Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 406
Filtrer
1.
DNA Repair (Amst) ; 141: 103733, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-39096698

RÉSUMÉ

Fanconi anemia (FA) is a hereditary disorder characterized by a deficiency in the repair of DNA interstrand crosslinks and the response to replication stress. Endogenous DNA damage, most likely caused by aldehydes, severely affects hematopoietic stem cells in FA, resulting in progressive bone marrow failure and the development of leukemia. Recent studies revealed that expression levels of SLFN11 affect the replication stress response and are a strong determinant in cell killing by DNA-damaging cancer chemotherapy. Because SLFN11 is highly expressed in the hematopoietic system, we speculated that SLFN11 may have a significant role in FA pathophysiology. Indeed, we found that DNA damage sensitivity in FA cells is significantly mitigated by the loss of SLFN11 expression. Mechanistically, we demonstrated that SLFN11 destabilizes the nascent DNA strands upon replication fork stalling. In this review, we summarize our work regarding an interplay between SLFN11 and the FA pathway, and the role of SLFN11 in the response to replication stress.


Sujet(s)
Altération de l'ADN , Réplication de l'ADN , Anémie de Fanconi , Protéines nucléaires , Anémie de Fanconi/métabolisme , Anémie de Fanconi/génétique , Humains , Protéines nucléaires/métabolisme , Protéines nucléaires/génétique , Animaux , Réparation de l'ADN , Protéines des groupes de complémentation de l'anémie de Fanconi/métabolisme , Protéines des groupes de complémentation de l'anémie de Fanconi/génétique
2.
Nucleic Acids Res ; 52(16): 9586-9595, 2024 Sep 09.
Article de Anglais | MEDLINE | ID: mdl-39011897

RÉSUMÉ

FANCJ/BRIP1, initially identified as DOG-1 (Deletions Of G-rich DNA) in Caenorhabditis elegans, plays a critical role in genome integrity by facilitating DNA interstrand cross-link repair and resolving G-quadruplex structures. Its function is tightly linked to a conserved [4Fe-4S] cluster-binding motif, mutations of which contribute to Fanconi anemia and various cancers. This study investigates the critical role of the iron-sulfur (Fe-S) cluster in DOG-1 and its relationship with the cytosolic iron-sulfur protein assembly targeting complex (CTC). We found that a DOG-1 mutant, expected to be defective in Fe-S cluster binding, is primarily localized in the cytoplasm, leading to heightened DNA damage sensitivity and G-rich DNA deletions. We further discovered that the deletion of mms-19, a nonessential CTC component, also resulted in DOG-1 sequestered in cytoplasm and increased DNA damage sensitivity. Additionally, we identified that CIAO-1 and CIAO-2B are vital for DOG-1's stability and repair functions but unlike MMS-19 have essential roles in C. elegans. These findings confirm the CTC and Fe-S cluster as key elements in regulating DOG-1, crucial for genome integrity. Additionally, this study advances our understanding of the CTC's role in Fe-S protein regulation and development in C. elegans, offering a model to study its impact on multicellular organism development.


Sujet(s)
Protéines de Caenorhabditis elegans , Caenorhabditis elegans , Altération de l'ADN , Protéines des groupes de complémentation de l'anémie de Fanconi , Ferrosulfoprotéines , Animaux , Caenorhabditis elegans/génétique , Caenorhabditis elegans/métabolisme , Protéines de Caenorhabditis elegans/métabolisme , Protéines de Caenorhabditis elegans/génétique , Ferrosulfoprotéines/métabolisme , Ferrosulfoprotéines/génétique , Protéines des groupes de complémentation de l'anémie de Fanconi/métabolisme , Protéines des groupes de complémentation de l'anémie de Fanconi/génétique , Cytoplasme/métabolisme , Réparation de l'ADN , Mutation , Protéines de liaison à l'ADN/métabolisme , Protéines de liaison à l'ADN/génétique , Helicase
3.
Oncogene ; 43(35): 2621-2634, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-39068216

