Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 2.364
Filtrer
1.
Oncotarget ; 15: 424-438, 2024 Jul 02.
Article de Anglais | MEDLINE | ID: mdl-38953895

RÉSUMÉ

Single-agent TAS102 (trifluridine/tipiracil) and regorafenib are FDA-approved treatments for metastatic colorectal cancer (mCRC). We previously reported that regorafenib combined with a fluoropyrimidine can delay disease progression in clinical case reports of multidrug-resistant mCRC patients. We hypothesized that the combination of TAS102 and regorafenib may be active in CRC and other gastrointestinal (GI) cancers and may in the future provide a treatment option for patients with advanced GI cancer. We investigated the therapeutic effect of TAS102 in combination with regorafenib in preclinical studies employing cell culture, colonosphere assays that enrich for cancer stem cells, and in vivo. TAS102 in combination with regorafenib has synergistic activity against multiple GI cancers in vitro including colorectal and gastric cancer, but not liver cancer cells. TAS102 inhibits colonosphere formation and this effect is potentiated by regorafenib. In vivo anti-tumor effects of TAS102 plus regorafenib appear to be due to anti-proliferative effects, necrosis and angiogenesis inhibition. Growth inhibition by TAS102 plus regorafenib occurs in xenografted tumors regardless of p53, KRAS or BRAF mutations, although more potent tumor suppression was observed with wild-type p53. Regorafenib significantly inhibits TAS102-induced angiogenesis and microvessel density in xenografted tumors, as well inhibits TAS102-induced ERK1/2 activation regardless of RAS or BRAF status in vivo. TAS102 plus regorafenib is a synergistic drug combination in preclinical models of GI cancer, with regorafenib suppressing TAS102-induced increase in microvessel density and p-ERK as contributing mechanisms. The TAS102 plus regorafenib drug combination may be further tested in gastric and other GI cancers.


Sujet(s)
Association médicamenteuse , Synergie des médicaments , Tumeurs gastro-intestinales , Mutation , Cellules souches tumorales , Néovascularisation pathologique , Phénylurées , Protéines proto-oncogènes B-raf , Protéines proto-oncogènes p21(ras) , Pyridines , Pyrrolidines , Facteur de transcription STAT-3 , Thymine , Trifluorothymidine , Uracile , Tests d'activité antitumorale sur modèle de xénogreffe , Humains , Trifluorothymidine/pharmacologie , Phénylurées/pharmacologie , Animaux , Pyridines/pharmacologie , Protéines proto-oncogènes B-raf/génétique , Protéines proto-oncogènes B-raf/métabolisme , Protéines proto-oncogènes p21(ras)/génétique , Protéines proto-oncogènes p21(ras)/métabolisme , Néovascularisation pathologique/traitement médicamenteux , Néovascularisation pathologique/génétique , Néovascularisation pathologique/métabolisme , Cellules souches tumorales/effets des médicaments et des substances chimiques , Cellules souches tumorales/métabolisme , Cellules souches tumorales/anatomopathologie , Tumeurs gastro-intestinales/traitement médicamenteux , Tumeurs gastro-intestinales/génétique , Tumeurs gastro-intestinales/anatomopathologie , Tumeurs gastro-intestinales/métabolisme , Uracile/pharmacologie , Uracile/analogues et dérivés , Souris , Facteur de transcription STAT-3/métabolisme , Facteur de transcription STAT-3/génétique , Thymine/pharmacologie , Lignée cellulaire tumorale , Pyrrolidines/pharmacologie , Pyrrolidines/usage thérapeutique , Protocoles de polychimiothérapie antinéoplasique/pharmacologie , Protocoles de polychimiothérapie antinéoplasique/usage thérapeutique , Système de signalisation des MAP kinases/effets des médicaments et des substances chimiques , Transduction du signal/effets des médicaments et des substances chimiques , Prolifération cellulaire/effets des médicaments et des substances chimiques ,
2.
Oncotarget ; 15: 486-492, 2024 Jul 16.
Article de Anglais | MEDLINE | ID: mdl-39018217

RÉSUMÉ

Activating mutations in the mitogen-activated protein kinase (MAPK) pathway represent driver alterations governing tumorigenesis, metastasis, and therapy resistance. MAPK activation predominantly occurs through genomic alterations in RAS and BRAF. BRAF is an effector kinase that functions downstream of RAS and propagates this oncogenic activity through MEK and ERK. Across cancers, BRAF alterations include gain-of-function mutations, copy-number alterations, and structural rearrangements. In cancer patients, BRAF-targeting precision therapeutics are effective against Class I BRAF alterations (p.V600 hotspot mutations) in tumors such as melanomas, thyroid cancers, and colorectal cancers. However, numerous non-Class I BRAF inhibitors are also in development and have been explored in some cancers. Here we discuss the diverse forms of BRAF alterations found in human cancers and the strategies to inhibit them in patients harboring cancers of distinct origins.


Sujet(s)
Thérapie moléculaire ciblée , Tumeurs , Inhibiteurs de protéines kinases , Protéines proto-oncogènes B-raf , Humains , Protéines proto-oncogènes B-raf/génétique , Protéines proto-oncogènes B-raf/antagonistes et inhibiteurs , Protéines proto-oncogènes B-raf/métabolisme , Tumeurs/génétique , Tumeurs/traitement médicamenteux , Tumeurs/anatomopathologie , Tumeurs/métabolisme , Inhibiteurs de protéines kinases/pharmacologie , Inhibiteurs de protéines kinases/usage thérapeutique , Mutation , Antinéoplasiques/pharmacologie , Antinéoplasiques/usage thérapeutique , Animaux , Système de signalisation des MAP kinases/génétique
3.
Mol Cancer ; 23(1): 136, 2024 Jul 04.
Article de Anglais | MEDLINE | ID: mdl-38965534

