéines du cycle cellulaire , Cellules épithéliales , Ferroptose , Protéines de transport membranaire , Mitochondries , Mitophagie , Phénotype , Facteur de transcription TFIIIA , Humains , Mitochondries/métabolisme , Asthme/métabolisme , Asthme/anatomopathologie , Cellules épithéliales/métabolisme , Protéines de transport membranaire/métabolisme , Facteur de transcription TFIIIA/métabolisme , Facteur de transcription TFIIIA/génétique , Protéines du cycle cellulaire/métabolisme , Protéines du cycle cellulaire/génétique , Mâle , Protein kinases/métabolisme , Femelle , Ubiquitin-protein ligases/métabolisme , Ubiquitin-protein ligases/génétique , Animaux , Peroxydation lipidique , Souris , Adulte d'âge moyen
8.
Int J Mol Sci ; 25(12)2024 Jun 13.
Article de Anglais | MEDLINE | ID: mdl-38928243

RÉSUMÉ

Creatine transporter (CrT1) mediates cellular uptake of creatine (Cr), a nutrient pivotal in maintaining energy homeostasis in various tissues including intestinal epithelial cells (IECs). The impact of CrT1 deficiency on the pathogenesis of various psychiatric and neurological disorders has been extensively investigated. However, there are no studies on its regulation in IECs in health and disease. Current studies have determined differential expression of CrT1 along the length of the mammalian intestine and its dysregulation in inflammatory bowel disease (IBD)-associated inflammation and Adherent Invasive E. coli (AIEC) infection. CrT1 mRNA and protein levels in normal intestines and their alterations in inflammation and following AIEC infection were determined in vitro in model IECs (Caco-2/IEC-6) and in vivo in SAMP1/YitFc mice, a model of spontaneous ileitis resembling human IBD. CrT1 is differentially expressed in different regions of mammalian intestines with its highest expression in jejunum. In vitro, CrT1 function (Na+-dependent 14C-Cr uptake), expression and promoter activity significantly decreased following TNFα/IL1ß treatments and AIEC infection. SAMP1 mice and ileal organoids generated from SAMP1 mice also showed decreased CrT1 mRNA and protein compared to AKR controls. Our studies suggest that Cr deficiency in IECs secondary to CrT1 dysregulation could be a key factor contributing to IBD pathogenesis.


Sujet(s)
Infections à Escherichia coli , Muqueuse intestinale , Animaux , Infections à Escherichia coli/métabolisme , Infections à Escherichia coli/microbiologie , Souris , Humains , Muqueuse intestinale/métabolisme , Muqueuse intestinale/microbiologie , Muqueuse intestinale/anatomopathologie , Cellules Caco-2 , Transporteurs plasmiques de neurotransmetteurs/métabolisme , Transporteurs plasmiques de neurotransmetteurs/génétique , Transporteurs plasmiques de neurotransmetteurs/déficit , Inflammation/métabolisme , Inflammation/génétique , Inflammation/anatomopathologie , Escherichia coli , Maladies inflammatoires intestinales/métabolisme , Maladies inflammatoires intestinales/génétique , Maladies inflammatoires intestinales/anatomopathologie , Protéines de transport membranaire/métabolisme , Protéines de transport membranaire/génétique , Cellules épithéliales/métabolisme , Cellules épithéliales/microbiologie , Créatine/métabolisme
9.
Int J Mol Sci ; 25(12)2024 Jun 14.
Article de Anglais | MEDLINE | ID: mdl-38928257

RÉSUMÉ

The peripheral nervous system can encounter alterations due to exposure to some of the most commonly used anticancer drugs (platinum drugs, taxanes, vinca alkaloids, proteasome inhibitors, thalidomide), the so-called chemotherapy-induced peripheral neurotoxicity (CIPN). CIPN can be long-lasting or even permanent, and it is detrimental for the quality of life of cancer survivors, being associated with persistent disturbances such as sensory loss and neuropathic pain at limb extremities due to a mostly sensory axonal polyneuropathy/neuronopathy. In the state of the art, there is no efficacious preventive/curative treatment for this condition. Among the reasons for this unmet clinical and scientific need, there is an uncomplete knowledge of the pathogenetic mechanisms. Ion channels and transporters are pivotal elements in both the central and peripheral nervous system, and there is a growing body of literature suggesting that they might play a role in CIPN development. In this review, we first describe the biophysical properties of these targets and then report existing data for the involvement of ion channels and transporters in CIPN, thus paving the way for new approaches/druggable targets to cure and/or prevent CIPN.


