Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 864
Filtrer
1.
Physiol Plant ; 176(3): e14374, 2024.
Article de Anglais | MEDLINE | ID: mdl-38837422

RÉSUMÉ

Heat stress substantially reduces tomato (Solanum lycopersicum) growth and yield globally, thereby jeopardizing food security. DnaJ proteins, constituents of the heat shock protein system, protect cells from diverse environmental stresses as HSP-70 molecular co-chaperones. In this study, we demonstrated that AdDjSKI, a serine-rich DnaJ III protein induced by pathogens, plays an important role in stabilizing photosystem II (PSII) in response to heat stress. Our results revealed that transplastomic tomato plants expressing the AdDjSKI gene exhibited increased levels of total soluble proteins, improved growth and chlorophyll content, reduced malondialdehyde (MDA) accumulation, and diminished PSII photoinhibition under elevated temperatures when compared with wild-type (WT) plants. Intriguingly, these transplastomic plants maintained higher levels of D1 protein under elevated temperatures compared with the WT plants, suggesting that overexpression of AdDjSKI in plastids is crucial for PSII protection, likely due to its chaperone activity. Furthermore, the transplastomic plants displayed lower accumulation of superoxide radical (O2 •─) and H2O2, in comparison with the WT plants, plausibly attributed to higher superoxide dismutase (SOD) and ascorbate peroxidase (APX) activities. This also coincides with an enhanced expression of corresponding genes, including SlCuZnSOD, SlFeSOD, SlAPX2, and SltAPX, under heat stress. Taken together, our findings reveal that chloroplastic expression of AdDjSKI in tomatoes plays a critical role in fruit yield, primarily through a combination of delayed senescence and stabilizing PSII under heat stress.


Sujet(s)
Fruit , Réaction de choc thermique , Complexe protéique du photosystème II , Feuilles de plante , Protéines végétales , Plastes , Solanum lycopersicum , Solanum lycopersicum/génétique , Solanum lycopersicum/physiologie , Solanum lycopersicum/croissance et développement , Solanum lycopersicum/métabolisme , Complexe protéique du photosystème II/métabolisme , Complexe protéique du photosystème II/génétique , Réaction de choc thermique/génétique , Fruit/génétique , Fruit/croissance et développement , Fruit/physiologie , Fruit/métabolisme , Protéines végétales/métabolisme , Protéines végétales/génétique , Feuilles de plante/génétique , Feuilles de plante/physiologie , Feuilles de plante/métabolisme , Plastes/métabolisme , Plastes/génétique , Chlorophylle/métabolisme , Protéines du choc thermique HSP40/métabolisme , Protéines du choc thermique HSP40/génétique , Végétaux génétiquement modifiés , Sénescence des plantes/génétique , Régulation de l'expression des gènes végétaux , Malonaldéhyde/métabolisme
2.
Protein Sci ; 33(7): e5068, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38864739

RÉSUMÉ

Polypeptide chains experience mechanical tension while translocating through cellular tunnels, which are subsequently folded by molecular chaperones. However, interactions between tunnel-associated chaperones and these emerging polypeptides under force is not completely understood. Our investigation focused on mechanical chaperone activity of two tunnel-associated chaperones, BiP and ERdj3 both with and without mechanical constraints and comparing them with their cytoplasmic homologs: DnaK and DnaJ. While BiP/ERdj3 have been observed to exhibit robust foldase activity under force, DnaK/DnaJ showed holdase function. Importantly, the tunnel-associated chaperones (BiP/ERdj3) transitioned to a holdase state in the absence of force, indicating a force-dependent chaperone behavior. This chaperone-driven folding event in the tunnel generated an additional mechanical energy of up to 54 zJ, potentially aiding protein translocation. Our findings align with strain theory, where chaperones with higher intrinsic deformability act as mechanical foldases (BiP, ERdj3), while those with lower deformability serve as holdases (DnaK and DnaJ). This study thus elucidates the differential mechanically regulated chaperoning activity and introduces a novel perspective on co-translocational protein folding.


Sujet(s)
Protéines Escherichia coli , Protéines du choc thermique HSP40 , Protéines du choc thermique HSP70 , Protéines du choc thermique , Protéines du choc thermique HSP40/métabolisme , Protéines du choc thermique HSP40/composition chimique , Protéines du choc thermique HSP40/génétique , Protéines du choc thermique HSP70/métabolisme , Protéines du choc thermique HSP70/composition chimique , Protéines du choc thermique HSP70/génétique , Protéines Escherichia coli/métabolisme , Protéines Escherichia coli/composition chimique , Protéines Escherichia coli/génétique , Protéines du choc thermique/métabolisme , Protéines du choc thermique/composition chimique , Protéines du choc thermique/génétique , Pliage des protéines , Escherichia coli/génétique , Escherichia coli/métabolisme , Chaperonne BiP du réticulum endoplasmique/métabolisme , Chaperons moléculaires/métabolisme , Chaperons moléculaires/composition chimique , Chaperons moléculaires/génétique
3.
Proc Natl Acad Sci U S A ; 121(24): e2320064121, 2024 Jun 11.
Article de Anglais | MEDLINE | ID: mdl-38833477

