Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 9.167
Filtrer
1.
Transl Psychiatry ; 14(1): 269, 2024 Jul 02.
Article de Anglais | MEDLINE | ID: mdl-38956048

RÉSUMÉ

Addiction is a complex behavioral disorder characterized by compulsive drug-seeking and drug use despite harmful consequences. The prefrontal cortex (PFC) plays a crucial role in cocaine addiction, involving decision-making, impulse control, memory, and emotional regulation. The PFC interacts with the brain's reward system, including the ventral tegmental area (VTA) and nucleus accumbens (NAc). The PFC also projects to the lateral habenula (LHb), a brain region critical for encoding negative reward and regulating the reward system. In the current study, we examined the role of PFC-LHb projections in regulating cocaine reward-related behaviors. We found that optogenetic stimulation of the PFC-LHb circuit during cocaine conditioning abolished cocaine preference without causing aversion. In addition, increased c-fos expression in LHb neurons was observed in animals that received optic stimulation during cocaine conditioning, supporting the circuit's involvement in cocaine preference regulation. Molecular analysis in animals that received optic stimulation revealed that cocaine-induced alterations in the expression of GluA1 subunit of AMPA receptor was normalized to saline levels in a region-specific manner. Moreover, GluA1 serine phosphorylation on S845 and S831 were differentially altered in LHb and VTA but not in the PFC. Together these findings highlight the critical role of the PFC-LHb circuit in controlling cocaine reward-related behaviors and shed light on the underlying mechanisms. Understanding this circuit's function may provide valuable insights into addiction and contribute to developing targeted treatments for substance use disorders.


Sujet(s)
Cocaïne , Habénula , Neurones , Optogénétique , Cortex préfrontal , Récepteur de l'AMPA , Récompense , Animaux , Cortex préfrontal/métabolisme , Cocaïne/pharmacologie , Mâle , Habénula/métabolisme , Neurones/métabolisme , Récepteur de l'AMPA/métabolisme , Troubles liés à la cocaïne/physiopathologie , Troubles liés à la cocaïne/métabolisme , Voies nerveuses , Rats , Protéines proto-oncogènes c-fos/métabolisme , Phosphorylation , Aire tegmentale ventrale/métabolisme , Comportement animal
2.
Sci Rep ; 14(1): 15136, 2024 07 02.
Article de Anglais | MEDLINE | ID: mdl-38956153

RÉSUMÉ

The potential long-term effects of anesthesia on cognitive development, especially in neonates and infants, have raised concerns. However, our understanding of its underlying mechanisms and effective treatments is still limited. In this study, we found that early exposure to isoflurane (ISO) impaired fear memory retrieval, which was reversed by dexmedetomidine (DEX) pre-treatment. Measurement of c-fos expression revealed that ISO exposure significantly increased neuronal activation in the zona incerta (ZI). Fiber photometry recording showed that ZI neurons from ISO mice displayed enhanced calcium activity during retrieval of fear memory compared to the control group, while DEX treatment reduced this enhanced calcium activity. Chemogenetic inhibition of ZI neurons effectively rescued the impairments caused by ISO exposure. These findings suggest that the ZI may play a pivotal role in mediating the cognitive effects of anesthetics, offering a potential therapeutic target for preventing anesthesia-related cognitive impairments.


Sujet(s)
Peur , Isoflurane , Troubles de la mémoire , Zona incerta , Isoflurane/pharmacologie , Isoflurane/effets indésirables , Animaux , Peur/effets des médicaments et des substances chimiques , Souris , Troubles de la mémoire/induit chimiquement , Zona incerta/effets des médicaments et des substances chimiques , Mâle , Anesthésiques par inhalation/effets indésirables , Anesthésiques par inhalation/pharmacologie , Neurones/effets des médicaments et des substances chimiques , Neurones/métabolisme , Souris de lignée C57BL , Dexmédétomidine/pharmacologie , Femelle , Protéines proto-oncogènes c-fos/métabolisme , Mémoire/effets des médicaments et des substances chimiques
3.
Exp Dermatol ; 33(7): e15128, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38973249

RÉSUMÉ

Dry skin is common to many pruritic diseases and is difficult to improve with oral traditional antihistamines. Recently, increasing evidence indicated that histamine H4 receptor (H4R) plays an important role in the occurrence and development of pruritus. Extracellular signal-regulated kinase (ERK) phosphorylation activation in the spinal cord mediates histamine-induced acute and choric itch. However, whether the histamine H4 receptor regulates ERK activation in the dry skin itch remains unclear. In the study, we explore the role of the histamine H4 receptor and p-ERK in the spinal cord in a dry skin mouse model induced by acetone-ether-water (AEW). q-PCR, Western blot, pharmacology and immunofluorescence  were applied in the study. We established a dry skin itch model by repeated application of AEW on the nape of neck in mice. The AEW mice showed typically dry skin histological change and persistent spontaneous scratching behaviour. Histamine H4 receptor, instead of histamine H1 receptor, mediated spontaneous scratching behaviour in AEW mice. Moreover, c-Fos and p-ERK expression in the spinal cord neurons were increased and co-labelled with GRPR-positive neurons in AEW mice. Furthermore, H4R agonist 4-methyhistamine dihydrochloride (4-MH)induced itch. Both 4-MH-induced itch and the spontaneous itch in AEW mice were blocked by p-ERK inhibitor U0126. Finally, intrathecal H4R receptor antagonist JNJ7777120 inhibited spinal p-ERK expression in AEW mice. Our results indicated that spinal H4R mediates itch via ERK activation in the AEW-induced dry skin mice.