Sujet(s)
Antinéoplasiques , Canaux ioniques , Neuropathies périphériques , Humains , Antinéoplasiques/effets indésirables , Neuropathies périphériques/induit chimiquement , Neuropathies périphériques/métabolisme , Canaux ioniques/métabolisme , Animaux , Syndromes neurotoxiques/étiologie , Syndromes neurotoxiques/métabolisme , Protéines de transport membranaire/métabolisme , Tumeurs/traitement médicamenteux , Tumeurs/métabolisme
10.
Arch Microbiol ; 206(7): 298, 2024 Jun 11.
Article de Anglais | MEDLINE | ID: mdl-38860999

RÉSUMÉ

A decreased chloramphenicol susceptibility in Haemophilus influenzae is commonly caused by the activity of chloramphenicol acetyltransferases (CATs). However, the involvement of membrane proteins in chloramphenicol susceptibility in H. influenzae remains unclear. In this study, chloramphenicol susceptibility testing, whole-genome sequencing, and analyses of membrane-related genes were performed in 51 H. influenzae isolates. Functional complementation assays and structure-based protein analyses were conducted to assess the effect of proteins with sequence substitutions on the minimum inhibitory concentration (MIC) of chloramphenicol in CAT-negative H. influenzae isolates. Six isolates were resistant to chloramphenicol and positive for type A-2 CATs. Of these isolates, A3256 had a similar level of CAT activity but a higher chloramphenicol MIC relative to the other resistant isolates; it also had 163 specific variations in 58 membrane genes. Regarding the CAT-negative isolates, logistic regression and receiver operator characteristic curve analyses revealed that 48T > G (Asn16Lys), 85 C > T (Leu29Phe), and 88 C > A (Leu30Ile) in HI_0898 (emrA), and 86T > G (Phe29Cys) and 141T > A (Ser47Arg) in HI_1177 (artM) were associated with enhanced chloramphenicol susceptibility, whereas 997G > A (Val333Ile) in HI_1612 (hmrM) was associated with reduced chloramphenicol susceptibility. Furthermore, the chloramphenicol MIC was lower in the CAT-negative isolates with EmrA-Leu29Phe/Leu30Ile or ArtM-Ser47Arg substitution and higher in those with HmrM-Val333Ile substitution, relative to their counterparts. The Val333Ile substitution was associated with enhanced HmrM protein stability and flexibility and increased chloramphenicol MICs in CAT-negative H. influenzae isolates. In conclusion, the substitution in H. influenzae multidrug efflux pump HmrM associated with reduced chloramphenicol susceptibility was characterised.


Sujet(s)
Substitution d'acide aminé , Antibactériens , Protéines bactériennes , Chloramphenicol O-acetyltransferase , Chloramphénicol , Haemophilus influenzae , Tests de sensibilité microbienne , Chloramphénicol/pharmacologie , Haemophilus influenzae/génétique , Haemophilus influenzae/effets des médicaments et des substances chimiques , Haemophilus influenzae/métabolisme , Haemophilus influenzae/isolement et purification , Antibactériens/pharmacologie , Protéines bactériennes/génétique , Protéines bactériennes/métabolisme , Chloramphenicol O-acetyltransferase/génétique , Chloramphenicol O-acetyltransferase/métabolisme , Multirésistance bactérienne aux médicaments/génétique , Protéines de transport membranaire/génétique , Protéines de transport membranaire/métabolisme , Résistance au chloramphénicol/génétique , Humains , Infections à Haemophilus/microbiologie , Séquençage du génome entier
11.
J Exp Med ; 221(8)2024 Aug 05.
Article de Anglais | MEDLINE | ID: mdl-38869499

RÉSUMÉ

Genetic variation in UNC93B1, a key component in TLR trafficking, can lead to autoinflammation caused by increased TLR activity. Analysis of seven patient variants combined with a comprehensive alanine screen revealed that different regions of UNC93B1 selectively regulate different TLRs (Rael et al. https://doi.org/10.1084/jem.20232005; David et al. https://doi.org/10.1084/jem.20232066).