RÉSUMÉ

BRCA1, a breast cancer susceptibility gene, has emerged as a central mediator that brings together multiple signaling complexes in response to DNA damage. The A, B, and C complexes of BRCA1, which are formed based on their phosphorylation-dependent interactions with the BRCA1-C-terminal domains, contribute to the roles of BRCA1 in DNA repair and cell cycle checkpoint control. However, their functions in DNA damage response remain to be fully appreciated. Specifically, there has been no systematic investigation of the roles of BRCA1-A, -B, and -C complexes in the regulation of BRCA1 localization and functions, in part because of cellular lethality associated with loss of CtIP protein, which is an essential component in BRCA1-C complex. To systematically investigate the functions of these complexes in DNA damage response, we depleted a key component in each of these complexes. We used the degradation tag system to inducibly deplete endogenous CtIP and obtained a series of RAP80/FANCJ/CtIP single-, double-, and triple-knockout cells. We showed that loss of BRCA1-B/FANCJ and BRCA1-C/CtIP, but not BRCA1-A/RAP80, resulted in reduced cell proliferation and increased sensitivity to DNA damage. BRCA1-C/CtIP and BRCA1-A/RAP80 were involved in BRCA1 recruitment to sites of DNA damage. However, BRCA1-A/RAP80 was not essential for damage-induced BRCA1 localization. Instead, RAP80/H2AX and CtIP have redundant roles in BRCA1 recruitment. Altogether, our systematic analysis uncovers functional differences between BRCA1-A, -B, and -C complexes and provides new insights into the roles of these BRCA1-associated protein complexes in DNA damage response and DNA repair.


Sujet(s)
Protéine BRCA1 , Altération de l'ADN , Réparation de l'ADN , Humains , Protéine BRCA1/métabolisme , Protéine BRCA1/génétique , Chaperons d'histones/métabolisme , Chaperons d'histones/génétique , Protéines de liaison à l'ADN/métabolisme , Protéines de liaison à l'ADN/génétique , Protéines nucléaires/métabolisme , Protéines nucléaires/génétique , Protéines de transport/métabolisme , Protéines de transport/génétique , Protéines des groupes de complémentation de l'anémie de Fanconi/métabolisme , Protéines des groupes de complémentation de l'anémie de Fanconi/génétique , Lignée cellulaire tumorale
4.
Nature ; 632(8027): 1165-1173, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-39085614

RÉSUMÉ

DNA crosslinks block DNA replication and are repaired by the Fanconi anaemia pathway. The FANCD2-FANCI (D2-I) protein complex is central to this process as it initiates repair by coordinating DNA incisions around the lesion1. However, D2-I is also known to have a more general role in DNA repair and in protecting stalled replication forks from unscheduled degradation2-4. At present, it is unclear how DNA crosslinks are recognized and how D2-I functions in replication fork protection. Here, using single-molecule imaging, we show that D2-I is a sliding clamp that binds to and diffuses on double-stranded DNA. Notably, sliding D2-I stalls on encountering single-stranded-double-stranded (ss-ds) DNA junctions, structures that are generated when replication forks stall at DNA lesions5. Using cryogenic electron microscopy, we determined structures of D2-I on DNA that show that stalled D2-I makes specific interactions with the ss-dsDNA junction that are distinct from those made by sliding D2-I. Thus, D2-I surveys dsDNA and, when it reaches an ssDNA gap, it specifically clamps onto ss-dsDNA junctions. Because ss-dsDNA junctions are found at stalled replication forks, D2-I can identify sites of DNA damage. Therefore, our data provide a unified molecular mechanism that reconciles the roles of D2-I in the recognition and protection of stalled replication forks in several DNA repair pathways.


Sujet(s)
Altération de l'ADN , Réparation de l'ADN , Réplication de l'ADN , ADN simple brin , ADN , Protéine du groupe de complémentation D2 de l'anémie de Fanconi , Protéines des groupes de complémentation de l'anémie de Fanconi , Animaux , Femelle , Humains , Extrait cellulaire , Cryomicroscopie électronique , Diffusion , ADN/composition chimique , ADN/métabolisme , ADN/ultrastructure , ADN simple brin/composition chimique , ADN simple brin/métabolisme , ADN simple brin/ultrastructure , Protéine du groupe de complémentation D2 de l'anémie de Fanconi/composition chimique , Protéine du groupe de complémentation D2 de l'anémie de Fanconi/métabolisme , Protéine du groupe de complémentation D2 de l'anémie de Fanconi/ultrastructure , Protéines des groupes de complémentation de l'anémie de Fanconi/composition chimique , Protéines des groupes de complémentation de l'anémie de Fanconi/métabolisme , Protéines des groupes de complémentation de l'anémie de Fanconi/ultrastructure , Modèles moléculaires , Liaison aux protéines , Imagerie de molécules uniques , Xenopus laevis
5.
Cancer Gene Ther ; 31(8): 1113-1123, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38879655