RÉSUMÉ

Synapse maintenance is essential for generating functional circuitry, and decrement in this process is a hallmark of neurodegenerative disease. Yet, little is known about synapse maintenance in vivo. Cysteine string protein α (CSPα), encoded by the Dnajc5 gene, is a synaptic vesicle chaperone that is necessary for synapse maintenance and linked to neurodegeneration. To investigate the transcriptional changes associated with synapse maintenance, we performed single-nucleus transcriptomics on the cortex of young CSPα knockout (KO) mice and littermate controls. Through differential expression and gene ontology analysis, we observed that both neurons and glial cells exhibit unique signatures in the CSPα KO brain. Significantly, all neuronal classes in CSPα KO brains show strong signatures of repression in synaptic pathways, while up-regulating autophagy-related genes. Through visualization of synapses and autophagosomes by electron microscopy, we confirmed these alterations especially in inhibitory synapses. Glial responses varied by cell type, with microglia exhibiting activation. By imputing cell-cell interactions, we found that neuron-glia interactions were specifically increased in CSPα KO mice. This was mediated by synaptogenic adhesion molecules, with the classical Neurexin1-Neuroligin 1 pair being the most prominent, suggesting that communication of glial cells with neurons is strengthened in CSPα KO mice to preserve synapse maintenance. Together, this study provides a rich dataset of transcriptional changes in the CSPα KO cortex and reveals insights into synapse maintenance and neurodegeneration.


Sujet(s)
Protéines du choc thermique HSP40 , Protéines membranaires , Souris knockout , Neurones , Synapses , Transcriptome , Animaux , Synapses/métabolisme , Souris , Protéines du choc thermique HSP40/génétique , Protéines du choc thermique HSP40/métabolisme , Neurones/métabolisme , Protéines membranaires/métabolisme , Protéines membranaires/génétique , Névroglie/métabolisme
4.
Theor Appl Genet ; 137(7): 149, 2024 Jun 05.
Article de Anglais | MEDLINE | ID: mdl-38836874

RÉSUMÉ

KEY MESSAGE: Analyze the evolutionary pattern of DNAJ protein genes in the Panicoideae, including pearl millet, to identify and characterize the biological function of PgDNAJ genes in pearl millet. Global warming has become a major factor threatening food security and human development. It is urgent to analyze the heat-tolerant mechanism of plants and cultivate crops that are adapted to high temperature conditions. The Panicoideae are the second largest subfamily of the Poaceae, widely distributed in warm temperate and tropical regions. Many of these species have been reported to have strong adaptability to high temperature stress, such as pearl millet, foxtail millet and sorghum. The evolutionary differences in DNAJ protein genes among 12 Panicoideae species and 10 other species were identified and analyzed. Among them, 79% of Panicoideae DNAJ protein genes were associated with retrotransposon insertion. Analysis of the DNAJ protein pan-gene family in six pearl millet accessions revealed that the non-core genes contained significantly more TEs than the core genes. By identifying and analyzing the distribution and types of TEs near the DNAJ protein genes, it was found that the insertion of Copia and Gypsy retrotransposons provided the source of expansion for the DNAJ protein genes in the Panicoideae. Based on the analysis of the evolutionary pattern of DNAJ protein genes in Panicoideae, the PgDNAJ was obtained from pearl millet through identification. PgDNAJ reduces the accumulation of reactive oxygen species caused by high temperature by activating ascorbate peroxidase (APX), thereby improving the heat resistance of plants. In summary, these data provide new ideas for mining potential heat-tolerant genes in Panicoideae, and help to improve the heat tolerance of other crops.


Sujet(s)
Pennisetum , Protéines végétales , Pennisetum/génétique , Pennisetum/physiologie , Protéines végétales/génétique , Protéines végétales/métabolisme , Phylogenèse , Protéines du choc thermique HSP40/génétique , Régulation de l'expression des gènes végétaux , Rétroéléments/génétique , Poaceae/génétique , Évolution moléculaire , Gènes de plante
5.
J Cancer Res Clin Oncol ; 150(6): 315, 2024 Jun 22.
Article de Anglais | MEDLINE | ID: mdl-38909166

RÉSUMÉ

BACKGROUND: Glioblastoma (GBM) is a high-grade and heterogeneous subtype of glioma that presents a substantial challenge to human health, characterized by a poor prognosis and low survival rates. Despite its known involvement in regulating leukemia and melanoma, the function and mechanism of DNAJC1 in GBM remain poorly understood. METHODS: Utilizing data from the TCGA, CGGA, and GEO databases, we investigated the expression pattern of DNAJC1 and its correlation with clinical characteristics in GBM specimens. Loss-of-function experiments were conducted to explore the impact of DNAJC1 on GBM cell lines, with co-culture experiments assessing macrophage infiltration and functional marker expression. RESULTS: Our analysis demonstrated frequent overexpression of DNAJC1 in GBM, significantly associated with various clinical characteristics including WHO grade, IDH status, chromosome 1p/19q codeletion, and histological type. Moreover, Kaplan‒Meier and ROC analyses revealed DNAJC1 as a negative prognostic predictor and a promising diagnostic biomarker for GBM patients. Functional studies indicated that silencing DNAJC1 impeded cell proliferation and migration, induced cell cycle arrest, and enhanced apoptosis. Mechanistically, DNAJC1 was implicated in stimulating extracellular matrix reorganization, triggering the epithelial-mesenchymal transition (EMT) process, and initiating immunosuppressive macrophage infiltration. CONCLUSIONS: Our findings underscore the pivotal role of DNAJC1 in GBM pathogenesis, suggesting its potential as a diagnostic and therapeutic target for this challenging disease.