Sujet(s)
Récepteurs de type Toll , Humains , Récepteurs de type Toll/métabolisme , Protéines de transport membranaire/métabolisme , Protéines de transport membranaire/génétique , Transport des protéines , Animaux
12.
J Exp Med ; 221(8)2024 Aug 05.
Article de Anglais | MEDLINE | ID: mdl-38869500

RÉSUMÉ

UNC93B1 is a transmembrane domain protein mediating the signaling of endosomal Toll-like receptors (TLRs). We report five families harboring rare missense substitutions (I317M, G325C, L330R, R466S, and R525P) in UNC93B1 causing systemic lupus erythematosus (SLE) or chilblain lupus (CBL) as either autosomal dominant or autosomal recessive traits. As for a D34A mutation causing murine lupus, we recorded a gain of TLR7 and, to a lesser extent, TLR8 activity with the I317M (in vitro) and G325C (in vitro and ex vivo) variants in the context of SLE. Contrastingly, in three families segregating CBL, the L330R, R466S, and R525P variants were isomorphic with respect to TLR7 activity in vitro and, for R525P, ex vivo. Rather, these variants demonstrated a gain of TLR8 activity. We observed enhanced interaction of the G325C, L330R, and R466S variants with TLR8, but not the R525P substitution, indicating different disease mechanisms. Overall, these observations suggest that UNC93B1 mutations cause monogenic SLE or CBL due to differentially enhanced TLR7 and TLR8 signaling.


Sujet(s)
Érythème pernio , Lupus érythémateux disséminé , Récepteur de type Toll-7 , Femelle , Humains , Mâle , Érythème pernio/génétique , Mutation gain de fonction , Cellules HEK293 , Lupus érythémateux cutané/génétique , Lupus érythémateux cutané/anatomopathologie , Lupus érythémateux disséminé/génétique , Protéines de transport membranaire/génétique , Protéines de transport membranaire/métabolisme , Mutation faux-sens , Pedigree , Récepteur de type Toll-7/génétique , Récepteur de type Toll-7/métabolisme , Récepteur de type Toll-8/génétique , Récepteur de type Toll-8/métabolisme , Enfant d'âge préscolaire , Enfant , Jeune adulte , Adulte
13.
Sci Rep ; 14(1): 13754, 2024 06 14.
Article de Anglais | MEDLINE | ID: mdl-38877109

RÉSUMÉ

The twin-arginine translocation (Tat) system transports folded proteins across energized biological membranes in bacteria, plastids, and plant mitochondria. In Escherichia coli, the three membrane proteins TatA, TatB and TatC associate to enable Tat transport. While TatB and TatC together form complexes that bind Tat-dependently transported proteins, the TatA component is responsible for the permeabilization of the membrane during transport. With wild type Tat systems, the TatB- and TatC-containing Tat complexes TC1 and TC2 can be differentiated. Their TatA content has not been resolved, nor could they be assigned to any step of the translocation mechanism. It is therefore a key question of current Tat research to understand how TatA associates with Tat systems during transport. By analyzing affinity-purified Tat complexes with mutations in TatC that selectively enrich either TC1 or TC2, we now for the first time demonstrate that both Tat complexes associate with TatA, but the larger TC2 recruits significantly more TatA than the smaller TC1. Most TatA co-purified as multimeric clusters. Using site-specific photo cross-linking, we could detect TatA-TatC interactions only near TatC transmembrane helices 5 and 6. Substrate-binding did not change the interacting positions but affected the stability of the interaction, pointing to a substrate-induced conformational transition. Together, our findings indicate that TatA clusters associate with TatBC without being integrated into the complex by major rearrangements. The increased TatA affinity of the larger Tat complex TC2 suggests that functional assembly is advanced in this complex.


Sujet(s)
Membrane cellulaire , Protéines Escherichia coli , Escherichia coli , Protéines de transport membranaire , Transport des protéines , Protéines Escherichia coli/métabolisme , Protéines Escherichia coli/génétique , Protéines Escherichia coli/composition chimique , Escherichia coli/métabolisme , Escherichia coli/génétique , Protéines de transport membranaire/métabolisme , Protéines de transport membranaire/génétique , Protéines de transport membranaire/composition chimique , Membrane cellulaire/métabolisme , Pliage des protéines , Liaison aux protéines , Mutation
14.
Sci Rep ; 14(1): 12902, 2024 06 05.
Article de Anglais | MEDLINE | ID: mdl-38839922