RÉSUMÉ

Fanconi anemia (FA) is an autosomal or X-linked human disease, characterized by bone marrow failure, cancer susceptibility and various developmental abnormalities. So far, at least 22 FA genes (FANCA-W) have been identified. Germline inactivation of any one of these FA genes causes FA symptoms. Proteins encoded by FA genes are involved in the Fanconi anemia pathway, which is known for its roles in DNA inter-strand crosslinks (ICLs) repair. Besides, its roles in genome maintenance upon replication stress has also been reported. Post-translational modifications (PTMs) of FA proteins, particularly phosphorylation and ubiquitination, emerge as critical determinants in the activation of the FA pathway during ICL repair or replication stress response. Consequent inactivation of the FA pathway engenders heightened chromosomal instability, thereby constituting a genetic susceptibility conducive to cancer predisposition and the exacerbation of tumorigenesis. In this review, we have combined recent structural analysis of FA proteins and summarized knowledge on the functions of different PTMs in regulating FA pathways, and discuss potential contributions stemming from mutations at PTMs to the genesis and progression of tumorigenesis.


Sujet(s)
Protéines des groupes de complémentation de l'anémie de Fanconi , Maturation post-traductionnelle des protéines , Humains , Protéines des groupes de complémentation de l'anémie de Fanconi/métabolisme , Protéines des groupes de complémentation de l'anémie de Fanconi/génétique , Carcinogenèse/métabolisme , Carcinogenèse/génétique , Anémie de Fanconi/métabolisme , Anémie de Fanconi/génétique , Animaux , Réparation de l'ADN
6.
DNA Repair (Amst) ; 140: 103701, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38878565

RÉSUMÉ

FANCM is a multifunctional DNA repair enzyme that acts as a sensor and coordinator of replication stress responses, especially interstrand crosslink (ICL) repair mediated by the Fanconi anaemia (FA) pathway. Its specialised ability to bind and remodel branched DNA structures enables diverse genome maintenance activities. Through ATP-powered "branchpoint translocation", FANCM can promote fork reversal, facilitate replication traverse of ICLs, resolve deleterious R-loop structures, and restrain recombination. These remodelling functions also support a role as sensor of perturbed replication, eliciting checkpoint signalling and recruitment of downstream repair factors like the Fanconi anaemia FANCI:FANCD2 complex. Accordingly, FANCM deficiency causes chromosome fragility and cancer susceptibility. Other recent advances link FANCM to roles in gene editing efficiency and meiotic recombination, along with emerging synthetic lethal relationships, and targeting opportunities in ALT-positive cancers. Here we review key properties of FANCM's biochemical activities, with a particular focus on branchpoint translocation as a distinguishing characteristic.


Sujet(s)
Réparation de l'ADN , Humains , Helicase/métabolisme , Helicase/génétique , Animaux , Réplication de l'ADN , Protéines des groupes de complémentation de l'anémie de Fanconi/métabolisme , Protéines des groupes de complémentation de l'anémie de Fanconi/génétique , Tumeurs/génétique , Tumeurs/métabolisme , Tumeurs/enzymologie , ADN/métabolisme
7.
Front Endocrinol (Lausanne) ; 15: 1393111, 2024.
Article de Anglais | MEDLINE | ID: mdl-38846492

RÉSUMÉ

Non-obstructive azoospermia (NOA) is a disease characterized by spermatogenesis failure and comprises phenotypes such as hypospermatogenesis, mature arrest, and Sertoli cell-only syndrome. Studies have shown that FA cross-linked anemia (FA) pathway is closely related to the occurrence of NOA. There are FA gene mutations in male NOA patients, which cause significant damage to male germ cells. The FA pathway is activated in the presence of DNA interstrand cross-links; the key step in activating this pathway is the mono-ubiquitination of the FANCD2-FANCI complex, and the activation of the FA pathway can repair DNA damage such as DNA double-strand breaks. Therefore, we believe that the FA pathway affects germ cells during DNA damage repair, resulting in minimal or even disappearance of mature sperm in males. This review summarizes the regulatory mechanisms of FA-related genes in male azoospermia, with the aim of providing a theoretical reference for clinical research and exploration of related genes.