RÉSUMÉ

BACKGROUND: BRAF inhibitors are widely employed in the treatment of melanoma with the BRAF V600E mutation. However, the development of resistance compromises their therapeutic efficacy. Diverse genomic and transcriptomic alterations are found in BRAF inhibitor resistant melanoma, posing a pressing need for convergent, druggable target that reverse therapy resistant tumor with different resistance mechanisms. METHODS: CRISPR-Cas9 screens were performed to identify novel target gene whose inhibition selectively targets A375VR, a BRAF V600E mutant cell line with acquired resistance to vemurafenib. Various in vitro and in vivo assays, including cell competition assay, water soluble tetrazolium (WST) assay, live-dead assay and xenograft assay were performed to confirm synergistic cell death. Liquid Chromatography-Mass Spectrometry analyses quantified polyamine biosynthesis and changes in proteome in vemurafenib resistant melanoma. EIF5A hypusination dependent protein translation and subsequent changes in mitochondrial biogenesis and activity were assayed by O-propargyl-puromycin labeling assay, mitotracker, mitoSOX labeling and seahorse assay. Bioinformatics analyses were used to identify the association of polyamine biosynthesis with BRAF inhibitor resistance and poor prognosis in melanoma patient cohorts. RESULTS: We elucidate the role of polyamine biosynthesis and its regulatory mechanisms in promoting BRAF inhibitor resistance. Leveraging CRISPR-Cas9 screens, we identify AMD1 (S-adenosylmethionine decarboxylase 1), a critical enzyme for polyamine biosynthesis, as a druggable target whose inhibition reduces vemurafenib resistance. Metabolomic and proteomic analyses reveal that polyamine biosynthesis is upregulated in vemurafenib-resistant cancer, resulting in enhanced EIF5A hypusination, translation of mitochondrial proteins and oxidative phosphorylation. We also identify that sustained c-Myc levels in vemurafenib-resistant cancer are responsible for elevated polyamine biosynthesis. Inhibition of polyamine biosynthesis or c-Myc reversed vemurafenib resistance both in vitro cell line models and in vivo in a xenograft model. Polyamine biosynthesis signature is associated with poor prognosis and shorter progression free survival after BRAF/MAPK inhibitor treatment in melanoma cohorts, highlighting the clinical relevance of our findings. CONCLUSIONS: Our findings delineate the molecular mechanisms involving polyamine-EIF5A hypusination-mitochondrial respiration pathway conferring BRAF inhibitor resistance in melanoma. These targets will serve as effective therapeutic targets that can maximize the therapeutic efficacy of existing BRAF inhibitors.


Sujet(s)
Résistance aux médicaments antinéoplasiques , , Mélanome , Mutation , Facteurs initiation chaîne peptidique , Polyamines , Protéines proto-oncogènes B-raf , Protéines de liaison à l'ARN , Vémurafénib , Humains , Mélanome/traitement médicamenteux , Mélanome/génétique , Mélanome/métabolisme , Mélanome/anatomopathologie , Protéines proto-oncogènes B-raf/génétique , Protéines proto-oncogènes B-raf/métabolisme , Protéines proto-oncogènes B-raf/antagonistes et inhibiteurs , Résistance aux médicaments antinéoplasiques/génétique , Animaux , Polyamines/métabolisme , Souris , Facteurs initiation chaîne peptidique/métabolisme , Facteurs initiation chaîne peptidique/génétique , Lignée cellulaire tumorale , Protéines de liaison à l'ARN/métabolisme , Protéines de liaison à l'ARN/génétique , Vémurafénib/pharmacologie , Protéines proto-oncogènes c-myc/métabolisme , Protéines proto-oncogènes c-myc/génétique , Tests d'activité antitumorale sur modèle de xénogreffe , Systèmes CRISPR-Cas , Inhibiteurs de protéines kinases/pharmacologie , Inhibiteurs de protéines kinases/usage thérapeutique , Lysine/analogues et dérivés
4.
Molecules ; 29(13)2024 Jul 04.
Article de Anglais | MEDLINE | ID: mdl-38999138

RÉSUMÉ

Cancer remains a leading cause of death worldwide, often resulting from uncontrolled growth in various organs. Protein kinase inhibitors represent an important class of targeted cancer therapies. Recently, the kinases BRAF and VEGFR-2 have shown synergistic effects on tumor progression. Seeking to develop dual BRAF/VEGFR-2 inhibitors, we synthesized 18 amino-benzothiazole derivatives with structural similarities to reported dual inhibitors. Four compounds-4a, 4f, 4l, and 4r-demonstrated remarkable cytotoxicity, with IC50 values ranging from 3.58 to 15.36 µM, against three cancer cell lines. Furthermore, these compounds showed IC50 values of 38.77-66.22 µM in the case of a normal cell line, which was significantly safer than the reference, sorafenib. Subsequent investigation revealed that compound 4f exhibited the capacity to inhibit the BRAF and VEGFR-2 enzymes, with IC50 values similar to sorafenib (0.071 and 0.194 µM, respectively). Moreover, compound 4f caused G2-M- and S-phase cycle arrest. Molecular modeling demonstrated binding patterns compatible with inhibition for both targets, where 4f exerted the critical interactions in the BRAF site and interacted in the VEGFR-2 site in a manner akin to sorafenib, demonstrating affinity similar to dabrafenib.


Sujet(s)
Antinéoplasiques , Benzothiazoles , Prolifération cellulaire , Simulation de docking moléculaire , Inhibiteurs de protéines kinases , Protéines proto-oncogènes B-raf , Thiadiazoles , Récepteur-2 au facteur croissance endothéliale vasculaire , Récepteur-2 au facteur croissance endothéliale vasculaire/antagonistes et inhibiteurs , Récepteur-2 au facteur croissance endothéliale vasculaire/métabolisme , Humains , Protéines proto-oncogènes B-raf/antagonistes et inhibiteurs , Protéines proto-oncogènes B-raf/métabolisme , Inhibiteurs de protéines kinases/pharmacologie , Inhibiteurs de protéines kinases/composition chimique , Inhibiteurs de protéines kinases/synthèse chimique , Benzothiazoles/composition chimique , Benzothiazoles/pharmacologie , Benzothiazoles/synthèse chimique , Thiadiazoles/composition chimique , Thiadiazoles/pharmacologie , Thiadiazoles/synthèse chimique , Lignée cellulaire tumorale , Prolifération cellulaire/effets des médicaments et des substances chimiques , Antinéoplasiques/pharmacologie , Antinéoplasiques/composition chimique , Antinéoplasiques/synthèse chimique , Conception de médicament , Relation structure-activité , Sorafénib/pharmacologie , Sorafénib/composition chimique , Structure moléculaire , Simulation numérique , Tests de criblage d'agents antitumoraux
6.
Cell Rep ; 43(6): 114313, 2024 Jun 25.
Article de Anglais | MEDLINE | ID: mdl-38838224