RÉSUMÉ

Bacterial biofilms are highly complex communities in which isogenic bacteria display different gene expression patterns and organize in a three-dimensional mesh gaining enhanced resistance to biocides. The molecular mechanisms behind such increased resistance remain mostly unknown, also because of the technical difficulties in biofilm investigation at the sub-cellular and molecular level. In this work we focus on the AcrAB-TolC protein complex, a multidrug efflux pump found in Enterobacteriaceae, whose overexpression is associated with most multiple drug resistance (MDR) phenotypes occurring in Gram-negative bacteria. We propose an optical method to quantify the expression level of the AcrAB-TolC pump within the biofilm volume at the sub-cellular level, with single-molecule sensitivity. Through a combination of super-resolution PALM with single objective light sheet and precision genome editing, we can directly quantify the spatial distribution of endogenous AcrAB-TolC pumps expressed in both planktonic bacteria and, importantly, within the bacterial biofilm volume. We observe a gradient of pump density within the biofilm volume and over the course of biofilm maturation. Notably, we propose an optical method that could be broadly employed to achieve volumetric super-resolution imaging of thick samples.


Sujet(s)
Biofilms , Biofilms/croissance et développement , Escherichia coli/génétique , Escherichia coli/métabolisme , Protéines Escherichia coli/métabolisme , Protéines Escherichia coli/génétique , Protéines de transport membranaire/métabolisme , Protéines de transport membranaire/génétique , Multirésistance bactérienne aux médicaments/génétique , Protéines bactériennes/métabolisme , Protéines bactériennes/génétique , Protéines de transport
15.
Proc Natl Acad Sci U S A ; 121(25): e2403273121, 2024 Jun 18.
Article de Anglais | MEDLINE | ID: mdl-38865266

RÉSUMÉ

In secondary active transporters, a relatively limited set of protein folds have evolved diverse solute transport functions. Because of the conformational changes inherent to transport, altering substrate specificity typically involves remodeling the entire structural landscape, limiting our understanding of how novel substrate specificities evolve. In the current work, we examine a structurally minimalist family of model transport proteins, the small multidrug resistance (SMR) transporters, to understand the molecular basis for the emergence of a novel substrate specificity. We engineer a selective SMR protein to promiscuously export quaternary ammonium antiseptics, similar to the activity of a clade of multidrug exporters in this family. Using combinatorial mutagenesis and deep sequencing, we identify the necessary and sufficient molecular determinants of this engineered activity. Using X-ray crystallography, solid-supported membrane electrophysiology, binding assays, and a proteoliposome-based quaternary ammonium antiseptic transport assay that we developed, we dissect the mechanistic contributions of these residues to substrate polyspecificity. We find that substrate preference changes not through modification of the residues that directly interact with the substrate but through mutations peripheral to the binding pocket. Our work provides molecular insight into substrate promiscuity among the SMRs and can be applied to understand multidrug export and the evolution of novel transport functions more generally.


Sujet(s)
Composés d'ammonium quaternaire , Spécificité du substrat , Composés d'ammonium quaternaire/métabolisme , Composés d'ammonium quaternaire/composition chimique , Cristallographie aux rayons X , Protéines bactériennes/métabolisme , Protéines bactériennes/génétique , Protéines bactériennes/composition chimique , Transport biologique , Protéines de transport membranaire/métabolisme , Protéines de transport membranaire/composition chimique , Protéines de transport membranaire/génétique , Multirésistance bactérienne aux médicaments/génétique , Anti-infectieux locaux/métabolisme , Anti-infectieux locaux/pharmacologie , Anti-infectieux locaux/composition chimique , Modèles moléculaires
16.
Nat Immunol ; 25(6): 969-980, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38831104

RÉSUMÉ

Rare genetic variants in toll-like receptor 7 (TLR7) are known to cause lupus in humans and mice. UNC93B1 is a transmembrane protein that regulates TLR7 localization into endosomes. In the present study, we identify two new variants in UNC93B1 (T314A, located proximally to the TLR7 transmembrane domain, and V117L) in a cohort of east Asian patients with childhood-onset systemic lupus erythematosus. The V117L variant was associated with increased expression of type I interferons and NF-κB-dependent cytokines in patient plasma and immortalized B cells. THP-1 cells expressing the variant UNC93B1 alleles exhibited exaggerated responses to stimulation of TLR7/-8, but not TLR3 or TLR9, which could be inhibited by targeting the downstream signaling molecules, IRAK1/-4. Heterozygous mice expressing the orthologous Unc93b1V117L variant developed a spontaneous lupus-like disease that was more severe in homozygotes and again hyperresponsive to TLR7 stimulation. Together, this work formally identifies genetic variants in UNC93B1 that can predispose to childhood-onset systemic lupus erythematosus.