Sujet(s)
Azoospermie , Protéines des groupes de complémentation de l'anémie de Fanconi , Transduction du signal , Animaux , Humains , Mâle , Azoospermie/génétique , Azoospermie/métabolisme , Azoospermie/anatomopathologie , Altération de l'ADN , Réparation de l'ADN , Protéines des groupes de complémentation de l'anémie de Fanconi/métabolisme , Protéines des groupes de complémentation de l'anémie de Fanconi/génétique , Spermatogenèse
9.
Cell Rep ; 43(4): 114064, 2024 Apr 23.
Article de Anglais | MEDLINE | ID: mdl-38578830

RÉSUMÉ

Assembly of TopBP1 biomolecular condensates triggers activation of the ataxia telangiectasia-mutated and Rad3-related (ATR)/Chk1 signaling pathway, which coordinates cell responses to impaired DNA replication. Here, we used optogenetics and reverse genetics to investigate the role of sequence-specific motifs in the formation and functions of TopBP1 condensates. We propose that BACH1/FANCJ is involved in the partitioning of BRCA1 within TopBP1 compartments. We show that Chk1 is activated at the interface of TopBP1 condensates and provide evidence that these structures arise at sites of DNA damage and in primary human fibroblasts. Chk1 phosphorylation depends on the integrity of a conserved arginine motif within TopBP1's ATR activation domain (AAD). Its mutation uncouples Chk1 activation from TopBP1 condensation, revealing that optogenetically induced Chk1 phosphorylation triggers cell cycle checkpoints and slows down replication forks in the absence of DNA damage. Together with previous work, these data suggest that the intrinsically disordered AAD encodes distinct molecular steps in the ATR/Chk1 pathway.


Sujet(s)
Facteurs de transcription à motif basique et à glissière à leucines , Checkpoint kinase 1 , Protéines de liaison à l'ADN , Humains , Checkpoint kinase 1/métabolisme , Phosphorylation , Protéines de liaison à l'ADN/métabolisme , Protéines mutées dans l'ataxie-télangiectasie/métabolisme , Altération de l'ADN , Protéines de transport/métabolisme , Réplication de l'ADN , Protéines des groupes de complémentation de l'anémie de Fanconi/métabolisme , Protéine BRCA1/métabolisme , Transduction du signal , Protéines nucléaires/métabolisme , Fibroblastes/métabolisme , Points de contrôle du cycle cellulaire
10.
Sci Rep ; 14(1): 9922, 2024 04 30.
Article de Anglais | MEDLINE | ID: mdl-38688950

RÉSUMÉ

Fanconi Anemia (FA) pathway resolves DNA interstrand cross links (ICL). The FA pathway was initially recognized in vertebrates, but was later confirmed in other animals and speculated in fungi. FA proteins FANCM, FANCL and FANCJ are present in Saccharomyces cerevisiae but, their mechanism of interaction to resolve ICL is still unclear. Unlike Dikarya, early diverging fungi (EDF) possess more traits shared with animals. We traced the evolutionary history of the FA pathway across Opisthokonta. We scanned complete proteomes for FA-related homologs to establish their taxonomic distribution and analyzed their phylogenetic trees. We checked transcription profiles of FA genes to test if they respond to environmental conditions and their genomic localizations for potential co-localization. We identified fungal homologs of the activation and ID complexes, 5 out of 8 core proteins, all of the endonucleases, and deubiquitination proteins. All fungi lack FANCC, FANCF and FANCG proteins responsible for post-replication repair and chromosome stability in animals. The observed taxonomic distribution can be attributed to a gradual degradation of the FA pathway from EDF to Dikarya. One of the key differences is that EDF have the ID complex recruiting endonucleases to the site of ICL. Moreover, 21 out of 32 identified FA genes are upregulated in response to different growth conditions. Several FA genes are co-localized in fungal genomes which also could facilitate co-expression. Our results indicate that a minimal FA pathway might still be functional in Mucoromycota with a gradual loss of components in Dikarya ancestors.


Sujet(s)
Phylogenèse , Anémie de Fanconi/génétique , Anémie de Fanconi/métabolisme , Protéines des groupes de complémentation de l'anémie de Fanconi/métabolisme , Protéines des groupes de complémentation de l'anémie de Fanconi/génétique , Champignons/génétique , Champignons/métabolisme , Protéines fongiques/génétique , Protéines fongiques/métabolisme , Évolution moléculaire , Réparation de l'ADN
11.
Methods Enzymol ; 695: 1-27, 2024.
Article de Anglais | MEDLINE | ID: mdl-38521581