Sujet(s)
Tumeurs du cerveau , Évolution de la maladie , Matrice extracellulaire , Glioblastome , Macrophages , Humains , Glioblastome/anatomopathologie , Glioblastome/génétique , Glioblastome/métabolisme , Glioblastome/immunologie , Tumeurs du cerveau/anatomopathologie , Tumeurs du cerveau/génétique , Tumeurs du cerveau/métabolisme , Tumeurs du cerveau/immunologie , Macrophages/métabolisme , Macrophages/anatomopathologie , Macrophages/immunologie , Matrice extracellulaire/métabolisme , Matrice extracellulaire/anatomopathologie , Pronostic , Protéines du choc thermique HSP40/génétique , Protéines du choc thermique HSP40/métabolisme , Lignée cellulaire tumorale , Animaux , Mâle , Femelle , Souris , Marqueurs biologiques tumoraux/génétique , Marqueurs biologiques tumoraux/métabolisme , Prolifération cellulaire , Transition épithélio-mésenchymateuse/génétique , Mouvement cellulaire , Régulation de l'expression des gènes tumoraux , Apoptose , Adulte d'âge moyen
6.
Int J Mol Sci ; 25(12)2024 Jun 18.
Article de Anglais | MEDLINE | ID: mdl-38928416

RÉSUMÉ

A homozygous mutation of the DNAJC6 gene causes autosomal recessive familial type 19 of Parkinson's disease (PARK19). To test the hypothesis that PARK19 DNAJC6 mutations induce the neurodegeneration of dopaminergic cells by reducing the protein expression of functional DNAJC6 and causing DNAJC6 paucity, an in vitro PARK19 model was constructed by using shRNA-mediated gene silencing of endogenous DANJC6 in differentiated human SH-SY5Y dopaminergic neurons. shRNA targeting DNAJC6 induced the neurodegeneration of dopaminergic cells. DNAJC6 paucity reduced the level of cytosolic clathrin heavy chain and the number of lysosomes in dopaminergic neurons. A DNAJC6 paucity-induced reduction in the lysosomal number downregulated the protein level of lysosomal protease cathepsin D and impaired macroautophagy, resulting in the upregulation of pathologic α-synuclein or phospho-α-synucleinSer129 in the endoplasmic reticulum (ER) and mitochondria. The expression of α-synuclein shRNA or cathepsin D blocked the DNAJC6 deficiency-evoked degeneration of dopaminergic cells. An increase in ER α-synuclein or phospho-α-synucleinSer129 caused by DNAJC6 paucity activated ER stress, the unfolded protein response and ER stress-triggered apoptotic signaling. The lack of DNAJC6-induced upregulation of mitochondrial α-synuclein depolarized the mitochondrial membrane potential and elevated the mitochondrial level of superoxide. The DNAJC6 paucity-evoked ER stress-related apoptotic cascade, mitochondrial malfunction and oxidative stress induced the degeneration of dopaminergic neurons via activating mitochondrial pro-apoptotic signaling. In contrast with the neuroprotective function of WT DNAJC6, the PARK19 DNAJC6 mutants (Q789X or R927G) failed to attenuate the tunicamycin- or rotenone-induced upregulation of pathologic α-synuclein and stimulation of apoptotic signaling. Our data suggest that PARK19 mutation-induced DNAJC6 paucity causes the degeneration of dopaminergic neurons via downregulating protease cathepsin D and upregulating neurotoxic α-synuclein. Our results also indicate that PARK19 mutation (Q789X or R927G) impairs the DNAJC6-mediated neuroprotective function.


Sujet(s)
Cathepsine D , Neurones dopaminergiques , Stress du réticulum endoplasmique , Protéines du choc thermique HSP40 , alpha-Synucléine , Cathepsine D/métabolisme , Cathepsine D/génétique , Neurones dopaminergiques/métabolisme , Neurones dopaminergiques/anatomopathologie , Humains , alpha-Synucléine/métabolisme , alpha-Synucléine/génétique , Protéines du choc thermique HSP40/métabolisme , Protéines du choc thermique HSP40/génétique , Régulation positive , Maladie de Parkinson/métabolisme , Maladie de Parkinson/génétique , Maladie de Parkinson/anatomopathologie , Mitochondries/métabolisme , Lysosomes/métabolisme , Régulation négative , Apoptose/génétique , Lignée cellulaire tumorale
7.
J Biol Chem ; 300(6): 107346, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38718859