Sujet(s)
Prédisposition génétique à une maladie , Lupus érythémateux disséminé , Récepteur de type Toll-7 , Lupus érythémateux disséminé/génétique , Humains , Animaux , Récepteur de type Toll-7/génétique , Récepteur de type Toll-7/métabolisme , Souris , Enfant , Femelle , Protéines de transport membranaire/génétique , Protéines de transport membranaire/métabolisme , Mâle , Âge de début , Variation génétique , Facteur de transcription NF-kappa B/métabolisme , Lymphocytes B/immunologie , Lymphocytes B/métabolisme , Adolescent , Cellules THP-1 , Interféron de type I/métabolisme
17.
Clin Pharmacokinet ; 63(6): 735-749, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38867094

RÉSUMÉ

The renal secretion of many drugs is facilitated by membrane transporters, including organic cation transporter 2, multidrug and toxin extrusion protein 1/2-K and organic anion transporters 1 and 3. Inhibition of these transporters can reduce renal excretion of drugs and thereby pose a safety risk. Assessing the risk of inhibition of these membrane transporters by investigational drugs remains a key focus in the evaluation of drug-drug interactions (DDIs). Current methods to predict DDI risk are based on generating in vitro data followed by a clinical assessment using a recommended exogenous probe substrate for the individual drug transporter. More recently, monitoring plasma-based and urine-based endogenous biomarkers to predict transporter-mediated DDIs in early phase I studies represents a promising approach to facilitate, improve and potentially avoid conventional clinical DDI studies. This perspective reviews the evidence for use of these endogenous biomarkers in the assessment of renal transporter-mediated DDI, evaluates how endogenous biomarkers may help to expand the DDI assessment toolkit and offers some potential knowledge gaps. A conceptual framework for assessment that may complement the current paradigm of predicting the potential for renal transporter-mediated DDIs is outlined.


Sujet(s)
Marqueurs biologiques , Développement de médicament , Interactions médicamenteuses , Protéines de transport membranaire , Humains , Développement de médicament/méthodes , Marqueurs biologiques/métabolisme , Marqueurs biologiques/urine , Protéines de transport membranaire/métabolisme , Industrie pharmaceutique/méthodes , Rein/métabolisme , Rein/effets des médicaments et des substances chimiques , Préparations pharmaceutiques/métabolisme , Animaux
18.
Plant Physiol Biochem ; 213: 108845, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38885565

RÉSUMÉ

The SWEETs (sugars will eventually be exported transporter) family comprises a class of recently identified sugar transporters that play diverse roles in regulating plant development. Beyond those fundamental functions, emerging evidence suggests that SWEETs may also be involved in plant stress responses, such as salt tolerance. However, the specific role of maize SWEETs in regulating salt tolerance remains unexplored. In this study, we demonstrate that two maize SWEET family members, ZmSWEET15a and ZmSWEET15b, are typical sugar transporters with seven transmembrane helices localized in the cell membrane. The heterologous expression of ZmSWEET15a and ZmSWEET15b in the yeast mutant strain confirms their role as sucrose transporters. Overexpression of ZmSWEET15a and ZmSWEET15b in Arabidopsis resulted in improved NaCl resistance and significant increase in seed germination rate compared to the wild type. Furthermore, by generating maize knockout mutants, we observe that the absence of ZmSWEET15a and ZmSWEET15b affects both plant growth and grain development. The salt treatment results indicate that the knockout mutants of these two genes are more sensitive to salt stress. Comparative analyses revealed that wild-type maize plants outperformed the knockout mutants in terms of growth parameters and physiological indices. Our findings unravel a novel function of ZmSWEET15a and ZmSWEET15b in the salt stress response, offering a theoretical foundation for enhancing maize salt resistance.