RÉSUMÉ

G-quadruplex (G4) DNA or RNA poses a unique nucleic acid structure in genomic transactions. Because of the unique topology presented by G4, cells have exquisite mechanisms and pathways to metabolize G4 that arise in guanine-rich regions of the genome such as telomeres, promoter regions, ribosomal DNA, and other chromosomal elements. G4 resolvases are often represented by a class of molecular motors known as helicases that disrupt the Hoogsteen hydrogen bonds in G4 by harnessing the chemical energy of nucleoside triphosphate hydrolysis. Of special interest to researchers in the field, including us, is the human FANCJ DNA helicase that efficiently resolves G4 DNA structures. Notably, FANCJ mutations are linked to Fanconi Anemia and are prominent in breast and ovarian cancer. Since our discovery that FANCJ efficiently resolves G4 DNA structures 15 years ago, we and other labs have characterized mechanistic aspects of FANCJ-catalyzed G4 resolution and its biological importance in genomic integrity and cellular DNA replication. In addition to its G4 resolvase function, FANCJ is also a classic DNA helicase that acts on conventional duplex DNA structures, which are relevant to the enzyme's role in interstrand cross link repair, double-strand break repair via homologous recombination, and response to replication stress. Here, we describe detailed procedures for the purification of recombinant FANCJ protein and characterization of its G4 resolvase and duplex DNA helicase activity.


Sujet(s)
Helicase , G-quadruplexes , Humains , Helicase/génétique , Helicase/métabolisme , Protéines des groupes de complémentation de l'anémie de Fanconi/génétique , Protéines des groupes de complémentation de l'anémie de Fanconi/métabolisme , Recombinases/génétique , Recombinases/métabolisme , ADN/métabolisme , Réparation de l'ADN , Réplication de l'ADN , Protéines recombinantes/métabolisme
12.
Hum Genet ; 143(3): 357-369, 2024 Mar.
Article de Anglais | MEDLINE | ID: mdl-38483614

RÉSUMÉ

Premature ovarian insufficiency (POI) is a common reproductive aging disorder due to a dramatic decline of ovarian function before 40 years of age. Accumulating evidence reveals that genetic defects, particularly those related to DNA damage response, are a crucial contributing factor to POI. We have demonstrated that the functional Fanconi anemia (FA) pathway maintains the rapid proliferation of primordial germ cells to establish a sufficient reproductive reserve by counteracting replication stress, but the clinical implications of this function in human ovarian function remain to be established. Here, we screened the FANCI gene, which encodes a key component for FA pathway activation, in our whole-exome sequencing database of 1030 patients with idiopathic POI, and identified two pairs of novel compound heterozygous variants, c.[97C > T];[1865C > T] and c.[158-2A > G];[c.959A > G], in two POI patients, respectively. The missense variants did not alter FANCI protein expression and nuclear localization, apart from the variant c.158-2A > G causing abnormal splicing and leading to a truncated mutant p.(S54Pfs*5). Furthermore, the four variants all diminished FANCD2 ubiquitination levels and increased DNA damage under replication stress, suggesting that the FANCI variants impaired FA pathway activation and replication stress response. This study first links replication stress response defects with the pathogenesis of human POI, providing a new insight into the essential roles of the FA genes in ovarian function.


Sujet(s)
Protéines des groupes de complémentation de l'anémie de Fanconi , Hétérozygote , Insuffisance ovarienne primitive , Humains , Insuffisance ovarienne primitive/génétique , Femelle , Adulte , Protéines des groupes de complémentation de l'anémie de Fanconi/génétique , Protéines des groupes de complémentation de l'anémie de Fanconi/métabolisme , Exome Sequencing , Altération de l'ADN , Anémie de Fanconi/génétique , Mutation faux-sens
13.
Sci Adv ; 10(6): eadk2685, 2024 Feb 09.
Article de Anglais | MEDLINE | ID: mdl-38324687

RÉSUMÉ

Transcription-replication conflicts (TRCs) induce formation of cotranscriptional RNA:DNA hybrids (R-loops) stabilized by G-quadruplexes (G4s) on the displaced DNA strand, which can cause fork stalling. Although it is known that these stalled forks can resume DNA synthesis in a process initiated by MUS81 endonuclease, how TRC-associated G4/R-loops are removed to allow fork passage remains unclear. Here, we identify the mismatch repair protein MutSß, an MLH1-PMS1 heterodimer termed MutLß, and the G4-resolving helicase FANCJ as factors that are required for MUS81-initiated restart of DNA replication at TRC sites in human cells. This DNA repair process depends on the G4-binding activity of MutSß, the helicase activity of FANCJ, and the binding of FANCJ to MLH1. Furthermore, we show that MutSß, MutLß, and MLH1-FANCJ interaction mediate FANCJ recruitment to G4s. These data suggest that MutSß, MutLß, and FANCJ act in conjunction to eliminate G4/R-loops at TRC sites, allowing replication restart.