RÉSUMÉ

Lethal neurodegenerative prion diseases result from the continuous accumulation of infectious and variably protease-resistant prion protein aggregates (PrPD) which are misfolded forms of the normally detergent soluble and protease-sensitive cellular prion protein. Molecular chaperones like Grp78 have been found to reduce the accumulation of PrPD, but how different cellular environments and other chaperones influence the ability of Grp78 to modify PrPD is poorly understood. In this work, we investigated how pH and protease-mediated structural changes in PrPD from two mouse-adapted scrapie prion strains, 22L and 87V, influenced processing by Grp78 in the presence or absence of chaperones Hsp90, DnaJC1, and Stip1. We developed a cell-free in vitro system to monitor chaperone-mediated structural changes to, and disaggregation of, PrPD. For both strains, Grp78 was most effective at structurally altering PrPD at low pH, especially when additional chaperones were present. While Grp78, DnaJC1, Stip1, and Hsp90 were unable to disaggregate the majority of PrPD from either strain, pretreatment of PrPD with proteases increased disaggregation of 22L PrPD compared to 87V, indicating strain-specific differences in aggregate structure were impacting chaperone activity. Hsp90 also induced structural changes in 87V PrPD as indicated by an increase in the susceptibility of its n-terminus to proteases. Our data suggest that, while chaperones like Grp78, DnaJC1, Stip1, and Hsp90 disaggregate only a small fraction of PrPD, they may still facilitate its clearance by altering aggregate structure and sensitizing PrPD to proteases in a strain and pH-dependent manner.


Sujet(s)
Chaperonne BiP du réticulum endoplasmique , Protéines du choc thermique , Chaperons moléculaires , Chaperonne BiP du réticulum endoplasmique/métabolisme , Chaperonne BiP du réticulum endoplasmique/génétique , Animaux , Concentration en ions d'hydrogène , Protéines du choc thermique/métabolisme , Protéines du choc thermique/génétique , Souris , Chaperons moléculaires/métabolisme , Chaperons moléculaires/génétique , Chaperons moléculaires/composition chimique , Protéines du choc thermique HSP40/métabolisme , Protéines du choc thermique HSP40/génétique , Protéines du choc thermique HSP90/métabolisme , Protéines du choc thermique HSP90/génétique , Protéines du choc thermique HSP90/composition chimique , Agrégats de protéines
8.
Stem Cell Res ; 77: 103427, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38696852

RÉSUMÉ

The DNAJC19 gene, a member of DNAJ heat shock protein (Hsp40) family, is localized within the inner mitochondrial membrane (IMM) and plays a crucial role in regulating the function and localization of mitochondrial Hsp70 (MtHsp70). Mutations in the DNAJC19 gene cause Dilated Cardiomyopathy with Ataxia Syndrome (DCMA). The precise mechanisms underlying the DCMA phenotype caused by DNAJC19 mutations remain poorly understood, and effective treatment modalities were lacking unitl recently. By using CRISPR-Cas9 gene editing technology, this study generated a DNAJC19-knockout (DNAJC19-KO) human embryonic stem cell line (hESC), which will be a useful tool in studying the pathogenesis of DCMA.


Sujet(s)
Systèmes CRISPR-Cas , Protéines du choc thermique HSP40 , Cellules souches embryonnaires humaines , Humains , Cellules souches embryonnaires humaines/métabolisme , Cellules souches embryonnaires humaines/cytologie , Protéines du choc thermique HSP40/génétique , Protéines du choc thermique HSP40/métabolisme , Techniques de knock-out de gènes , Lignée cellulaire , Homozygote
9.
Genetica ; 152(2-3): 101-117, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38724749

RÉSUMÉ

DnaJs/Hsp40s/JPDs are obligate co-chaperones of heat shock proteins (Hsp70), performing crucial biological functions within organisms. A comparative genome analysis of four genomes (Vitis vinifera, Eucalyptus grandis, Lagerstroemia indica, and Punica granatum) revealed that the DnaJ gene family in L. indica has undergone expansion, although not to the extent observed in P. granatum. Inter-genome collinearity analysis of four plants indicates that members belonging to Class A and B are more conserved during evolution. In L. indica, the expanded members primarily belong to Class-C. Tissue expression patterns and the biochemical characterization of LiDnaJs further suggested that DnaJs may be involved in numerous biological processes in L. indica. Transcriptome and qPCR analyses of salt stressed leaves identified at least ten LiDnaJs that responded to salt stress. In summary, we have elucidated the expansion mechanism of the LiDnaJs, which is attributed to a recent whole-genome triplication. This research laid the foundation for functional analysis of LiDnaJs and provides gene resources for breeding salt-tolerant varieties of L. indica.


Sujet(s)
Régulation de l'expression des gènes végétaux , Lagerstroemia , Famille multigénique , Protéines végétales , Stress salin , Stress salin/génétique , Lagerstroemia/génétique , Protéines végétales/génétique , Génome végétal , Protéines du choc thermique HSP40/génétique , Phylogenèse , Génomique/méthodes
10.
FASEB J ; 38(9): e23630, 2024 May 15.
Article de Anglais | MEDLINE | ID: mdl-38713100

RÉSUMÉ

Heat shock proteins (HSPs) are a group of highly conserved proteins found in a wide range of organisms. In recent years, members of the HSP family were overexpressed in various tumors and widely involved in oncogenesis, tumor development, and therapeutic resistance. In our previous study, DNAJC24, a member of the DNAJ/HSP40 family of HSPs, was found to be closely associated with the malignant phenotype of hepatocellular carcinoma. However, its relationship with other malignancies needs to be further explored. Herein, we demonstrated that DNAJC24 exhibited upregulated expression in LUAD tissue samples and predicted poor survival in LUAD patients. The upregulation of DNAJC24 expression promoted proliferation and invasion of LUAD cells in A549 and NCI-H1299 cell lines. Further studies revealed that DNAJC24 could regulate the PI3K/AKT signaling pathway by affecting AKT phosphorylation. In addition, a series of experiments such as Co-IP and mass spectrometry confirmed that DNAJC24 could directly interact with PCNA and promoted the malignant phenotypic transformation of LUAD. In conclusion, our results suggested that DNAJC24 played an important role in the progression of LUAD and may serve as a specific prognostic biomarker for LUAD patients. The DNAJC24/PCNA/AKT axis may be a potential target for future individualized and precise treatment of LUAD patients.


Sujet(s)
Prolifération cellulaire , Protéines du choc thermique HSP40 , Antigène nucléaire de prolifération cellulaire , Protéines proto-oncogènes c-akt , Animaux , Femelle , Humains , Mâle , Souris , Adulte d'âge moyen , Lignée cellulaire tumorale , Évolution de la maladie , Régulation de l'expression des gènes tumoraux , Protéines du choc thermique HSP40/métabolisme , Protéines du choc thermique HSP40/génétique , Tumeurs du poumon/métabolisme , Tumeurs du poumon/anatomopathologie , Tumeurs du poumon/génétique , Souris de lignée BALB C , Souris nude , Phosphorylation , Antigène nucléaire de prolifération cellulaire/métabolisme , Antigène nucléaire de prolifération cellulaire/génétique , Protéines proto-oncogènes c-akt/métabolisme , Protéines proto-oncogènes c-akt/génétique , Transduction du signal
11.
EMBO J ; 43(11): 2166-2197, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38600242

RÉSUMÉ

The centromeric histone H3 variant CENP-A is overexpressed in many cancers. The mislocalization of CENP-A to noncentromeric regions contributes to chromosomal instability (CIN), a hallmark of cancer. However, pathways that promote or prevent CENP-A mislocalization remain poorly defined. Here, we performed a genome-wide RNAi screen for regulators of CENP-A localization which identified DNAJC9, a J-domain protein implicated in histone H3-H4 protein folding, as a factor restricting CENP-A mislocalization. Cells lacking DNAJC9 exhibit mislocalization of CENP-A throughout the genome, and CIN phenotypes. Global interactome analysis showed that DNAJC9 depletion promotes the interaction of CENP-A with the DNA-replication-associated histone chaperone MCM2. CENP-A mislocalization upon DNAJC9 depletion was dependent on MCM2, defining MCM2 as a driver of CENP-A deposition at ectopic sites when H3-H4 supply chains are disrupted. Cells depleted for histone H3.3, also exhibit CENP-A mislocalization. In summary, we have defined novel factors that prevent mislocalization of CENP-A, and demonstrated that the integrity of H3-H4 supply chains regulated by histone chaperones such as DNAJC9 restrict CENP-A mislocalization and CIN.


Sujet(s)
Protéine A du centromère , Instabilité des chromosomes , Histone , Humains , Protéine A du centromère/métabolisme , Protéine A du centromère/génétique , Histone/métabolisme , Histone/génétique , Composant-2 du complexe de maintenance des minichromosomes/métabolisme , Composant-2 du complexe de maintenance des minichromosomes/génétique , Cellules HeLa , Protéines du choc thermique HSP40/métabolisme , Protéines du choc thermique HSP40/génétique , Protéines chromosomiques nonhistones/métabolisme , Protéines chromosomiques nonhistones/génétique , Centromère/métabolisme
12.
PLoS Biol ; 22(4): e3002585, 2024 Apr.
Article de Anglais | MEDLINE | ID: mdl-38648719

RÉSUMÉ

Orb2 the Drosophila homolog of cytoplasmic polyadenylation element binding (CPEB) protein forms prion-like oligomers. These oligomers consist of Orb2A and Orb2B isoforms and their formation is dependent on the oligomerization of the Orb2A isoform. Drosophila with a mutation diminishing Orb2A's prion-like oligomerization forms long-term memory but fails to maintain it over time. Since this prion-like oligomerization of Orb2A plays a crucial role in the maintenance of memory, here, we aim to find what regulates this oligomerization. In an immunoprecipitation-based screen, we identify interactors of Orb2A in the Hsp40 and Hsp70 families of proteins. Among these, we find an Hsp40 family protein Mrj as a regulator of the conversion of Orb2A to its prion-like form. Mrj interacts with Hsp70 proteins and acts as a chaperone by interfering with the aggregation of pathogenic Huntingtin. Unlike its mammalian homolog, we find Drosophila Mrj is neither an essential gene nor causes any gross neurodevelopmental defect. We observe a loss of Mrj results in a reduction in Orb2 oligomers. Further, Mrj knockout exhibits a deficit in long-term memory and our observations suggest Mrj is needed in mushroom body neurons for the regulation of long-term memory. Our work implicates a chaperone Mrj in mechanisms of memory regulation through controlling the oligomerization of Orb2A and its association with the translating ribosomes.


Sujet(s)
Protéines de Drosophila , Protéines du choc thermique HSP40 , Mémoire à long terme , Animaux , Drosophila melanogaster/métabolisme , Drosophila melanogaster/génétique , Protéines de Drosophila/métabolisme , Protéines de Drosophila/génétique , Protéines du choc thermique HSP40/métabolisme , Protéines du choc thermique HSP40/génétique , Protéines du choc thermique HSP70/métabolisme , Protéines du choc thermique HSP70/génétique , Mémoire à long terme/physiologie , Facteurs de clivage et de polyadénylation de l'ARN messager/métabolisme , Facteurs de clivage et de polyadénylation de l'ARN messager/génétique , Corps pédonculés/métabolisme , Multimérisation de protéines , Facteurs de transcription/métabolisme , Facteurs de transcription/génétique , Chaperons moléculaires/génétique , Chaperons moléculaires/métabolisme
13.
Hum Mol Genet ; 33(14): 1195-1206, 2024 Jul 06.
Article de Anglais | MEDLINE | ID: mdl-38621658

RÉSUMÉ

Mutations in DNAJB6 are a well-established cause of limb girdle muscular dystrophy type D1 (LGMD D1). Patients with LGMD D1 develop progressive muscle weakness with histology showing fibre damage, autophagic vacuoles, and aggregates. Whilst there are many reports of LGMD D1 patients, the role of DNAJB6 in the muscle is still unclear. In this study, we developed a loss of function zebrafish model in order to investigate the role of Dnajb6. Using a double dnajb6a and dnajb6b mutant model, we show that loss of Dnajb6 leads to a late onset muscle weakness. Interestingly, we find that adult fish lacking Dnajb6 do not have autophagy or myofibril defects, however, they do show mitochondrial changes and damage. This study demonstrates that loss of Dnajb6 causes mitochondrial defects and suggests that this contributes to muscle weakness in LGMD D1. These findings expand our knowledge of the role of Dnajb6 in the muscle and provides a model to screen novel therapies for LGMD D1.


Sujet(s)
Modèles animaux de maladie humaine , Protéines du choc thermique HSP40 , Mitochondries , Chaperons moléculaires , Faiblesse musculaire , Dystrophies musculaires des ceintures , Danio zébré , Animaux , Danio zébré/génétique , Dystrophies musculaires des ceintures/génétique , Dystrophies musculaires des ceintures/métabolisme , Dystrophies musculaires des ceintures/anatomopathologie , Protéines du choc thermique HSP40/génétique , Protéines du choc thermique HSP40/métabolisme , Faiblesse musculaire/génétique , Faiblesse musculaire/anatomopathologie , Faiblesse musculaire/métabolisme , Mitochondries/métabolisme , Mitochondries/génétique , Mitochondries/anatomopathologie , Chaperons moléculaires/génétique , Chaperons moléculaires/métabolisme , Mutation , Protéines de poisson-zèbre/génétique , Protéines de poisson-zèbre/métabolisme , Humains , Muscles squelettiques/métabolisme , Muscles squelettiques/anatomopathologie , Muscles squelettiques/physiopathologie , Autophagie/génétique , Protéines de tissu nerveux
14.
FEBS Lett ; 598(12): 1465-1477, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38529663

RÉSUMÉ

J-domain proteins are critical Hsp70 co-chaperones. A and B types have a poorly understood glycine-rich region (Grich) adjacent to their N-terminal J-domain (Jdom). We analyzed the ability of Jdom/Grich segments of yeast Class B Sis1 and a suppressor variant of Class A, Ydj1, to rescue the inviability of sis1-∆. In each, we identified a cluster of Grich residues required for rescue. Both contain conserved hydrophobic and acidic residues and are predicted to form helices. While, as expected, the Sis1 segment docks on its J-domain, that of Ydj1 does not. However, data suggest both interact with Hsp70. We speculate that the Grich-Hsp70 interaction of Classes A and B J-domain proteins can fine tune the activity of Hsp70, thus being particularly important for the function of Class B.


Sujet(s)
Glycine , Protéines du choc thermique HSP70 , Domaines protéiques , Protéines de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Protéines de Saccharomyces cerevisiae/métabolisme , Protéines de Saccharomyces cerevisiae/composition chimique , Protéines de Saccharomyces cerevisiae/génétique , Glycine/métabolisme , Glycine/composition chimique , Protéines du choc thermique HSP70/métabolisme , Protéines du choc thermique HSP70/composition chimique , Protéines du choc thermique HSP70/génétique , Saccharomyces cerevisiae/métabolisme , Saccharomyces cerevisiae/génétique , Protéines du choc thermique HSP40/métabolisme , Protéines du choc thermique HSP40/composition chimique , Protéines du choc thermique HSP40/génétique , Séquence d'acides aminés , Liaison aux protéines , Chaperons moléculaires/métabolisme , Chaperons moléculaires/génétique , Chaperons moléculaires/composition chimique , Modèles moléculaires
15.
Mol Med Rep ; 29(5)2024 05.
Article de Anglais | MEDLINE | ID: mdl-38551163

RÉSUMÉ

Endothelial barrier disruption plays a key role in the pathophysiology of heat stroke (HS). Knockout of DNAJA1 (DNAJA1­KO) is thought to be protective against HS based on a genome­wide CRISPR­Cas9 screen experiment. The present study aimed to illustrate the function of DNAJA1­KO against HS in human umbilical vein endothelial cells. DNAJA1­KO cells were infected using a lentivirus to investigate the role of DNAJA1­KO in HS­induced endothelial barrier disruption. It was shown that DNAJA1­KO could ameliorate decreased cell viability and increased cell injury, according to the results of Cell Counting Kit­8 and lactate dehydrogenase assays. Moreover, HS­induced endothelial cell apoptosis was inhibited by DNAJA1­KO, as indicated by Annexin V­FITC/PI staining and cleaved­caspase­3 expression using flow cytometry and western blotting, respectively. Furthermore, the endothelial barrier function, as measured by transepithelial electrical resistance and FITC­Dextran, was sustained during HS. DNAJA1­KO was not found to have a significant effect on the expression and distribution of cell junction proteins under normal conditions without HS. However, DNAJA1­KO could effectively protect the HS­induced decrease in the expression and distribution of cell junction proteins, including zonula occludens­1, claudin­5, junctional adhesion molecule A and occludin. A total of 4,394 proteins were identified using proteomic analysis, of which 102 differentially expressed proteins (DEPs) were activated in HS­induced wild­type cells and inhibited by DNAJA1­KO. DEPs were investigated by enrichment analysis, which demonstrated significant enrichment in the 'calcium signaling pathway' and associations with vascular­barrier regulation. Furthermore, the 'myosin light­chain kinase (MLCK)­MLC signaling pathway' was proven to be activated by HS and inhibited by DNAJA1­KO, as expected. Moreover, DNAJA1­KO mice and a HS mouse model were established to demonstrate the protective effects on endothelial barrier in vivo. In conclusion, the results of the present study suggested that DNAJA1­KO alleviates HS­induced endothelial barrier disruption by improving thermal tolerance and suppressing the MLCK­MLC signaling pathway.


Sujet(s)
Protéines du choc thermique HSP40 , Coup de chaleur , Animaux , Humains , Souris , Coup de chaleur/génétique , Coup de chaleur/métabolisme , Protéines du choc thermique HSP40/génétique , Cellules endothéliales de la veine ombilicale humaine , Souris knockout , Protéomique , Transduction du signal
16.
Structure ; 32(6): 662-678.e8, 2024 Jun 06.
Article de Anglais | MEDLINE | ID: mdl-38508190

RÉSUMÉ

J-domain protein (JDP) molecular chaperones have emerged as central players that maintain a healthy proteome. The diverse members of the JDP family function as monomers/dimers and a small subset assemble into micron-sized oligomers. The oligomeric JDP members have eluded structural characterization due to their low-complexity, intrinsically disordered middle domains. This in turn, obscures the biological significance of these larger oligomers in protein folding processes. Here, we identified a short, aromatic motif within DNAJB8 that drives self-assembly through π-π stacking and determined its X-ray structure. We show that mutations in the motif disrupt DNAJB8 oligomerization in vitro and in cells. DNAJB8 variants that are unable to assemble bind to misfolded tau seeds more specifically and retain capacity to reduce protein aggregation in vitro and in cells. We propose a new model for DNAJB8 function in which the sequences in the low-complexity domains play distinct roles in assembly and substrate activity.


Sujet(s)
Protéines du choc thermique HSP40 , Multimérisation de protéines , Humains , Protéines du choc thermique HSP40/métabolisme , Protéines du choc thermique HSP40/composition chimique , Protéines du choc thermique HSP40/génétique , Modèles moléculaires , Motifs d'acides aminés , Cristallographie aux rayons X , Liaison aux protéines , Protéines tau/métabolisme , Protéines tau/composition chimique , Protéines tau/génétique , Chaperons moléculaires/métabolisme , Chaperons moléculaires/composition chimique , Chaperons moléculaires/génétique , Mutation , Pliage des protéines
17.
BMC Neurol ; 24(1): 96, 2024 Mar 15.
Article de Anglais | MEDLINE | ID: mdl-38491364

RÉSUMÉ

BACKGROUND: The Limb Girdle Muscular Dystrophies (LGMDs) are characterized by progressive weakness of the shoulder and hip girdle muscles as a result of over 30 different genetic mutations. This study is designed to develop clinical outcome assessments across the group of disorders. METHODS/DESIGN: The primary goal of this study is to evaluate the utility of a set of outcome measures on a wide range of LGMD phenotypes and ability levels to determine if it would be possible to use similar outcomes between individuals with different phenotypes. We will perform a multi-center, 12-month study of 188 LGMD patients within the established Genetic Resolution and Assessments Solving Phenotypes in LGMD (GRASP-LGMD) Research Consortium, which is comprised of 11 sites in the United States and 2 sites in Europe. Enrolled patients will be clinically affected and have mutations in CAPN3 (LGMDR1), ANO5 (LGMDR12), DYSF (LGMDR2), DNAJB6 (LGMDD1), SGCA (LGMDR3), SGCB (LGMDR4), SGCD (LGMDR6), or SGCG (LGMDR5, or FKRP-related (LGMDR9). DISCUSSION: To the best of our knowledge, this will be the largest consortium organized to prospectively validate clinical outcome assessments (COAs) in LGMD at its completion. These assessments will help clinical trial readiness by identifying reliable, valid, and responsive outcome measures as well as providing data driven clinical trial decision making for future clinical trials on therapeutic agents for LGMD. The results of this study will permit more efficient clinical trial design. All relevant data will be made available for investigators or companies involved in LGMD therapeutic development upon conclusion of this study as applicable. TRIAL REGISTRATION: Clinicaltrials.gov NCT03981289; Date of registration: 6/10/2019.


Sujet(s)
Dystrophies musculaires des ceintures , Sarcoglycanopathies , Humains , Dystrophies musculaires des ceintures/diagnostic , Dystrophies musculaires des ceintures/génétique , Phénotype , Muscles squelettiques , Mutation/génétique , Protéines de tissu nerveux/génétique , Chaperons moléculaires/génétique , Protéines du choc thermique HSP40/génétique , Pentosyltransferases/génétique , Anoctamines/génétique
18.
PLoS Genet ; 20(3): e1011216, 2024 Mar.
Article de Anglais | MEDLINE | ID: mdl-38512964

RÉSUMÉ

Fibrolamellar carcinoma (FLC) is a rare liver cancer that disproportionately affects adolescents and young adults. Currently, no standard of care is available and there remains a dire need for new therapeutics. Most patients harbor the fusion oncogene DNAJB1-PRKACA (DP fusion), but clinical inhibitors are not yet developed and it is critical to identify downstream mediators of FLC pathogenesis. Here, we identify long noncoding RNA LINC00473 among the most highly upregulated genes in FLC tumors and determine that it is strongly suppressed by RNAi-mediated inhibition of the DP fusion in FLC tumor epithelial cells. We show by loss- and gain-of-function studies that LINC00473 suppresses apoptosis, increases the expression of FLC marker genes, and promotes FLC growth in cell-based and in vivo disease models. Mechanistically, LINC00473 plays an important role in promoting glycolysis and altering mitochondrial activity. Specifically, LINC00473 knockdown leads to increased spare respiratory capacity, which indicates mitochondrial fitness. Overall, we propose that LINC00473 could be a viable target for this devastating disease.


Sujet(s)
Carcinome hépatocellulaire , Tumeurs du foie , ARN long non codant , Adolescent , Humains , Jeune adulte , Carcinome hépatocellulaire/génétique , Carcinome hépatocellulaire/anatomopathologie , Cyclic AMP-Dependent Protein Kinase Catalytic Subunits/génétique , Protéines du choc thermique HSP40/génétique , Protéines du choc thermique HSP40/métabolisme , Tumeurs du foie/métabolisme , ARN long non codant/génétique , ARN long non codant/métabolisme
19.
Cell Rep Med ; 5(3): 101469, 2024 Mar 19.
Article de Anglais | MEDLINE | ID: mdl-38508137

RÉSUMÉ

Fibrolamellar carcinoma (FLC) is a liver tumor with a high mortality burden and few treatment options. A promising therapeutic vulnerability in FLC is its driver mutation, a conserved DNAJB1-PRKACA gene fusion that could be an ideal target neoantigen for immunotherapy. In this study, we aim to define endogenous CD8 T cell responses to this fusion in FLC patients and evaluate fusion-specific T cell receptors (TCRs) for use in cellular immunotherapies. We observe that fusion-specific CD8 T cells are rare and that FLC patient TCR repertoires lack large clusters of related TCR sequences characteristic of potent antigen-specific responses, potentially explaining why endogenous immune responses are insufficient to clear FLC tumors. Nevertheless, we define two functional fusion-specific TCRs, one of which has strong anti-tumor activity in vivo. Together, our results provide insights into the fragmented nature of neoantigen-specific repertoires in humans and indicate routes for clinical development of successful immunotherapies for FLC.


Sujet(s)
Carcinome hépatocellulaire , Humains , Carcinome hépatocellulaire/génétique , Carcinome hépatocellulaire/thérapie , Carcinome hépatocellulaire/anatomopathologie , Récepteurs aux antigènes des cellules T/génétique , Lymphocytes T/anatomopathologie , Thérapie cellulaire et tissulaire , Protéines du choc thermique HSP40/génétique , Cyclic AMP-Dependent Protein Kinase Catalytic Subunits/génétique
20.
FEBS Lett ; 598(7): 818-836, 2024 Apr.
Article de Anglais | MEDLINE | ID: mdl-38418371

RÉSUMÉ

Plasmodium falciparum renovates the host erythrocyte to survive during intraerythrocytic development. This renovation requires many parasite proteins to unfold and move outside the parasitophorous vacuolar membrane, and chaperone-regulated protein folding becomes essential for the exported proteins to function. We report on a type-IV J domain protein (JDP), PF3D7_1401100, which we found to be processed before export and trafficked inside the lumen of parasite-derived structures known as J-dots. We found this protein to have holdase activity, as well as stimulate the ATPase and aggregation suppression activity of the human HSP70 chaperone HsHSPA8; thus, we named it "HSPA8-interacting J protein" (A8iJp). Moreover, we found a subset of HsHSPA8 to co-localize with A8iJp inside the infected human erythrocyte. Our results suggest that A8iJp modulates HsHSPA8 chaperone activity and may play an important role in host erythrocyte renovation.


Sujet(s)
Protéines du choc thermique HSP40 , Plasmodium falciparum , Humains , Protéines du choc thermique HSP40/génétique , Protéines du choc thermique HSP40/composition chimique , Protéines du choc thermique HSP40/métabolisme , Liaison aux protéines , Protéines de protozoaire/métabolisme , Chaperons moléculaires/métabolisme , Érythrocytes , Pliage des protéines , Protéines du choc thermique HSC70/métabolisme
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...