RÉSUMÉ

Personalized cancer therapeutics bring directed treatment options to patients based on their tumor's genetic signature. Unfortunately, tumor genomes are remarkably adaptable, and acquired resistance through gene mutation frequently occurs. Identifying mutations that promote resistance within drug-treated patient populations can be cost, resource, and time intensive. Accordingly, base editing, enabled by Cas9-deaminase domain fusions, has emerged as a promising approach for rapid, large-scale gene variant screening in situ. Here, we adapt and optimize a conditional activation-induced cytidine deaminase (AID)-dead Cas9 (dCas9) system, which demonstrates greater heterogeneity of edits with an expanded footprint compared to the most commonly utilized cytosine base editor, BE4. In combination with a custom single guide RNA (sgRNA) library, we identify individual and compound variants in epidermal growth factor receptor (EGFR) and v-raf murine sarcoma viral oncogene homolog B1 (BRAF) that confer resistance to established EGFR inhibitors. This system and analytical pipeline provide a simple, highly scalable platform for cis or trans drug-modifying variant discovery and for uncovering valuable insights into protein structure-function relationships.


Sujet(s)
Résistance aux médicaments antinéoplasiques , Récepteurs ErbB , Humains , Résistance aux médicaments antinéoplasiques/génétique , Récepteurs ErbB/métabolisme , Récepteurs ErbB/génétique , Récepteurs ErbB/antagonistes et inhibiteurs , Lignée cellulaire tumorale , Édition de gène/méthodes , Protéines proto-oncogènes B-raf/génétique , Protéines proto-oncogènes B-raf/métabolisme , Protéines proto-oncogènes B-raf/antagonistes et inhibiteurs , Systèmes CRISPR-Cas/génétique , Mutation/génétique , Mutagenèse
7.
Elife ; 132024 Jun 26.
Article de Anglais | MEDLINE | ID: mdl-38921956

RÉSUMÉ

BRAFV600E mutation is a driver mutation in the serrated pathway to colorectal cancers. BRAFV600E drives tumorigenesis through constitutive downstream extracellular signal-regulated kinase (ERK) activation, but high-intensity ERK activation can also trigger tumor suppression. Whether and how oncogenic ERK signaling can be intrinsically adjusted to a 'just-right' level optimal for tumorigenesis remains undetermined. In this study, we found that FAK (Focal adhesion kinase) expression was reduced in BRAFV600E-mutant adenomas/polyps in mice and patients. In Vil1-Cre;BRAFLSL-V600E/+;Ptk2fl/fl mice, Fak deletion maximized BRAFV600E's oncogenic activity and increased cecal tumor incidence to 100%. Mechanistically, our results showed that Fak loss, without jeopardizing BRAFV600E-induced ERK pathway transcriptional output, reduced EGFR (epidermal growth factor receptor)-dependent ERK phosphorylation. Reduction in ERK phosphorylation increased the level of Lgr4, promoting intestinal stemness and cecal tumor formation. Our findings show that a 'just-right' ERK signaling optimal for BRAFV600E-induced cecal tumor formation can be achieved via Fak loss-mediated downregulation of ERK phosphorylation.


Sujet(s)
Tumeurs du caecum , Focal adhesion kinase 1 , Protéines proto-oncogènes B-raf , Animaux , Protéines proto-oncogènes B-raf/métabolisme , Protéines proto-oncogènes B-raf/génétique , Phosphorylation , Souris , Humains , Tumeurs du caecum/métabolisme , Tumeurs du caecum/génétique , Tumeurs du caecum/anatomopathologie , Focal adhesion kinase 1/métabolisme , Focal adhesion kinase 1/génétique , Extracellular Signal-Regulated MAP Kinases/métabolisme , Extracellular Signal-Regulated MAP Kinases/génétique , Système de signalisation des MAP kinases , Récepteurs ErbB/métabolisme , Récepteurs ErbB/génétique , Carcinogenèse/génétique , Carcinogenèse/métabolisme , Récepteurs couplés aux protéines G/métabolisme , Récepteurs couplés aux protéines G/génétique , Mâle
8.
Life Sci Alliance ; 7(8)2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38839106

RÉSUMÉ

Targeted therapies against mutant BRAF are effectively used in combination with MEK inhibitors (MEKi) to treat advanced melanoma. However, treatment success is affected by resistance and adverse events (AEs). Approved BRAF inhibitors (BRAFi) show high levels of target promiscuity, which can contribute to these effects. The blood vessel lining is in direct contact with high plasma concentrations of BRAFi, but effects of the inhibitors in this cell type are unknown. Hence, we aimed to characterize responses to approved BRAFi for melanoma in the vascular endothelium. We showed that clinically approved BRAFi induced a paradoxical activation of endothelial MAPK signaling. Moreover, phosphoproteomics revealed distinct sets of off-targets per inhibitor. Endothelial barrier function and junction integrity were impaired upon treatment with vemurafenib and the next-generation dimerization inhibitor PLX8394, but not with dabrafenib or encorafenib. Together, these findings provide insights into the surprisingly distinct side effects of BRAFi on endothelial signaling and functionality. Better understanding of off-target effects could help to identify molecular mechanisms behind AEs and guide the continued development of therapies for BRAF-mutant melanoma.


Sujet(s)
Mélanome , Inhibiteurs de protéines kinases , Protéines proto-oncogènes B-raf , Transduction du signal , Vémurafénib , Protéines proto-oncogènes B-raf/antagonistes et inhibiteurs , Protéines proto-oncogènes B-raf/métabolisme , Humains , Inhibiteurs de protéines kinases/pharmacologie , Mélanome/traitement médicamenteux , Mélanome/métabolisme , Transduction du signal/effets des médicaments et des substances chimiques , Vémurafénib/pharmacologie , Oximes/pharmacologie , Sulfonamides/pharmacologie , Endothélium vasculaire/effets des médicaments et des substances chimiques , Endothélium vasculaire/métabolisme , Imidazoles/pharmacologie , Cellules endothéliales/effets des médicaments et des substances chimiques , Cellules endothéliales/métabolisme , Système de signalisation des MAP kinases/effets des médicaments et des substances chimiques , Carbamates/pharmacologie , Cellules endothéliales de la veine ombilicale humaine/effets des médicaments et des substances chimiques , Cellules endothéliales de la veine ombilicale humaine/métabolisme , Lignée cellulaire tumorale , Mutation
9.
Cell Commun Signal ; 22(1): 282, 2024 May 22.
Article de Anglais | MEDLINE | ID: mdl-38778340

RÉSUMÉ

Extracellular vesicles (EVs) constitute a vital component of intercellular communication, exerting significant influence on metastasis formation and drug resistance mechanisms. Malignant melanoma (MM) is one of the deadliest forms of skin cancers, because of its high metastatic potential and often acquired resistance to oncotherapies. The prevalence of BRAF mutations in MM underscores the importance of BRAF-targeted therapies, such as vemurafenib and dabrafenib, alone or in combination with the MEK inhibitor, trametinib. This study aimed to elucidate the involvement of EVs in MM progression and ascertain whether EV-mediated metastasis promotion persists during single agent BRAF (vemurafenib, dabrafenib), or MEK (trametinib) and combined BRAF/MEK (dabrafenib/trametinib) inhibition.Using five pairs of syngeneic melanoma cell lines, we assessed the impact of EVs - isolated from their respective supernatants - on melanoma cell proliferation and migration. Cell viability and spheroid growth assays were employed to evaluate proliferation, while migration was analyzed through mean squared displacement (MSD) and total traveled distance (TTD) measurements derived from video microscopy and single-cell tracking.Our results indicate that while EV treatments had remarkable promoting effect on cell migration, they exerted only a modest effect on cell proliferation and spheroid growth. Notably, EVs demonstrated the ability to mitigate the inhibitory effects of BRAF inhibitors, albeit they were ineffective against a MEK inhibitor and the combination of BRAF/MEK inhibitors. In summary, our findings contribute to the understanding of the intricate role played by EVs in tumor progression, metastasis, and drug resistance in MM.


Sujet(s)
Mouvement cellulaire , Vésicules extracellulaires , Mélanome , Inhibiteurs de protéines kinases , Protéines proto-oncogènes B-raf , Mélanome/anatomopathologie , Mélanome/traitement médicamenteux , Mélanome/métabolisme , Vésicules extracellulaires/métabolisme , Protéines proto-oncogènes B-raf/métabolisme , Protéines proto-oncogènes B-raf/antagonistes et inhibiteurs , Protéines proto-oncogènes B-raf/génétique , Humains , Mouvement cellulaire/effets des médicaments et des substances chimiques , Lignée cellulaire tumorale , Inhibiteurs de protéines kinases/pharmacologie , Prolifération cellulaire/effets des médicaments et des substances chimiques , Vémurafénib/pharmacologie , Pyrimidinones/pharmacologie , Pyridones/pharmacologie , Pyridones/usage thérapeutique , Imidazoles/pharmacologie , Oximes/pharmacologie
10.
Int J Mol Sci ; 25(9)2024 Apr 24.
Article de Anglais | MEDLINE | ID: mdl-38731846

RÉSUMÉ

Activated TGFß signaling in the tumor microenvironment, which occurs independently of epithelial cancer cells, has emerged as a key driver of tumor progression in late-stage colorectal cancer (CRC). This study aimed to elucidate the contribution of TGFß-activated stroma to serrated carcinogenesis, representing approximately 25% of CRCs and often characterized by oncogenic BRAF mutations. We used a transcriptional signature developed based on TGFß-responsive, stroma-specific genes to infer TGFß-dependent stromal activation and conducted in silico analyses in 3 single-cell RNA-seq datasets from a total of 39 CRC samples and 12 bulk transcriptomic datasets consisting of 2014 CRC and 416 precursor samples, of which 33 were serrated lesions. Single-cell analyses validated that the signature was expressed specifically by stromal cells, effectively excluding transcriptional signals derived from epithelial cells. We found that the signature was upregulated during malignant transformation and cancer progression, and it was particularly enriched in CRCs with mutant BRAF compared to wild-type counterparts. Furthermore, across four independent precursor datasets, serrated lesions exhibited significantly higher levels of TGFß-responsive stromal activation compared to conventional adenomas. This large-scale analysis suggests that TGFß-dependent stromal activation occurs early in serrated carcinogenesis. Our study provides novel insights into the molecular mechanisms underlying CRC development via the serrated pathway.


Sujet(s)
Tumeurs colorectales , Régulation de l'expression des gènes tumoraux , Cellules stromales , Facteur de croissance transformant bêta , Humains , Adénomes/génétique , Adénomes/anatomopathologie , Adénomes/métabolisme , Carcinogenèse/génétique , Carcinogenèse/anatomopathologie , Transformation cellulaire néoplasique/génétique , Transformation cellulaire néoplasique/métabolisme , Tumeurs colorectales/génétique , Tumeurs colorectales/anatomopathologie , Tumeurs colorectales/métabolisme , Analyse de profil d'expression de gènes , Mutation , Protéines proto-oncogènes B-raf/génétique , Protéines proto-oncogènes B-raf/métabolisme , Transduction du signal , Analyse sur cellule unique , Cellules stromales/métabolisme , Cellules stromales/anatomopathologie , Transcriptome , Facteur de croissance transformant bêta/métabolisme , Facteur de croissance transformant bêta/génétique , Microenvironnement tumoral/génétique
11.
Biochem Soc Trans ; 52(3): 1061-1069, 2024 Jun 26.
Article de Anglais | MEDLINE | ID: mdl-38695730

RÉSUMÉ

The RAF kinases are required for signal transduction through the RAS-RAF-MEK-ERK pathway, and their activity is frequently up-regulated in human cancer and the RASopathy developmental syndromes. Due to their complex activation process, developing drugs that effectively target RAF function has been a challenging endeavor, highlighting the need for a more detailed understanding of RAF regulation. This review will focus on recent structural and biochemical studies that have provided 'snapshots' into the RAF regulatory cycle, revealing structures of the autoinhibited BRAF monomer, active BRAF and CRAF homodimers, as well as HSP90/CDC37 chaperone complexes containing CRAF or BRAFV600E. In addition, we will describe the insights obtained regarding how BRAF transitions between its regulatory states and examine the roles that various BRAF domains and 14-3-3 dimers play in both maintaining BRAF as an autoinhibited monomer and in facilitating its transition to an active dimer. We will also address the function of the HSP90/CDC37 chaperone complex in stabilizing the protein levels of CRAF and certain oncogenic BRAF mutants, and in serving as a platform for RAF dephosphorylation mediated by the PP5 protein phosphatase. Finally, we will discuss the regulatory differences observed between BRAF and CRAF and how these differences impact the function of BRAF and CRAF as drivers of human disease.


Sujet(s)
Protéines du choc thermique HSP90 , Protéines proto-oncogènes B-raf , Humains , Protéines du choc thermique HSP90/métabolisme , Protéines du choc thermique HSP90/composition chimique , Protéines proto-oncogènes B-raf/métabolisme , Protéines proto-oncogènes B-raf/composition chimique , Protéines proto-oncogènes B-raf/génétique , Protéines du cycle cellulaire/métabolisme , Protéines du cycle cellulaire/composition chimique , Multimérisation de protéines , Kinases raf/métabolisme , Kinases raf/composition chimique , Animaux , Chaperonines/métabolisme , Chaperonines/composition chimique , Transduction du signal , Protéines 14-3-3/métabolisme , Protéines 14-3-3/composition chimique , Tumeurs/enzymologie , Tumeurs/métabolisme , Tumeurs/génétique , Protéines proto-oncogènes c-raf/métabolisme , Protéines proto-oncogènes c-raf/composition chimique , Modèles moléculaires
12.
Cell Death Differ ; 31(6): 804-819, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38698060

RÉSUMÉ

The BRAF gene is mutated in a plethora of human cancers. The majority of such molecular lesions result in the expression of a constitutively active BRAF variant (BRAFV600E) which continuously bolsters cell proliferation. Although we recently addressed the early effects triggered by BRAFV600E-activation, the specific contribution of ERK1 and ERK2 in BRAFV600E-driven responses in vivo has never been explored. Here we describe the first murine model suitable for genetically dissecting the ERK1/ERK2 impact in multiple phenotypes induced by ubiquitous BRAFV600E-expression. We unveil that ERK1 is dispensable for BRAFV600E-dependent lifespan shortening and for BRAFV600E-driven tumor growth. We show that BRAFV600E-expression provokes an ERK1-independent lymphocyte depletion which does not rely on p21CIP1-induced cell cycle arrest and is unresponsive to ERK-chemical inhibition. Moreover, we also reveal that ERK1 is dispensable for BRAFV600E-triggered cytotoxicity in lungs and that ERK-chemical inhibition abrogates some of these detrimental effects, such as DNA damage, in Club cells but not in pulmonary lymphocytes. Our data suggest that ERK1/ERK2 contribution to BRAFV600E-driven phenotypes is dynamic and varies dependently on cell type, the biological function, and the level of ERK-pathway activation. Our findings also provide useful insights into the comprehension of BRAFV600E-driven malignancies pathophysiology as well as the consequences in vivo of novel ERK pathway-targeted anti-cancer therapies.


Sujet(s)
Mitogen-Activated Protein Kinase 1 , Mitogen-Activated Protein Kinase 3 , Phénotype , Protéines proto-oncogènes B-raf , Animaux , Protéines proto-oncogènes B-raf/métabolisme , Protéines proto-oncogènes B-raf/génétique , Mitogen-Activated Protein Kinase 3/métabolisme , Mitogen-Activated Protein Kinase 1/métabolisme , Souris , Humains , Souris de lignée C57BL , Système de signalisation des MAP kinases , Prolifération cellulaire , Modèles animaux de maladie humaine , Lymphocytes/métabolisme
13.
Elife ; 132024 May 14.
Article de Anglais | MEDLINE | ID: mdl-38742856

RÉSUMÉ

The type II class of RAF inhibitors currently in clinical trials paradoxically activate BRAF at subsaturating concentrations. Activation is mediated by induction of BRAF dimers, but why activation rather than inhibition occurs remains unclear. Using biophysical methods tracking BRAF dimerization and conformation, we built an allosteric model of inhibitor-induced dimerization that resolves the allosteric contributions of inhibitor binding to the two active sites of the dimer, revealing key differences between type I and type II RAF inhibitors. For type II inhibitors the allosteric coupling between inhibitor binding and BRAF dimerization is distributed asymmetrically across the two dimer binding sites, with binding to the first site dominating the allostery. This asymmetry results in efficient and selective induction of dimers with one inhibited and one catalytically active subunit. Our allosteric models quantitatively account for paradoxical activation data measured for 11 RAF inhibitors. Unlike type II inhibitors, type I inhibitors lack allosteric asymmetry and do not activate BRAF homodimers. Finally, NMR data reveal that BRAF homodimers are dynamically asymmetric with only one of the subunits locked in the active αC-in state. This provides a structural mechanism for how binding of only a single αC-in inhibitor molecule can induce potent BRAF dimerization and activation.


Sujet(s)
Inhibiteurs de protéines kinases , Multimérisation de protéines , Protéines proto-oncogènes B-raf , Protéines proto-oncogènes B-raf/métabolisme , Protéines proto-oncogènes B-raf/antagonistes et inhibiteurs , Protéines proto-oncogènes B-raf/composition chimique , Régulation allostérique/effets des médicaments et des substances chimiques , Inhibiteurs de protéines kinases/pharmacologie , Inhibiteurs de protéines kinases/métabolisme , Multimérisation de protéines/effets des médicaments et des substances chimiques , Humains , Conformation des protéines , Liaison aux protéines , Modèles moléculaires
14.
Sci Signal ; 17(836): eadd5073, 2024 May 14.
Article de Anglais | MEDLINE | ID: mdl-38743809

RÉSUMÉ

The Ras-mitogen-activated protein kinase (MAPK) pathway is a major target for cancer treatment. To better understand the genetic pathways that modulate cancer cell sensitivity to MAPK pathway inhibitors, we performed a CRISPR knockout screen with MAPK pathway inhibitors on a colorectal cancer (CRC) cell line carrying mutant KRAS. Genetic deletion of the catalytic subunit of protein phosphatase 6 (PP6), encoded by PPP6C, rendered KRAS- and BRAF-mutant CRC and BRAF-mutant melanoma cells more resistant to these inhibitors. In the absence of MAPK pathway inhibition, PPP6C deletion in CRC cells decreased cell proliferation in two-dimensional (2D) adherent cultures but accelerated the growth of tumor spheroids in 3D culture and tumor xenografts in vivo. PPP6C deletion enhanced the activation of nuclear factor κB (NF-κB) signaling in CRC and melanoma cells and circumvented the cell cycle arrest and decreased cyclin D1 abundance induced by MAPK pathway blockade in CRC cells. Inhibiting NF-κB activity by genetic and pharmacological means restored the sensitivity of PPP6C-deficient cells to MAPK pathway inhibition in CRC and melanoma cells in vitro and in CRC cells in vivo. Furthermore, a R264 point mutation in PPP6C conferred loss of function in CRC cells, phenocopying the enhanced NF-κB activation and resistance to MAPK pathway inhibition observed for PPP6C deletion. These findings demonstrate that PP6 constrains the growth of KRAS- and BRAF-mutant cancer cells, implicates the PP6-NF-κB axis as a modulator of MAPK pathway output, and presents a rationale for cotargeting the NF-κB pathway in PPP6C-mutant cancer cells.


Sujet(s)
Système de signalisation des MAP kinases , Facteur de transcription NF-kappa B , Protéines proto-oncogènes B-raf , Protéines proto-oncogènes p21(ras) , Humains , Protéines proto-oncogènes B-raf/génétique , Protéines proto-oncogènes B-raf/métabolisme , Protéines proto-oncogènes B-raf/antagonistes et inhibiteurs , Facteur de transcription NF-kappa B/métabolisme , Facteur de transcription NF-kappa B/génétique , Protéines proto-oncogènes p21(ras)/génétique , Protéines proto-oncogènes p21(ras)/métabolisme , Système de signalisation des MAP kinases/effets des médicaments et des substances chimiques , Animaux , Lignée cellulaire tumorale , Mutation , Souris , Inhibiteurs de protéines kinases/pharmacologie , Prolifération cellulaire/effets des médicaments et des substances chimiques , Tumeurs colorectales/génétique , Tumeurs colorectales/métabolisme , Tumeurs colorectales/traitement médicamenteux , Tumeurs colorectales/anatomopathologie , Mélanome/génétique , Mélanome/métabolisme , Mélanome/traitement médicamenteux , Mélanome/anatomopathologie , Tests d'activité antitumorale sur modèle de xénogreffe , Résistance aux médicaments antinéoplasiques/génétique , Résistance aux médicaments antinéoplasiques/effets des médicaments et des substances chimiques , Souris nude
15.
Biochem Biophys Res Commun ; 722: 150161, 2024 Aug 30.
Article de Anglais | MEDLINE | ID: mdl-38797153

RÉSUMÉ

Melanoma, arising from the malignant transformation of melanocytes, stands as the most lethal type of skin cancer. While significant strides have been made in targeted therapy and immunotherapy, substantially enhancing therapeutic efficacy, the prognosis for melanoma patients remains unoptimistic. SIRT7, a nuclear-localized deacetylase, plays a pivotal role in maintaining cellular homeostasis and adapting to external stressors in melanoma, with its activity closely tied to intracellular nicotinamide adenine dinucleotide (NAD+). However, its involvement in adaptive resistance to targeted therapy remains unclear. Herein, we unveil that up-regulated SIRT7 promotes mitochondrial biogenesis to render the adaptive resistance to MAPK inhibition in melanoma. Initially, we observed a significant increase of SIRT7 expression in publicly available datasets following targeted therapy within a short duration. In consistent, we found elevated SIRT7 expression in melanoma cells subjected to BRAF or MEK inhibitors in vitro. The up-regulation of SIRT7 expression was also confirmed in xenograft tumors in mice after targeted therapy in vivo. Furthermore, we proved that SIRT7 deficiency led to decreased cell viability upon prolonged exposure to BRAF or MEK inhibitors, accompanied by an increase in cell apoptosis. Mechanistically, SIRT7 deficiency restrained the upregulation of genes associated with mitochondrial biogenesis and intracellular ATP levels in response to targeted therapy treatment in melanoma cells. Ultimately, we proved that SIRT7 deficieny could sensitize BRAF-mutant melanoma cells to MAPK inhibition targeted therapy in vivo. In conclusion, our findings underscore the role of SIRT7 in fostering adaptive resistance to targeted therapy through the facilitation of mitochondrial biogenesis. Targeting SIRT7 emerges as a promising strategy to overcome MAPK inhibitor adaptive resistance in melanoma.


Sujet(s)
Résistance aux médicaments antinéoplasiques , Mélanome , Biogenèse des organelles , Inhibiteurs de protéines kinases , Sirtuines , Mélanome/métabolisme , Mélanome/anatomopathologie , Mélanome/génétique , Mélanome/traitement médicamenteux , Humains , Sirtuines/métabolisme , Sirtuines/génétique , Animaux , Lignée cellulaire tumorale , Résistance aux médicaments antinéoplasiques/génétique , Inhibiteurs de protéines kinases/pharmacologie , Souris , Mitochondries/métabolisme , Mitochondries/effets des médicaments et des substances chimiques , Tumeurs cutanées/anatomopathologie , Tumeurs cutanées/métabolisme , Tumeurs cutanées/génétique , Tumeurs cutanées/traitement médicamenteux , Souris nude , Protéines proto-oncogènes B-raf/génétique , Protéines proto-oncogènes B-raf/métabolisme , Protéines proto-oncogènes B-raf/antagonistes et inhibiteurs
16.
Int J Mol Sci ; 25(10)2024 May 19.
Article de Anglais | MEDLINE | ID: mdl-38791574

RÉSUMÉ

Being a component of the Ras/Raf/MEK/ERK signaling pathway crucial for cellular responses, the VRAF murine sarcoma viral oncogene homologue B1 (BRAF) kinase has emerged as a promising target for anticancer drug discovery due to oncogenic mutations that lead to pathway hyperactivation. Despite the discovery of several small-molecule BRAF kinase inhibitors targeting oncogenic mutants, their clinical utility has been limited by challenges such as off-target effects and suboptimal pharmacological properties. This study focuses on identifying miniprotein inhibitors for the oncogenic V600E mutant BRAF, leveraging their potential as versatile drug candidates. Using a structure-based de novo design approach based on binding affinity to V600E mutant BRAF and hydration energy, 39 candidate miniprotein inhibitors comprising three helices and 69 amino acids were generated from the substructure of the endogenous ligand protein (14-3-3). Through in vitro binding and kinase inhibition assays, two miniproteins (63 and 76) were discovered as novel inhibitors of V600E mutant BRAF with low-micromolar activity, with miniprotein 76 demonstrating a specific impediment to MEK1 phosphorylation in mammalian cells. These findings highlight miniprotein 76 as a potential lead compound for developing new cancer therapeutics, and the structural features contributing to its biochemical potency against V600E mutant BRAF are discussed in detail.


Sujet(s)
Inhibiteurs de protéines kinases , Protéines proto-oncogènes B-raf , Protéines proto-oncogènes B-raf/antagonistes et inhibiteurs , Protéines proto-oncogènes B-raf/génétique , Protéines proto-oncogènes B-raf/métabolisme , Humains , Inhibiteurs de protéines kinases/pharmacologie , Inhibiteurs de protéines kinases/composition chimique , Mutation , Découverte de médicament/méthodes , Phosphorylation/effets des médicaments et des substances chimiques , Antinéoplasiques/pharmacologie , Antinéoplasiques/composition chimique , Conception de médicament , Liaison aux protéines , Relation structure-activité , Modèles moléculaires
17.
Clin Transl Med ; 14(5): e1694, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38797942

RÉSUMÉ

BACKGROUND: BRAFV600E is the most common genetic mutation in differentiated thyroid cancer (DTC) occurring in 60% of patients and drives malignant tumour cell phenotypes including proliferation, metastasis and immune-escape. BRAFV600E-mutated papillary thyroid cancer (PTC) also displays greatly reduced expression of thyroid differentiation markers, thus tendency to radioactive iodine (RAI) refractory and poor prognosis. Therefore, understanding the molecular mechanisms and main oncogenic events underlying BRAFV600E will guide future therapy development. METHODS: Bioinformatics and clinical specimen analyses, genetic manipulation of BRAFV600E-induced PTC model, functional and mechanism exploration guided with transcriptomic screening, as well as systematic rescue experiments were applied to investigate miR-31 function within BRAFV600E-induced thyroid cancer development. Besides, nanoparticles carrying miR-31 antagomirs were testified to alleviate 131I iodide therapy on PTC models. RESULTS: We identify miR-31 as a significantly increased onco-miR in BRAFV600E-associated PTC that promotes tumour progression, metastasis and RAI refractoriness via sustained Wnt/ß-catenin signalling. Mechanistically, highly activated BRAF/MAPK pathway induces miR-31 expression via c-Jun-mediated transcriptional regulation across in vitro and transgenic mouse models. MiR-31 in turn facilitates ß-catenin stabilisation via directly repressing tumour suppressors CEBPA and DACH1, which direct the expression of multiple essential Wnt/ß-catenin pathway inhibitors. Genetic functional assays showed that thyroid-specific knockout of miR-31 inhibited BRAFV600E-induced PTC progression, and strikingly, enhanced expression of sodium-iodide symporter and other thyroid differentiation markers, thus promoted 131I uptake. Nanoparticle-mediated application of anti-miR-31 antagomirs markedly elevated radio-sensitivity of BRAFV600E-induced PTC tumours to 131I therapy, and efficiently suppressed tumour progression in the pre-clinical mouse model. CONCLUSIONS: Our findings elucidate a novel BRAF/MAPK-miR-31-Wnt/ß-catenin regulatory mechanism underlying clinically BRAFV600E-associated DTC tumourigenesis and dedifferentiation, also highlight a potential adjuvant therapeutic strategy for advanced DTC.


Sujet(s)
microARN , Protéines proto-oncogènes B-raf , Tumeurs de la thyroïde , Animaux , Humains , Souris , Carcinogenèse/génétique , Dédifférenciation cellulaire/génétique , Dédifférenciation cellulaire/effets des médicaments et des substances chimiques , microARN/génétique , microARN/métabolisme , Protéines proto-oncogènes B-raf/génétique , Protéines proto-oncogènes B-raf/métabolisme , Cancer papillaire de la thyroïde/génétique , Cancer papillaire de la thyroïde/métabolisme , Cancer papillaire de la thyroïde/anatomopathologie , Tumeurs de la thyroïde/génétique , Tumeurs de la thyroïde/anatomopathologie , Tumeurs de la thyroïde/métabolisme
18.
Cell Mol Life Sci ; 81(1): 238, 2024 May 25.
Article de Anglais | MEDLINE | ID: mdl-38795180

RÉSUMÉ

BRAFV600E represents a constitutively active onco-kinase and stands as the most prevalent genetic alteration in thyroid cancer. However, the clinical efficacy of small-molecule inhibitors targeting BRAFV600E is often limited by acquired resistance. Here, we find that nerve/glial antigen 2 (NG2), also known as chondroitin sulfate proteoglycan 4 (CSPG4), is up-regulated in thyroid cancers, and its expression is increased with tumor progression in a BRAFV600E-driven thyroid cancer mouse model. Functional studies show that NG2 knockout almost does not affect tumor growth, but significantly improves the response of BRAF-mutant thyroid cancer cells to BRAF inhibitor PLX4720. Mechanistically, the blockade of ERK-dependent feedback by BRAF inhibitor can activate receptor tyrosine kinase (RTK) signaling, causing the resistance to this inhibitor. NG2 knockout attenuates the PLX4720-mediated feedback activation of several RTKs, improving the sensitivity of BRAF-mutant thyroid cancer cells to this inhibitor. Based on this finding, we propose and demonstrate an alternative strategy for targeting NG2 to effectively treat BRAF-mutant thyroid cancers by combining multiple kinase inhibitor (MKI) Sorafenib or Lenvatinib with PLX4720. Thus, this study uncovers a new mechanism in which NG2 contributes to the resistance of BRAF-mutant thyroid cancer cells to BRAF inhibitor, and provides a promising therapeutic option for BRAF-mutant thyroid cancers.


Sujet(s)
Résistance aux médicaments antinéoplasiques , Indoles , Inhibiteurs de protéines kinases , Protéines proto-oncogènes B-raf , Sulfonamides , Tumeurs de la thyroïde , Protéines proto-oncogènes B-raf/génétique , Protéines proto-oncogènes B-raf/antagonistes et inhibiteurs , Protéines proto-oncogènes B-raf/métabolisme , Humains , Animaux , Tumeurs de la thyroïde/traitement médicamenteux , Tumeurs de la thyroïde/génétique , Tumeurs de la thyroïde/anatomopathologie , Tumeurs de la thyroïde/métabolisme , Indoles/pharmacologie , Souris , Résistance aux médicaments antinéoplasiques/effets des médicaments et des substances chimiques , Résistance aux médicaments antinéoplasiques/génétique , Sulfonamides/pharmacologie , Inhibiteurs de protéines kinases/pharmacologie , Lignée cellulaire tumorale , Phénylurées/pharmacologie , Phénylurées/usage thérapeutique , Sorafénib/pharmacologie , Quinoléines/pharmacologie , Mutation , Antigènes/métabolisme , Protéoglycanes/métabolisme , Protéines membranaires , Protéoglycanes à chondroïtine sulfate
19.
Protein Sci ; 33(6): e5016, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38747381

RÉSUMÉ

RAF kinases are key components of the RAS-MAPK signaling pathway, which drives cell growth and is frequently overactivated in cancer. Upstream signaling activates the small GTPase RAS, which recruits RAF to the cell membrane, driving a transition of the latter from an auto-inhibited monomeric conformation to an active dimer. Despite recent progress, mechanistic details underlying RAF activation remain unclear, particularly the role of RAS and the membrane in mediating this conformational rearrangement of RAF together with 14-3-3 to permit RAF kinase domain dimerization. Here, we reconstituted an active complex of dimeric BRAF, a 14-3-3 dimer and two KRAS4B on a nanodisc bilayer and verified that its assembly is GTP-dependent. Biolayer interferometry (BLI) was used to compare the binding affinities of monomeric versus dimeric full-length BRAF:14-3-3 complexes for KRAS4B-conjugated nanodiscs (RAS-ND) and to investigate the effects of membrane lipid composition and spatial density of KRAS4B on binding. 1,2-Dioleoyl-sn-glycero-3-phospho-L-serine (DOPS) and higher KRAS4B density enhanced the interaction of BRAF:14-3-3 with RAS-ND to different degrees depending on BRAF oligomeric state. We utilized our reconstituted system to dissect the effects of KRAS4B and the membrane on the kinase activity of monomeric and dimeric BRAF:14-3-3 complexes, finding that KRAS4B or nanodiscs alone were insufficient to stimulate activity, whereas RAS-ND increased activity of both states of BRAF. The reconstituted assembly of full-length BRAF with 14-3-3 and KRAS on a cell-free, defined lipid bilayer offers a more holistic biophysical perspective to probe regulation of this multimeric signaling complex at the membrane surface.


Sujet(s)
Protéines 14-3-3 , Système acellulaire , Nanostructures , Protéines proto-oncogènes B-raf , Protéines proto-oncogènes p21(ras) , Humains , Protéines 14-3-3/métabolisme , Protéines 14-3-3/composition chimique , Protéines 14-3-3/génétique , Double couche lipidique/composition chimique , Double couche lipidique/métabolisme , Nanostructures/composition chimique , Liaison aux protéines , Multimérisation de protéines , Protéines proto-oncogènes B-raf/composition chimique , Protéines proto-oncogènes B-raf/métabolisme , Protéines proto-oncogènes B-raf/génétique , Protéines proto-oncogènes p21(ras)/composition chimique , Protéines proto-oncogènes p21(ras)/métabolisme , Protéines proto-oncogènes p21(ras)/génétique
20.
Nat Commun ; 15(1): 4108, 2024 May 15.
Article de Anglais | MEDLINE | ID: mdl-38750011

RÉSUMÉ

MAPK pathway-driven tumorigenesis, often induced by BRAFV600E, relies on epithelial dedifferentiation. However, how lineage differentiation events are reprogrammed remains unexplored. Here, we demonstrate that proteostatic reactivation of developmental factor, TBX3, accounts for BRAF/MAPK-mediated dedifferentiation and tumorigenesis. During embryonic development, BRAF/MAPK upregulates USP15 to stabilize TBX3, which orchestrates organogenesis by restraining differentiation. The USP15-TBX3 axis is reactivated during tumorigenesis, and Usp15 knockout prohibits BRAFV600E-driven tumor development in a Tbx3-dependent manner. Deleting Tbx3 or Usp15 leads to tumor redifferentiation, which parallels their overdifferentiation tendency during development, exemplified by disrupted thyroid folliculogenesis and elevated differentiation factors such as Tpo, Nis, Tg. The clinical relevance is highlighted in that both USP15 and TBX3 highly correlates with BRAFV600E signature and poor tumor prognosis. Thus, USP15 stabilized TBX3 represents a critical proteostatic mechanism downstream of BRAF/MAPK-directed developmental homeostasis and pathological transformation, supporting that tumorigenesis largely relies on epithelial dedifferentiation achieved via embryonic regulatory program reinitiation.


Sujet(s)
Carcinogenèse , Protéines proto-oncogènes B-raf , Protéines à domaine boîte-T , Protéines à domaine boîte-T/métabolisme , Protéines à domaine boîte-T/génétique , Animaux , Humains , Protéines proto-oncogènes B-raf/génétique , Protéines proto-oncogènes B-raf/métabolisme , Carcinogenèse/génétique , Carcinogenèse/métabolisme , Carcinogenèse/anatomopathologie , Souris , Différenciation cellulaire , Ubiquitin thiolesterase/métabolisme , Ubiquitin thiolesterase/génétique , Système de signalisation des MAP kinases/génétique , Régulation de l'expression des gènes tumoraux , Souris knockout , Femelle , Transformation cellulaire néoplasique/génétique , Transformation cellulaire néoplasique/métabolisme
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...