Sujet(s)
Protéines des groupes de complémentation de l'anémie de Fanconi , Structures en boucle R , Humains , Protéines des groupes de complémentation de l'anémie de Fanconi/génétique , Protéines des groupes de complémentation de l'anémie de Fanconi/métabolisme , Helicase/génétique , Helicase/métabolisme , Réplication de l'ADN , ADN/génétique
14.
Cell Rep ; 43(1): 113610, 2024 01 23.
Article de Anglais | MEDLINE | ID: mdl-38165804

RÉSUMÉ

Fanconi anemia (FA) is characterized by congenital abnormalities, bone marrow failure, and cancer susceptibility. The central FA protein complex FANCI/FANCD2 (ID2) is activated by monoubiquitination and recruits DNA repair proteins for interstrand crosslink (ICL) repair and replication fork protection. Defects in the FA pathway lead to R-loop accumulation, which contributes to genomic instability. Here, we report that the splicing factor SRSF1 and FANCD2 interact physically and act together to suppress R-loop formation via mRNA export regulation. We show that SRSF1 stimulates FANCD2 monoubiquitination in an RNA-dependent fashion. In turn, FANCD2 monoubiquitination proves crucial for the assembly of the SRSF1-NXF1 nuclear export complex and mRNA export. Importantly, several SRSF1 cancer-associated mutants fail to interact with FANCD2, leading to inefficient FANCD2 monoubiquitination, decreased mRNA export, and R-loop accumulation. We propose a model wherein SRSF1 and FANCD2 interaction links DNA damage response to the avoidance of pathogenic R-loops via regulation of mRNA export.


Sujet(s)
Anémie de Fanconi , Tumeurs , Humains , Structures en boucle R , Transport nucléaire actif , Anémie de Fanconi/métabolisme , Protéines des groupes de complémentation de l'anémie de Fanconi/métabolisme , Protéine du groupe de complémentation D2 de l'anémie de Fanconi/génétique , Protéine du groupe de complémentation D2 de l'anémie de Fanconi/métabolisme , Ubiquitination , Réparation de l'ADN , ARN messager/génétique , ARN messager/métabolisme , Altération de l'ADN , Facteurs d'épissage riches en sérine-arginine/génétique , Facteurs d'épissage riches en sérine-arginine/métabolisme
15.
Am J Hum Genet ; 110(11): 1938-1949, 2023 11 02.
Article de Anglais | MEDLINE | ID: mdl-37865086

RÉSUMÉ

Fanconi anemia (FA) is a clinically variable and genetically heterogeneous cancer-predisposing disorder representing the most common bone marrow failure syndrome. It is caused by inactivating predominantly biallelic mutations involving >20 genes encoding proteins with roles in the FA/BRCA DNA repair pathway. Molecular diagnosis of FA is challenging due to the wide spectrum of the contributing gene mutations and structural rearrangements. The assessment of chromosomal fragility after exposure to DNA cross-linking agents is generally required to definitively confirm diagnosis. We assessed peripheral blood genome-wide DNA methylation (DNAm) profiles in 25 subjects with molecularly confirmed clinical diagnosis of FA (FANCA complementation group) using Illumina's Infinium EPIC array. We identified 82 differentially methylated CpG sites that allow to distinguish subjects with FA from healthy individuals and subjects with other genetic disorders, defining an FA-specific DNAm signature. The episignature was validated using a second cohort of subjects with FA involving different complementation groups, documenting broader genetic sensitivity and demonstrating its specificity using the EpiSign Knowledge Database. The episignature properly classified DNA samples obtained from bone marrow aspirates, demonstrating robustness. Using the selected probes, we trained a machine-learning model able to classify EPIC DNAm profiles in molecularly unsolved cases. Finally, we show that the generated episignature includes CpG sites that do not undergo functional selective pressure, allowing diagnosis of FA in individuals with reverted phenotype due to gene conversion. These findings provide a tool to accelerate diagnostic testing in FA and broaden the clinical utility of DNAm profiling in the diagnostic setting.