Sujet(s)
Acétone , Extracellular Signal-Regulated MAP Kinases , Prurit , Récepteur histaminergique H4 , Moelle spinale , Animaux , Prurit/induit chimiquement , Prurit/métabolisme , Récepteur histaminergique H4/métabolisme , Souris , Moelle spinale/métabolisme , Extracellular Signal-Regulated MAP Kinases/métabolisme , Mâle , Acétone/pharmacologie , Eau , Oxyde de diéthyle , Modèles animaux de maladie humaine , Phosphorylation , Indoles/pharmacologie , Butadiènes/pharmacologie , Pipérazines/pharmacologie , Nitriles/pharmacologie , Peau/métabolisme , Maladie chronique , Méthylhistamines , Protéines proto-oncogènes c-fos/métabolisme , Souris de lignée C57BL
4.
Mol Biol (Mosk) ; 58(1): 78-87, 2024.
Article de Russe | MEDLINE | ID: mdl-38943581

RÉSUMÉ

Stress can play a significant role in arterial hypertension and many other complications of cardiovascular diseases. Considerable attention is paid to the study of the molecular mechanisms involved in the body response to stressful influences, but there are still many blank spots in understanding the details. ISIAH rats model the stress-sensitive form of arterial hypertension. ISIAH rats are characterized by genetically determined enhanced activities of the hypothalamic-pituitary-adrenocortical and sympathetic-adrenomedullary systems, suggesting a functional state of increased stress reactivity. For the first time, the temporal expression patterns of Fos and several related genes were studied in the hypothalamus of adult male hypertensive ISIAH rats after a single exposure to restraint stress for 30, 60, or 120 min. Fos transcription was activated and peaked 1 h after the start of restraint stress. The time course of Fos activation coincided with that of blood pressure increase after stress. Activation of hypothalamic neurons also alters the transcription levels of several transcription factor genes (Jun, Nr4a3, Jdp2, and Ppargc1a), which are associated with the development of cardiovascular diseases. Because Fos induction is a marker of brain neuron activation, activation of hypothalamic neurons and an increase in blood pressure were concluded to accompany increased stress reactivity of the hypothalamic-pituitary-adrenocortical and sympathoadrenal systems in hypertensive ISIAH rats during short-term restraint.


Sujet(s)
Régulation de l'expression des gènes , Hypertension artérielle , Hypothalamus , Animaux , Hypertension artérielle/métabolisme , Hypertension artérielle/génétique , Hypertension artérielle/anatomopathologie , Rats , Hypothalamus/métabolisme , Mâle , Coactivateur 1-alpha du récepteur gamma activé par les proliférateurs de peroxysomes/génétique , Coactivateur 1-alpha du récepteur gamma activé par les proliférateurs de peroxysomes/métabolisme , Protéines proto-oncogènes c-fos/génétique , Protéines proto-oncogènes c-fos/métabolisme , Protéines proto-oncogènes c-fos/biosynthèse , Contention physique , Stress psychologique/métabolisme , Stress psychologique/génétique , Stress psychologique/physiopathologie , Pression sanguine/génétique , Stress physiologique/génétique , Neurones/métabolisme , Neurones/anatomopathologie
5.
Elife ; 122024 Jun 21.
Article de Anglais | MEDLINE | ID: mdl-38904658

RÉSUMÉ

Maternal choline supplementation (MCS) improves cognition in Alzheimer's disease (AD) models. However, the effects of MCS on neuronal hyperexcitability in AD are unknown. We investigated the effects of MCS in a well-established mouse model of AD with hyperexcitability, the Tg2576 mouse. The most common type of hyperexcitability in Tg2576 mice are generalized EEG spikes (interictal spikes [IIS]). IIS also are common in other mouse models and occur in AD patients. In mouse models, hyperexcitability is also reflected by elevated expression of the transcription factor ∆FosB in the granule cells (GCs) of the dentate gyrus (DG), which are the principal cell type. Therefore, we studied ΔFosB expression in GCs. We also studied the neuronal marker NeuN within hilar neurons of the DG because reduced NeuN protein expression is a sign of oxidative stress or other pathology. This is potentially important because hilar neurons regulate GC excitability. Tg2576 breeding pairs received a diet with a relatively low, intermediate, or high concentration of choline. After weaning, all mice received the intermediate diet. In offspring of mice fed the high choline diet, IIS frequency declined, GC ∆FosB expression was reduced, and hilar NeuN expression was restored. Using the novel object location task, spatial memory improved. In contrast, offspring exposed to the relatively low choline diet had several adverse effects, such as increased mortality. They had the weakest hilar NeuN immunoreactivity and greatest GC ΔFosB protein expression. However, their IIS frequency was low, which was surprising. The results provide new evidence that a diet high in choline in early life can improve outcomes in a mouse model of AD, and relatively low choline can have mixed effects. This is the first study showing that dietary choline can regulate hyperexcitability, hilar neurons, ΔFosB, and spatial memory in an animal model of AD.


Sujet(s)
Maladie d'Alzheimer , Choline , Compléments alimentaires , Modèles animaux de maladie humaine , Animaux , Maladie d'Alzheimer/métabolisme , Choline/administration et posologie , Choline/métabolisme , Souris , Femelle , Souris transgéniques , Protéines proto-oncogènes c-fos/métabolisme , Protéines proto-oncogènes c-fos/génétique , Neurones/métabolisme , Neurones/effets des médicaments et des substances chimiques , Mâle , Gyrus denté/métabolisme , Gyrus denté/effets des médicaments et des substances chimiques , Protéines de tissu nerveux/métabolisme , Protéines de tissu nerveux/génétique , Protéines de liaison à l'ADN
6.
Cell Mol Life Sci ; 81(1): 255, 2024 Jun 10.
Article de Anglais | MEDLINE | ID: mdl-38856747

RÉSUMÉ

Glioblastoma multiforme (GBM) is the most common and malignant primary brain tumor; GBM's inevitable recurrence suggests that glioblastoma stem cells (GSC) allow these tumors to persist. Our previous work showed that FOSL1, transactivated by the STAT3 gene, functions as a tumorigenic gene in glioma pathogenesis and acts as a diagnostic marker and potential drug target in glioma patients. Accumulating evidence shows that STAT3 and NF-κB cooperate to promote the development and progression of various cancers. The link between STAT3 and NF-κB suggests that NF-κB can also transcriptionally regulate FOSL1 and contribute to gliomagenesis. To investigate downstream molecules of FOSL1, we analyzed the transcriptome after overexpressing FOSL1 in a PDX-L14 line characterized by deficient FOSL1 expression. We then conducted immunohistochemical staining for FOSL1 and NF-κB p65 using rabbit polyclonal anti-FOSL1 and NF-κB p65 in glioma tissue microarrays (TMA) derived from 141 glioma patients and 15 healthy individuals. Next, mutants of the human FOSL1 promoter, featuring mutations in essential binding sites for NF-κB were generated using a Q5 site-directed mutagenesis kit. Subsequently, we examined luciferase activity in glioma cells and compared it to the wild-type FOSL1 promoter. Then, we explored the mutual regulation between NF-κB signaling and FOSL1 by modulating the expression of NF-κB or FOSL1. Subsequently, we assessed the activity of FOSL1 and NF-κB. To understand the role of FOSL1 in cell growth and stemness, we conducted a CCK-8 assay and cell cycle analysis, assessing apoptosis and GSC markers, ALDH1, and CD133 under varying FOSL1 expression conditions. Transcriptome analyses of downstream molecules of FOSL1 show that NF-κB signaling pathway is regulated by FOSL1. NF-κB p65 protein expression correlates to the expression of FOSL1 in glioma patients, and both are associated with glioma grades. NF-κB is a crucial transcription factor activating the FOSL1 promoter in glioma cells. Mutual regulation between NF-κB and FOSL1 contributes to glioma tumorigenesis and stemness through promoting G1/S transition and inhibiting apoptosis. Therefore, the FOSL1 molecular pathway is functionally connected to NF-κB activation, enhances stemness, and is indicative that FOSL1 may potentially be a novel GBM drug target.


Sujet(s)
Régulation de l'expression des gènes tumoraux , Facteur de transcription NF-kappa B , Cellules souches tumorales , Régions promotrices (génétique) , Protéines proto-oncogènes c-fos , Animaux , Humains , Souris , Tumeurs du cerveau/anatomopathologie , Tumeurs du cerveau/génétique , Tumeurs du cerveau/métabolisme , Lignée cellulaire tumorale , Prolifération cellulaire/génétique , Glioblastome/anatomopathologie , Glioblastome/génétique , Glioblastome/métabolisme , Gliome/anatomopathologie , Gliome/génétique , Gliome/métabolisme , Cellules souches tumorales/métabolisme , Cellules souches tumorales/anatomopathologie , Facteur de transcription NF-kappa B/métabolisme , Régions promotrices (génétique)/génétique , Protéines proto-oncogènes c-fos/métabolisme , Protéines proto-oncogènes c-fos/génétique , Transduction du signal , Facteur de transcription STAT-3/métabolisme , Facteur de transcription STAT-3/génétique , Facteur de transcription RelA/métabolisme , Facteur de transcription RelA/génétique
7.
Int J Mol Sci ; 25(11)2024 May 23.
Article de Anglais | MEDLINE | ID: mdl-38891875

RÉSUMÉ

Transcranial focused ultrasound stimulation (tFUS) has emerged as a promising neuromodulation technique that delivers acoustic energy with high spatial resolution for inducing long-term potentiation (LTP)- or depression (LTD)-like plasticity. The variability in the primary effects of tFUS-induced plasticity could be due to different stimulation patterns, such as intermittent versus continuous, and is an aspect that requires further detailed exploration. In this study, we developed a platform to evaluate the neuromodulatory effects of intermittent and continuous tFUS on motor cortical plasticity before and after tFUS application. Three groups of rats were exposed to either intermittent, continuous, or sham tFUS. We analyzed the neuromodulatory effects on motor cortical excitability by examining changes in motor-evoked potentials (MEPs) elicited by transcranial magnetic stimulation (TMS). We also investigated the effects of different stimulation patterns on excitatory and inhibitory neural biomarkers, examining c-Fos and glutamic acid decarboxylase (GAD-65) expression using immunohistochemistry staining. Additionally, we evaluated the safety of tFUS by analyzing glial fibrillary acidic protein (GFAP) expression. The current results indicated that intermittent tFUS produced a facilitation effect on motor excitability, while continuous tFUS significantly inhibited motor excitability. Furthermore, neither tFUS approach caused injury to the stimulation sites in rats. Immunohistochemistry staining revealed increased c-Fos and decreased GAD-65 expression following intermittent tFUS. Conversely, continuous tFUS downregulated c-Fos and upregulated GAD-65 expression. In conclusion, our findings demonstrate that both intermittent and continuous tFUS effectively modulate cortical excitability. The neuromodulatory effects may result from the activation or deactivation of cortical neurons following tFUS intervention. These effects are considered safe and well-tolerated, highlighting the potential for using different patterns of tFUS in future clinical neuromodulatory applications.


Sujet(s)
Potentiels évoqués moteurs , Cortex moteur , Plasticité neuronale , Stimulation magnétique transcrânienne , Animaux , Cortex moteur/physiologie , Rats , Mâle , Potentiels évoqués moteurs/physiologie , Stimulation magnétique transcrânienne/méthodes , Protéines proto-oncogènes c-fos/métabolisme , Ondes ultrasonores , Rat Sprague-Dawley , Protéine gliofibrillaire acide/métabolisme , Glutamate decarboxylase/métabolisme
8.
Nat Commun ; 15(1): 4601, 2024 Jun 04.
Article de Anglais | MEDLINE | ID: mdl-38834558

RÉSUMÉ

Precise neurostimulation can revolutionize therapies for neurological disorders. Electrode-based stimulation devices face challenges in achieving precise and consistent targeting due to the immune response and the limited penetration of electrical fields. Ultrasound can aid in energy propagation, but transcranial ultrasound stimulation in the deep brain has limited spatial resolution caused by bone and tissue scattering. Here, we report an implantable piezoelectric ultrasound stimulator (ImPULS) that generates an ultrasonic focal pressure of 100 kPa to modulate the activity of neurons. ImPULS is a fully-encapsulated, flexible piezoelectric micromachined ultrasound transducer that incorporates a biocompatible piezoceramic, potassium sodium niobate [(K,Na)NbO3]. The absence of electrochemically active elements poses a new strategy for achieving long-term stability. We demonstrated that ImPULS can i) excite neurons in a mouse hippocampal slice ex vivo, ii) activate cells in the hippocampus of an anesthetized mouse to induce expression of activity-dependent gene c-Fos, and iii) stimulate dopaminergic neurons in the substantia nigra pars compacta to elicit time-locked modulation of nigrostriatal dopamine release. This work introduces a non-genetic ultrasound platform for spatially-localized neural stimulation and exploration of basic functions in the deep brain.


Sujet(s)
Stimulation cérébrale profonde , Hippocampe , Ondes ultrasonores , Animaux , Stimulation cérébrale profonde/instrumentation , Stimulation cérébrale profonde/méthodes , Souris , Souris de lignée C57BL , Neurones dopaminergiques , Mâle , Dopamine/métabolisme , Protéines proto-oncogènes c-fos/métabolisme , Substantia nigra , Neurones/physiologie , Transducteurs
9.
CNS Neurosci Ther ; 30(6): e14782, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38828651

RÉSUMÉ

BACKGROUND: The thalamus system plays critical roles in the regulation of reversible unconsciousness induced by general anesthetics, especially the arousal stage of general anesthesia (GA). But the function of thalamus in GA-induced loss of consciousness (LOC) is little known. The thalamic reticular nucleus (TRN) is the only GABAergic neurons-composed nucleus in the thalamus, which is composed of parvalbumin (PV) and somatostatin (SST)-expressing GABAergic neurons. The anterior sector of TRN (aTRN) is indicated to participate in the induction of anesthesia, but the roles remain unclear. This study aimed to reveal the role of the aTRN in propofol and isoflurane anesthesia. METHODS: We first set up c-Fos straining to monitor the activity variation of aTRNPV and aTRNSST neurons during propofol and isoflurane anesthesia. Subsequently, optogenetic tools were utilized to activate aTRNPV and aTRNSST neurons to elucidate the roles of aTRNPV and aTRNSST neurons in propofol and isoflurane anesthesia. Electroencephalogram (EEG) recordings and behavioral tests were recorded and analyzed. Lastly, chemogenetic activation of the aTRNPV neurons was applied to confirm the function of the aTRN neurons in propofol and isoflurane anesthesia. RESULTS: c-Fos straining showed that both aTRNPV and aTRNSST neurons are activated during the LOC period of propofol and isoflurane anesthesia. Optogenetic activation of aTRNPV and aTRNSST neurons promoted isoflurane induction and delayed the recovery of consciousness (ROC) after propofol and isoflurane anesthesia, meanwhile chemogenetic activation of the aTRNPV neurons displayed the similar effects. Moreover, optogenetic and chemogenetic activation of the aTRN neurons resulted in the accumulated burst suppression ratio (BSR) during propofol and isoflurane GA, although they represented different effects on the power distribution of EEG frequency. CONCLUSION: Our findings reveal that the aTRN GABAergic neurons play a critical role in promoting the induction of propofol- and isoflurane-mediated GA.


Sujet(s)
Anesthésie générale , Conscience , Neurones GABAergiques , Isoflurane , Propofol , Propofol/pharmacologie , Isoflurane/pharmacologie , Animaux , Neurones GABAergiques/effets des médicaments et des substances chimiques , Neurones GABAergiques/physiologie , Souris , Conscience/effets des médicaments et des substances chimiques , Conscience/physiologie , Mâle , Électroencéphalographie , Anesthésiques par inhalation/pharmacologie , Noyaux antérieurs du thalamus/effets des médicaments et des substances chimiques , Noyaux antérieurs du thalamus/physiologie , Souris de lignée C57BL , Souris transgéniques , Anesthésiques intraveineux/pharmacologie , Protéines proto-oncogènes c-fos/métabolisme , Optogénétique
10.
Cell Biol Toxicol ; 40(1): 44, 2024 Jun 11.
Article de Anglais | MEDLINE | ID: mdl-38862832

RÉSUMÉ

BACKGROUND: Vasculogenic mimicry (VM) is an enigmatic physiological feature that influences blood supply within glioblastoma (GBM) tumors for their sustained growth. Previous studies identify NFATC3, FOSL1 and HNRNPA2B1 as significant mediators of VEGFR2, a key player in vasculogenesis, and their molecular relationships may be crucial for VM in GBM. AIMS: The aim of this study was to understand how NFATC3, FOSL1 and HNRNPA2B1 collectively influence VM in GBM. METHODS: We have investigated the underlying gene regulatory mechanisms for VM in GBM cell lines U251 and U373 in vitro and in vivo. In vitro cell-based assays were performed to explore the role of NFATC3, FOSL1 and HNRNPA2B1 in GBM cell proliferation, VM and migration, in the context of RNA interference (RNAi)-mediated knockdown alongside corresponding controls. Western blotting and qRT-PCR assays were used to examine VEGFR2 expression levels. CO-IP was employed to detect protein-protein interactions, ChIP was used to detect DNA-protein complexes, and RIP was used to detect RNA-protein complexes. Histochemical staining was used to detect VM tube formation in vivo. RESULTS: Focusing on NFATC3, FOSL1 and HNRNPA2B1, we found each was significantly upregulated in GBM and positively correlated with VM-like cellular behaviors in U251 and U373 cell lines. Knockdown of NFATC3, FOSL1 or HNRNPA2B1 each resulted in decreased levels of VEGFR2, a key growth factor gene that drives VM, as well as the inhibition of proliferation, cell migration and extracorporeal VM activity. Chromatin immunoprecipitation (ChIP) studies and luciferase reporter gene assays revealed that NFATC3 binds to the promoter region of VEGFR2 to enhance VEGFR2 gene expression. Notably, FOSL1 interacts with NFATC3 as a co-factor to potentiate the DNA-binding capacity of NFATC3, resulting in enhanced VM-like cellular behaviors. Also, level of NFATC3 protein in cells was enhanced through HNRNPA2B1 binding of NFATC3 mRNA. Furthermore, RNAi-mediated silencing of NFATC3, FOSL1 and HNRNPA2B1 in GBM cells reduced their capacity for tumor formation and VM-like behaviors in vivo. CONCLUSION: Taken together, our findings identify NFATC3 as an important mediator of GBM tumor growth through its molecular and epistatic interactions with HNRNPA2B1 and FOSL1 to influence VEGFR2 expression and VM-like cellular behaviors.


Sujet(s)
Mouvement cellulaire , Prolifération cellulaire , Glioblastome , Ribonucléoprotéine nucléaire hétérogène du groupe A-B , Facteurs de transcription NFATC , Néovascularisation pathologique , Protéines proto-oncogènes c-fos , Humains , Protéines proto-oncogènes c-fos/métabolisme , Protéines proto-oncogènes c-fos/génétique , Glioblastome/métabolisme , Glioblastome/anatomopathologie , Glioblastome/génétique , Glioblastome/vascularisation , Lignée cellulaire tumorale , Ribonucléoprotéine nucléaire hétérogène du groupe A-B/métabolisme , Ribonucléoprotéine nucléaire hétérogène du groupe A-B/génétique , Facteurs de transcription NFATC/métabolisme , Facteurs de transcription NFATC/génétique , Animaux , Prolifération cellulaire/génétique , Néovascularisation pathologique/métabolisme , Néovascularisation pathologique/génétique , Néovascularisation pathologique/anatomopathologie , Mouvement cellulaire/génétique , Récepteur-2 au facteur croissance endothéliale vasculaire/métabolisme , Récepteur-2 au facteur croissance endothéliale vasculaire/génétique , Régulation de l'expression des gènes tumoraux , Souris , Tumeurs du cerveau/métabolisme , Tumeurs du cerveau/génétique , Tumeurs du cerveau/anatomopathologie , Tumeurs du cerveau/vascularisation , Souris nude
11.
J Physiol Sci ; 74(1): 33, 2024 Jun 12.
Article de Anglais | MEDLINE | ID: mdl-38867187

RÉSUMÉ

Hibernation and torpor are not passive responses caused by external temperature drops and fasting but are active brain functions that lower body temperature. A population of neurons in the preoptic area was recently identified as such active torpor-regulating neurons. We hypothesized that the other hypothermia-inducing maneuvers would also activate these neurons. To test our hypothesis, we first refined the previous observations, examined the brain regions explicitly activated during the falling phase of body temperature using c-Fos expression, and confirmed the preoptic area. Next, we observed long-lasting hypothermia by reactivating torpor-tagged Gq-expressing neurons using the activity tagging and DREADD systems. Finally, we found that about 40-60% of torpor-tagged neurons were activated by succeeding isoflurane anesthesia and by icv administration of an adenosine A1 agonist. Isoflurane-induced and central adenosine-induced hypothermia is, at least in part, an active process mediated by the torpor-regulating neurons in the preoptic area.


Sujet(s)
Adénosine , Isoflurane , Neurones , Aire préoptique , Animaux , Aire préoptique/effets des médicaments et des substances chimiques , Aire préoptique/métabolisme , Isoflurane/pharmacologie , Isoflurane/administration et posologie , Adénosine/administration et posologie , Adénosine/pharmacologie , Adénosine/métabolisme , Neurones/effets des médicaments et des substances chimiques , Neurones/métabolisme , Neurones/physiologie , Mâle , Anesthésiques par inhalation/pharmacologie , Anesthésiques par inhalation/administration et posologie , Température du corps/effets des médicaments et des substances chimiques , Température du corps/physiologie , Hypothermie/induit chimiquement , Hypothermie/métabolisme , Torpeur/effets des médicaments et des substances chimiques , Souris , Protéines proto-oncogènes c-fos/métabolisme
12.
eNeuro ; 11(6)2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38839305

RÉSUMÉ

Social behavior is important for our well-being, and its dysfunctions impact several pathological conditions. Although the involvement of glutamate is undeniable, the relevance of vesicular glutamate transporter type 3 (VGluT3), a specific vesicular transporter, in the control of social behavior is not sufficiently explored. Since midbrain median raphe region (MRR) is implicated in social behavior and the nucleus contains high amount of VGluT3+ neurons, we compared the behavior of male VGluT3 knock-out (KO) and VGluT3-Cre mice, the latter after chemogenetic MRR-VGluT3 manipulation. Appropriate control groups were included. Behavioral test battery was used for social behavior (sociability, social discrimination, social interaction, resident intruder test) and possible confounding factors (open field, elevated plus maze, Y-maze tests). Neuronal activation was studied by c-Fos immunohistochemistry. Human relevance was confirmed by VGluT3 gene expression in relevant human brainstem areas. VGluT3 KO mice exhibited increased anxiety, social interest, but also aggressive behavior in anxiogenic environment and impaired social memory. For KO animals, social interaction induced lower cell activation in the anterior cingulate, infralimbic cortex, and medial septum. In turn, excitation of MRR-VGluT3+ neurons was anxiolytic. Inhibition increased social interest 24 h later but decreased mobility and social behavior in aggressive context. Chemogenetic activation increased the number of c-Fos+ neurons only in the MRR. We confirmed the increased anxiety-like behavior and impaired memory of VGluT3 KO strain and revealed increased, but inadequate, social behavior. MRR-VGluT3 neurons regulated mobility and social and anxiety-like behavior in a context-dependent manner. The presence of VGluT3 mRNA on corresponding human brain areas suggests clinical relevance.


Sujet(s)
Anxiété , Souris knockout , Comportement social , Animaux , Mâle , Humains , Anxiété/métabolisme , Noyaux du raphé/métabolisme , Souris , Neurones/métabolisme , Souris de lignée C57BL , Comportement animal/physiologie , Souris transgéniques , Systèmes de transport d'acides aminés acides/métabolisme , Systèmes de transport d'acides aminés acides/génétique , Protéines proto-oncogènes c-fos/métabolisme , Agressivité/physiologie
13.
Int J Mol Sci ; 25(12)2024 Jun 13.
Article de Anglais | MEDLINE | ID: mdl-38928250

RÉSUMÉ

Posttraumatic stress disorder (PTSD) is a debilitating psychosomatic condition characterized by impairment of brain fear circuits and persistence of exceptionally strong associative memories resistant to extinction. In this study, we investigated the neural and behavioral consequences of inhibiting protein synthesis, a process known to suppress the formation of conventional aversive memories, in an established PTSD animal model based on contextual fear conditioning in mice. Control animals were subjected to the conventional fear conditioning task. Utilizing c-Fos neural activity mapping, we found that the retrieval of PTSD and normal aversive memories produced activation of an overlapping set of brain structures. However, several specific areas, such as the infralimbic cortex and the paraventricular thalamic nucleus, showed an increase in the PTSD group compared to the normal aversive memory group. Administration of protein synthesis inhibitor before PTSD induction disrupted the formation of traumatic memories, resulting in behavior that matched the behavior of mice with usual aversive memory. Concomitant with this behavioral shift was a normalization of brain c-Fos activation pattern matching the one observed in usual fear memory. Our findings demonstrate that inhibiting protein synthesis during traumatic experiences significantly impairs the development of PTSD in a mouse model. These data provide insights into the neural underpinnings of protein synthesis-dependent traumatic memory formation and open prospects for the development of new therapeutic strategies for PTSD prevention.


Sujet(s)
Modèles animaux de maladie humaine , Peur , Mémoire , Protéines proto-oncogènes c-fos , Troubles de stress post-traumatique , Animaux , Troubles de stress post-traumatique/métabolisme , Protéines proto-oncogènes c-fos/métabolisme , Souris , Mâle , Inhibiteurs de la synthèse protéique/pharmacologie , Souris de lignée C57BL , Encéphale/métabolisme , Biosynthèse des protéines
14.
Nat Commun ; 15(1): 5321, 2024 Jun 22.
Article de Anglais | MEDLINE | ID: mdl-38909051

RÉSUMÉ

Psychedelics have experienced renewed interest following positive clinical effects, however the neurobiological mechanisms underlying effects remain unclear. The paraventricular nucleus of the hypothalamus (PVN) plays an integral role in stress response, autonomic function, social behavior, and other affective processes. We investigated the effect of psilocin, the psychoactive metabolite of psilocybin, on PVN reactivity in Sprague Dawley rats. Psilocin increased stimulus-independent PVN activity as measured by c-Fos expression in male and female rats. Psilocin increased PVN reactivity to an aversive air-puff stimulus in males but not females. Reactivity was restored at 2- and 7-days post-injection with no group differences. Additionally, prior psilocin injection did not affect PVN reactivity following acute restraint stress. Experimental groups sub-classified by baseline threat responding indicate that increased male PVN reactivity is driven by active threat responders. These findings identify the PVN as a significant site of psychedelic drug action with implications for threat responding behavior.


Sujet(s)
Hallucinogènes , Noyau paraventriculaire de l'hypothalamus , Psilocybine , Rat Sprague-Dawley , Animaux , Noyau paraventriculaire de l'hypothalamus/effets des médicaments et des substances chimiques , Noyau paraventriculaire de l'hypothalamus/métabolisme , Mâle , Psilocybine/analogues et dérivés , Psilocybine/pharmacologie , Psilocybine/administration et posologie , Femelle , Rats , Hallucinogènes/pharmacologie , Hallucinogènes/administration et posologie , Protéines proto-oncogènes c-fos/métabolisme , Comportement animal/effets des médicaments et des substances chimiques , Stress psychologique/physiopathologie , Stress psychologique/traitement médicamenteux
15.
Cereb Cortex ; 34(6)2024 Jun 04.
Article de Anglais | MEDLINE | ID: mdl-38918076

RÉSUMÉ

Biological motion, the typical movement of vertebrates, is perceptually salient for many animal species. Newly hatched domestic chicks and human newborns show a spontaneous preference for simple biological motion stimuli (point-light displays) at birth prior to any visual learning. Despite evidence of such preference at birth, neural studies performed so far have focused on a specialized neural network involving primarily cortical areas. Here, we presented newly hatched visually naïve domestic chicks to either biological or rigid motion stimuli and measured for the first time their brain activation. Immediate Early Gene (c-Fos) expression revealed selective activation in the preoptic area of the hypothalamus and the nucleus taeniae of the amygdala. These results suggest that subpallial/subcortical regions play a crucial role in biological motion perception at hatching, paving the way for future studies on adult animals, including humans.


Sujet(s)
Animaux nouveau-nés , Poulets , Perception du mouvement , Animaux , Perception du mouvement/physiologie , Encéphale/physiologie , Protéines proto-oncogènes c-fos/métabolisme , Stimulation lumineuse/méthodes
16.
Eur J Pharmacol ; 977: 176756, 2024 Aug 15.
Article de Anglais | MEDLINE | ID: mdl-38897021

RÉSUMÉ

Repeated exposure to propofol during early brain development is associated with anxiety disorders in adulthood, yet the mechanisms underlying propofol-induced susceptibility to anxiety disorders remain elusive. The lateral septum (LS), primarily composed of γ-aminobutyric acidergic (GABAergic) neurons, serves as a key brain region in the regulation of anxiety. However, it remains unclear whether LS GABAergic neurons are implicated in propofol-induced anxiety. Therefore, we conducted c-Fos immunostaining of whole-brain slices from mice exposed to propofol during early life. Our findings indicate that propofol exposure activates GABAergic neurons in the LS. Selective activation of LS GABAergic neurons resulted in increased anxiety-like behavior, while selective inhibition of these neurons reduced such behaviors. These results suggest that the LS is a critical brain region involved in propofol-induced anxiety. Furthermore, we investigated the molecular mechanism of propofol-induced anxiety in the LS. Microglia activation underlies the development of anxiety. Immunofluorescence staining and Western blot analysis of LS revealed activated microglia and significantly elevated levels of phospho-NF-κB p65 protein. Additionally, a decrease in the number of neuronal spines was observed. Our study highlights the crucial role of the LS in the development of anxiety-like behavior in adulthood following childhood propofol exposure, accompanied by the activation of inflammatory pathways.


Sujet(s)
Anxiété , Comportement animal , Neurones GABAergiques , Microglie , Propofol , Propofol/pharmacologie , Animaux , Anxiété/induit chimiquement , Souris , Mâle , Neurones GABAergiques/effets des médicaments et des substances chimiques , Neurones GABAergiques/métabolisme , Neurones GABAergiques/anatomopathologie , Comportement animal/effets des médicaments et des substances chimiques , Microglie/effets des médicaments et des substances chimiques , Microglie/métabolisme , Microglie/anatomopathologie , Protéines proto-oncogènes c-fos/métabolisme , Souris de lignée C57BL , Facteur de transcription RelA/métabolisme , Épines dendritiques/effets des médicaments et des substances chimiques , Épines dendritiques/anatomopathologie , Épines dendritiques/métabolisme
17.
Int J Mol Sci ; 25(10)2024 May 14.
Article de Anglais | MEDLINE | ID: mdl-38791400

RÉSUMÉ

This review specifically examines the important function of the oncoprotein FOSL1 in the dimeric AP-1 transcription factor, which consists of FOS-related components. FOSL1 is identified as a crucial controller of invasion and metastatic dissemination, making it a potential target for therapeutic treatment in cancer patients. The review offers a thorough examination of the regulatory systems that govern the influence exerted on FOSL1. These include a range of changes that occur throughout the process of transcription and after the translation of proteins. We have discovered that several non-coding RNAs, such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), play a significant role in regulating FOSL1 expression by directly interacting with its mRNA transcripts. Moreover, an investigation into the functional aspects of FOSL1 reveals its involvement in apoptosis, proliferation, and migration. This work involves a comprehensive analysis of the complex signaling pathways that support these diverse activities. Furthermore, particular importance is given to the function of FOSL1 in coordinating the activation of several cytokines, such as TGF-beta, and the commencement of IL-6 and VEGF production in tumor-associated macrophages (TAMs) that migrate into the tumor microenvironment. There is a specific emphasis on evaluating the predictive consequences linked to FOSL1. Insights are now emerging on the developing roles of FOSL1 in relation to the processes that drive resistance and reliance on specific treatment methods. Targeting FOSL1 has a strong inhibitory effect on the formation and spread of specific types of cancers. Despite extensive endeavors, no drugs targeting AP-1 or FOSL1 for cancer treatment have been approved for clinical use. Hence, it is imperative to implement innovative approaches and conduct additional verifications.


Sujet(s)
Gliome , Cellules souches tumorales , Protéines proto-oncogènes c-fos , Humains , Protéines proto-oncogènes c-fos/métabolisme , Protéines proto-oncogènes c-fos/génétique , Cellules souches tumorales/métabolisme , Cellules souches tumorales/anatomopathologie , Gliome/génétique , Gliome/anatomopathologie , Gliome/métabolisme , Animaux , Régulation de l'expression des gènes tumoraux , Carcinogenèse/génétique , Microenvironnement tumoral/génétique , Transduction du signal , Oncogènes , microARN/génétique , microARN/métabolisme
18.
Eur J Neurosci ; 60(1): 3544-3556, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38695253

RÉSUMÉ

Empathetic relationships and the social transference of behaviours have been shown to occur in humans, and more recently through the development of rodent models, where both fear and pain phenotypes develop in observer animals. Clinically, observing traumatic events can induce 'trauma and stressor-related disorders' as defined in the DSM 5. These disorders are often comorbid with pain and gastrointestinal disturbances; however, our understanding of how gastrointestinal - or visceral - pain can be vicariously transmitted is lacking. Visceral pain originates from the internal organs, and despite its widespread prevalence, remains poorly understood. We established an observation paradigm to assess the impact of witnessing visceral pain. We utilised colorectal distension (CRD) to induce visceral pain behaviours in a stimulus rodent while the observer rodent observed. Twenty four hours post-observation, the observer rodent's visceral sensitivity was assessed using CRD. The observer rodents were found to have significant hyperalgesia as determined by lower visceral pain threshold and higher number of total pain behaviours compared with controls. The behaviours of the observer animals during the observation were found to be correlated with the behaviours of the stimulus animal employed. We found that observer animals had hypoactivity of the hypothalamic-pituitary-adrenal (HPA) axis, highlighted by reduced corticosterone at 90 minutes post-CRD. Using c-Fos immunohistochemistry we showed that observer animals also had increased activation of the anterior cingulate cortex, and decreased activation of the paraventricular nucleus, compared with controls. These results suggest that witnessing another animal in pain produces a behavioural phenotype and impacts the brain-gut axis.


Sujet(s)
Modèles animaux de maladie humaine , Stress psychologique , Douleur viscérale , Animaux , Mâle , Douleur viscérale/physiopathologie , Douleur viscérale/psychologie , Rats , Stress psychologique/physiopathologie , Rat Sprague-Dawley , Axe hypothalamohypophysaire/physiopathologie , Axe hypothalamohypophysaire/métabolisme , Hyperalgésie/physiopathologie , Axe hypophyso-surrénalien/physiopathologie , Axe hypophyso-surrénalien/métabolisme , Protéines proto-oncogènes c-fos/métabolisme , Seuil nociceptif/physiologie
19.
J Psychiatry Neurosci ; 49(3): E192-E207, 2024.
Article de Anglais | MEDLINE | ID: mdl-38816029

RÉSUMÉ

BACKGROUND: Recent studies have identified empathy deficit as a core impairment and diagnostic criterion for people with autism spectrum disorders; however, the improvement of empathy focuses primarily on behavioural interventions without the target regulation. We sought to compare brain regions associated with empathy-like behaviours of fear and pain, and to explore the role of the oxytocin-oxytocin receptor system in fear empathy. METHODS: We used C57BL mice to establish 2 models of fear empathy and pain empathy. We employed immunofluorescence histochemical techniques to observe the expression of c-Fos throughout the entire brain and subsequently quantified the number of c-Fos-positive cells in different brain regions. Furthermore, we employed chemogenetic technology to selectively manipulate these neurons in Oxt-Cre-/+ mice to identify the role of oxytocin in this process. RESULTS: The regions activated by fear empathy were the anterior cingulate cortex, basolateral amygdala, nucleus accumbens, paraventricular nucleus (PVN), lateral habenula, and ventral and dorsal hippocampus. The regions activated by pain empathy were the anterior cingulate cortex, basolateral amygdala, nucleus accumbens, and lateral habenula. We found that increasing the activity of oxytocin neurons in the PVN region enhanced the response to fear empathy. This enhancement may be mediated through oxytocin receptors. LIMITATIONS: This study included only male animals, which restricts the broader interpretation of the findings. Further investigations on circuit function need to be conducted. CONCLUSION: The brain regions implicated in the regulation of fear and pain empathy exhibit distinctions; the activity of PVN neurons was positively correlated with empathic behaviour in mice. These findings highlight the role of the PVN oxytocin pathway in regulating fear empathy and suggest the importance of oxytocin signalling in mediating empathetic responses.


Sujet(s)
Empathie , Peur , Souris de lignée C57BL , Neurones , Ocytocine , Noyau paraventriculaire de l'hypothalamus , Animaux , Ocytocine/métabolisme , Mâle , Noyau paraventriculaire de l'hypothalamus/métabolisme , Peur/physiologie , Empathie/physiologie , Neurones/métabolisme , Souris , Récepteurs à l'ocytocine/métabolisme , Protéines proto-oncogènes c-fos/métabolisme , Douleur/physiopathologie , Douleur/psychologie , Souris transgéniques
20.
Hippocampus ; 34(7): 342-356, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38780087

RÉSUMÉ

Although the phenomenon of memory formation and recall associated with the use of psychotropic drugs has been extensively studied, mechanisms underlying memories for natural reward have not been clarified. Herein, we test the hypothesis that glutamatergic receptors in the dentate gyrus play a role in memories associated with sucrose. We used pellet self-administration protocol to generate memories in two-port nose-poke discrimination task using male Wistar rats. During non-rewarded probe trial, the conditioned animals readily discriminated the active port versus inactive port and showed massive increase in mRNA expression of AMPA receptor subunit genes (gria2, gria3) as well as c-Fos protein in the DG. Access to sweet pellet further enhanced c-Fos expression in the DG. However, animals pre-treated with AMPA receptor antagonist CNQX (intra-DG), on exposure to operant chamber (no pellet), showed decreased discrimination as well as c-Fos expression. We suggest that AMPA receptors in DG mediate recall and consolidation of memories associated with sucrose consumption. CNQX pre-treated animals, if presented with sweet pellet on nose poke, exhibited high discrimination index coupled with increased c-Fos expression. In these CNQX treated rats, the DI was again decreased following administration of NMDA receptor antagonist AP5. We suggest that, although AMPA receptors are blocked, the access to sweet pellet may induce surge of glutamate in the DG, which in turn may reinstate memories via activation of erstwhile silent synapses in NMDA dependant manner.


Sujet(s)
Gyrus denté , Rat Wistar , Récepteur de l'AMPA , Récepteurs du N-méthyl-D-aspartate , Saccharose , Animaux , Mâle , Récepteur de l'AMPA/métabolisme , Récepteur de l'AMPA/antagonistes et inhibiteurs , Saccharose/administration et posologie , Gyrus denté/effets des médicaments et des substances chimiques , Gyrus denté/métabolisme , Récepteurs du N-méthyl-D-aspartate/métabolisme , Récepteurs du N-méthyl-D-aspartate/antagonistes et inhibiteurs , Antagonistes des acides aminés excitateurs/pharmacologie , Protéines proto-oncogènes c-fos/métabolisme , Rats , 6-Cyano-7-nitroquinoxaline-2,3-dion e/pharmacologie , Mémoire/physiologie , Mémoire/effets des médicaments et des substances chimiques , Conditionnement opérant/effets des médicaments et des substances chimiques , Conditionnement opérant/physiologie , /effets des médicaments et des substances chimiques , /physiologie , Autoadministration , ARN messager/métabolisme , Apprentissage discriminatif/effets des médicaments et des substances chimiques , Apprentissage discriminatif/physiologie
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...