Sujet(s)
Arabidopsis , Protéines végétales , Tolérance au sel , Zea mays , Zea mays/génétique , Zea mays/métabolisme , Zea mays/croissance et développement , Tolérance au sel/génétique , Protéines végétales/génétique , Protéines végétales/métabolisme , Arabidopsis/génétique , Arabidopsis/métabolisme , Régulation de l'expression des gènes végétaux , Végétaux génétiquement modifiés , Protéines de transport membranaire/génétique , Protéines de transport membranaire/métabolisme
19.
Mol Cell Biol ; 44(6): 226-244, 2024.
Article de Anglais | MEDLINE | ID: mdl-38828998

RÉSUMÉ

TIMM50 is a core subunit of the TIM23 complex, the mitochondrial inner membrane translocase responsible for the import of pre-sequence-containing precursors into the mitochondrial matrix and inner membrane. Here we describe a mitochondrial disease patient who is homozygous for a novel variant in TIMM50 and establish the first proteomic map of mitochondrial disease associated with TIMM50 dysfunction. We demonstrate that TIMM50 pathogenic variants reduce the levels and activity of endogenous TIM23 complex, which significantly impacts the mitochondrial proteome, resulting in a combined oxidative phosphorylation (OXPHOS) defect and changes to mitochondrial ultrastructure. Using proteomic data sets from TIMM50 patient fibroblasts and a TIMM50 HEK293 cell model of disease, we reveal that laterally released substrates imported via the TIM23SORT complex pathway are most sensitive to loss of TIMM50. Proteins involved in OXPHOS and mitochondrial ultrastructure are enriched in the TIM23SORT substrate pool, providing a biochemical mechanism for the specific defects in TIMM50-associated mitochondrial disease patients. These results highlight the power of using proteomics to elucidate molecular mechanisms of disease and uncovering novel features of fundamental biology, with the implication that human TIMM50 may have a more pronounced role in lateral insertion than previously understood.


Sujet(s)
Mitochondries , Maladies mitochondriales , Protéines du complexe d'import des protéines précurseurs mitochondriales , Phosphorylation oxydative , Transport des protéines , Humains , Fibroblastes/métabolisme , Cellules HEK293 , Protéines de transport membranaire/métabolisme , Protéines de transport membranaire/génétique , Mitochondries/métabolisme , Maladies mitochondriales/métabolisme , Maladies mitochondriales/anatomopathologie , Maladies mitochondriales/génétique , Protéines de transport de la membrane mitochondriale/métabolisme , Protéines de transport de la membrane mitochondriale/génétique , Membranes mitochondriales/métabolisme , Protéines du complexe d'import des protéines précurseurs mitochondriales/métabolisme , Protéines mitochondriales/métabolisme , Protéines mitochondriales/génétique , Mutation/génétique , Protéomique/méthodes
20.
Proc Natl Acad Sci U S A ; 121(25): e2314314121, 2024 Jun 18.
Article de Anglais | MEDLINE | ID: mdl-38865262

RÉSUMÉ

Pyruvate lies at a pivotal node of carbon metabolism in eukaryotes. It is involved in diverse metabolic pathways in multiple organelles, and its interorganelle shuttling is crucial for cell fitness. Many apicomplexan parasites harbor a unique organelle called the apicoplast that houses metabolic pathways like fatty acid and isoprenoid precursor biosyntheses, requiring pyruvate as a substrate. However, how pyruvate is supplied in the apicoplast remains enigmatic. Here, deploying the zoonotic parasite Toxoplasma gondii as a model apicomplexan, we identified two proteins residing in the apicoplast membranes that together constitute a functional apicoplast pyruvate carrier (APC) to mediate the import of cytosolic pyruvate. Depletion of APC results in reduced activities of metabolic pathways in the apicoplast and impaired integrity of this organelle, leading to parasite growth arrest. APC is a pyruvate transporter in diverse apicomplexan parasites, suggesting a common strategy for pyruvate acquisition by the apicoplast in these clinically relevant intracellular pathogens.


Sujet(s)
Apicoplastes , Acide pyruvique , Toxoplasma , Apicoplastes/métabolisme , Toxoplasma/métabolisme , Acide pyruvique/métabolisme , Protéines de protozoaire/métabolisme , Protéines de protozoaire/génétique , Animaux , Protéines de transport membranaire/métabolisme , Protéines de transport membranaire/génétique , Transport biologique , Voies et réseaux métaboliques
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...