Sujet(s)
Anémie de Fanconi , Humains , Anémie de Fanconi/diagnostic , Anémie de Fanconi/génétique , Anémie de Fanconi/métabolisme , Protéines des groupes de complémentation de l'anémie de Fanconi/génétique , Protéines des groupes de complémentation de l'anémie de Fanconi/métabolisme , Méthylation de l'ADN/génétique , Protéines/génétique , ADN/métabolisme
16.
Cell Rep ; 42(7): 112721, 2023 07 25.
Article de Anglais | MEDLINE | ID: mdl-37392383

RÉSUMÉ

The Fanconi anemia (FA) pathway repairs DNA interstrand crosslinks (ICLs) in humans. Activation of the pathway relies on loading of the FANCD2/FANCI complex onto chromosomes, where it is fully activated by subsequent monoubiquitination. However, the mechanism for loading the complex onto chromosomes remains unclear. Here, we identify 10 SQ/TQ phosphorylation sites on FANCD2, which are phosphorylated by ATR in response to ICLs. Using a range of biochemical assays complemented with live-cell imaging including super-resolution single-molecule tracking, we show that these phosphorylation events are critical for loading of the complex onto chromosomes and for its subsequent monoubiquitination. We uncover how the phosphorylation events are tightly regulated in cells and that mimicking their constant phosphorylation leads to an uncontrolled active state of FANCD2, which is loaded onto chromosomes in an unrestrained fashion. Taken together, we describe a mechanism where ATR triggers FANCD2/FANCI loading onto chromosomes.


Sujet(s)
Chromatine , Anémie de Fanconi , Humains , Phosphorylation , Anémie de Fanconi/génétique , Anémie de Fanconi/métabolisme , Protéines des groupes de complémentation de l'anémie de Fanconi/génétique , Protéines des groupes de complémentation de l'anémie de Fanconi/métabolisme , Protéine du groupe de complémentation D2 de l'anémie de Fanconi/métabolisme , Altération de l'ADN , Ubiquitination , Réparation de l'ADN , Protéines mutées dans l'ataxie-télangiectasie/métabolisme
17.
Cell Mol Life Sci ; 80(4): 92, 2023 Mar 16.
Article de Anglais | MEDLINE | ID: mdl-36928776

RÉSUMÉ

The proper development of primordial germ cells (PGCs) is an essential prerequisite for gametogenesis and mammalian fertility. The Fanconi anemia (FA) pathway functions in maintaining the development of PGCs. FANCT/UBE2T serves as an E2 ubiquitin-conjugating enzyme that ubiquitylates the FANCD2-FANCI complex to activate the FA pathway, but its role in the development of PGCs is not clear. In this study, we found that Ube2t knockout mice showed defects in PGC proliferation, leading to severe loss of germ cells after birth. Deletion of UBE2T exacerbated DNA damage and triggered the activation of the p53 pathway. We further demonstrated that UBE2T counteracted transcription-replication conflicts by resolving R-loops and stabilizing replication forks, and also protected common fragile sites by resolving R-loops in large genes and promoting mitotic DNA synthesis to maintain the genome stability of PGCs. Overall, these results provide new insights into the function and regulatory mechanisms of the FA pathway ensuring normal development of PGCs.


Sujet(s)
Réplication de l'ADN , Cellules germinales , Transcription génétique , Ubiquitin-conjugating enzymes , Animaux , Souris , Altération de l'ADN/génétique , Réplication de l'ADN/génétique , Protéines des groupes de complémentation de l'anémie de Fanconi/génétique , Protéines des groupes de complémentation de l'anémie de Fanconi/métabolisme , Cellules germinales/métabolisme , Mammifères/métabolisme , Ubiquitin-conjugating enzymes/génétique , Ubiquitin-conjugating enzymes/métabolisme , Ubiquitination , Transcription génétique/génétique
18.
Mol Cell ; 83(1): 3-5, 2023 01 05.
Article de Anglais | MEDLINE | ID: mdl-36608668

RÉSUMÉ

In this issue of Molecular Cell, Yaneva et al.1 demonstrate that the DNA helicase FANCJ promotes DNA replication-coupled DNA-protein crosslink (DPC) repair via an unexpected ability to unfold the protein adduct, thereby enabling its proteolysis by the DPC protease SPRTN.


Sujet(s)
Helicase , Réparation de l'ADN , Helicase/génétique , Helicase/métabolisme , ADN/génétique , ADN/métabolisme , Protéines/génétique , Altération de l'ADN , Protéines des groupes de complémentation de l'anémie de Fanconi/génétique , Protéines des groupes de complémentation de l'anémie de Fanconi/métabolisme
19.
Nucleic Acids Res ; 51(6): 2516-2528, 2023 04 11.
Article de Anglais | MEDLINE | ID: mdl-36652992

RÉSUMÉ

At meiosis, programmed meiotic DNA double-strand breaks are repaired via homologous recombination, resulting in crossovers (COs). From a large excess of DNA double-strand breaks that are formed, only a small proportion gets converted into COs because of active mechanisms that restrict CO formation. The Fanconi anemia (FA) complex proteins AtFANCM, MHF1 and MHF2 were previously identified in a genetic screen as anti-CO factors that function during meiosis in Arabidopsis thaliana. Here, pursuing the same screen, we identify FANCC as a new anti-CO gene. FANCC was previously only identified in mammals because of low primary sequence conservation. We show that FANCC, and its physical interaction with FANCE-FANCF, is conserved from vertebrates to plants. Further, we show that FANCC, together with its subcomplex partners FANCE and FANCF, regulates meiotic recombination. Mutations of any of these three genes partially rescues CO-defective mutants, which is particularly marked in female meiosis. Functional loss of FANCC, FANCE, or FANCF results in synthetic meiotic catastrophe with the pro-CO factor MUS81. This work reveals that FANCC is conserved outside mammals and has an anti-CO role during meiosis together with FANCE and FANCF.


The Fanconi Anemia (FA) pathway is the subject of intense interest owing to the role of FA as a tumor suppressor. Three FA complex proteins, FANCM, MHF1 and MHF2, were identified as factors that suppress crossover during meiosis in the model plant Arabidopsis thaliana. Here, the authors extended these findings and identified a novel anti-crossover factor and showed that it encodes the plant FANCC homolog, which was previously thought to be vertebrate-specific. They further showed that FANCC regulates meiotic crossover together with two other FA proteins, FANCE and FANCF. This suggests that the FANCC­E­F subcomplex was already regulating DNA repair in the common ancestor of all living eukaryotes.


Sujet(s)
Protéine du groupe de complémentation C de l'anémie de Fanconi , Protéine du groupe de complémentation F de l'anémie de Fanconi , Protéines des groupes de complémentation de l'anémie de Fanconi , Méiose , Humains , Arabidopsis/génétique , Arabidopsis/métabolisme , ADN/métabolisme , Protéine du groupe de complémentation C de l'anémie de Fanconi/génétique , Protéine du groupe de complémentation C de l'anémie de Fanconi/métabolisme , Protéine du groupe de complémentation F de l'anémie de Fanconi/génétique , Protéine du groupe de complémentation F de l'anémie de Fanconi/métabolisme , Protéines des groupes de complémentation de l'anémie de Fanconi/génétique , Protéines des groupes de complémentation de l'anémie de Fanconi/métabolisme , Recombinaison homologue
20.
EMBO J ; 42(3): e111898, 2023 02 01.
Article de Anglais | MEDLINE | ID: mdl-36385258

RÉSUMÉ

Di-monoubiquitination of the FANCI-FANCD2 (ID2) complex is a central and crucial step for the repair of DNA interstrand crosslinks via the Fanconi anaemia pathway. While FANCD2 ubiquitination precedes FANCI ubiquitination, FANCD2 is also deubiquitinated at a faster rate than FANCI, which can result in a FANCI-ubiquitinated ID2 complex (IUb D2). Here, we present a 4.1 Å cryo-EM structure of IUb D2 complex bound to double-stranded DNA. We show that this complex, like ID2Ub and IUb D2Ub , is also in the closed ID2 conformation and clamps on DNA. The target lysine of FANCD2 (K561) becomes fully exposed in the IUb D2-DNA structure and is thus primed for ubiquitination. Similarly, FANCI's target lysine (K523) is also primed for ubiquitination in the ID2Ub -DNA complex. The IUb D2-DNA complex exhibits deubiquitination resistance, conferred by the presence of DNA and FANCD2. ID2Ub -DNA, on the other hand, can be efficiently deubiquitinated by USP1-UAF1, unless further ubiquitination on FANCI occurs. Therefore, FANCI ubiquitination effectively maintains FANCD2 ubiquitination in two ways: it prevents excessive FANCD2 deubiquitination within an IUb D2Ub -DNA complex, and it enables re-ubiquitination of FANCD2 within a transient, closed-on-DNA, IUb D2 complex.


Sujet(s)
Anémie de Fanconi , Humains , Anémie de Fanconi/génétique , Anémie de Fanconi/métabolisme , Lysine/métabolisme , Protéines des groupes de complémentation de l'anémie de Fanconi/génétique , Protéines des groupes de complémentation de l'anémie de Fanconi/composition chimique , Protéines des groupes de complémentation de l'anémie de Fanconi/métabolisme , Protéine du groupe de complémentation D2 de l'anémie de Fanconi/génétique , Protéine du groupe de complémentation D2 de l'anémie de Fanconi/composition chimique , Protéine du groupe de complémentation D2 de l'anémie de Fanconi/métabolisme , Ubiquitination , ADN/métabolisme , Altération de l'ADN , Réparation de l'ADN
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE