Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 6.200
Filtrer
1.
Front Immunol ; 15: 1445338, 2024.
Article de Anglais | MEDLINE | ID: mdl-39247192

RÉSUMÉ

Background: Defective ribosomal products (DRiPs) are non-functional proteins rapidly degraded during or after translation being an essential source for MHC class I ligands. DRiPs are characterized to derive from a substantial subset of nascent gene products that degrade more rapidly than their corresponding native retiree pool. So far, mass spectrometry analysis revealed that a large number of HLA class I peptides derive from DRiPs. However, a specific viral DRiP on protein level was not described. In this study, we aimed to characterize and identify DRiPs derived from a viral protein. Methods: Using the nucleoprotein (NP) of the lymphocytic choriomeningitis virus (LCMV) which is conjugated N-terminally to ubiquitin, or the ubiquitin-like modifiers FAT10 or ISG15 the occurrence of DRiPs was studied. The formation and degradation of DRiPs was monitored by western blot with the help of a FLAG tag. Flow cytometry and cytotoxic T cells were used to study antigen presentation. Results: We identified several short lived DRiPs derived from LCMV-NP. Of note, these DRiPs could only be observed when the LCMV-NP was modified with ubiquitin or ubiquitin-like modifiers, but not in the wild type form. Using proteasome inhibitors, we could show that degradation of LCMV-NP derived DRiPs were proteasome dependent. Interestingly, the synthesis of DRiPs could be enhanced when cells were stressed with the help of FCS starvation. An enhanced NP118-126 presentation was observed when the LCMV-NP was modified with ubiquitin or ubiquitin-like modifiers, or under FCS starvation. Conclusion: Taken together, we visualize for the first time DRiPs derived from a viral protein. Furthermore, DRiPs formation, and therefore MHC-I presentation, is enhanced under cellular stress conditions. Our investigations on DRiPs in MHC class I antigen presentation open up new approaches for the development of vaccination strategies.


Sujet(s)
Présentation d'antigène , Antigènes d'histocompatibilité de classe I , Virus de la chorioméningite lymphocytaire , Présentation d'antigène/immunologie , Antigènes d'histocompatibilité de classe I/immunologie , Antigènes d'histocompatibilité de classe I/métabolisme , Virus de la chorioméningite lymphocytaire/immunologie , Animaux , Humains , Stress physiologique/immunologie , Lymphocytes T cytotoxiques/immunologie , Souris , Ubiquitines/métabolisme , Ubiquitines/génétique , Protéines ribosomiques/métabolisme , Protéines ribosomiques/immunologie , Protéolyse , Nucléoprotéines/immunologie , Nucléoprotéines/métabolisme
2.
RNA Biol ; 21(1): 8-18, 2024 Jan.
Article de Anglais | MEDLINE | ID: mdl-39233564

RÉSUMÉ

In eukaryotes, the ribosomal small subunit (40S) is composed of 18S rRNA and 33 ribosomal proteins. 18S rRNA has a special secondary structure and is an indispensable part of the translation process. Herein, a special sequence located in mammalian 18S rRNA named Poly(G)7box, which is composed of seven guanines, was found. Poly(G)7 can form a special and stable secondary structure by binding to the translation elongation factor subunit eEF1D and the ribosomal protein RPL32. Poly(G)7box was transfected into cells, and the translation efficiency of cells was inhibited. We believe that Poly(G)7box is an important translation-related functional element located on mammalian 18S rRNA, meanwhile the Poly(G)7 located on mRNA 5' and 3' box does not affect mRNA translation.


Sujet(s)
Biosynthèse des protéines , ARN ribosomique 18S , ARN ribosomique 18S/métabolisme , ARN ribosomique 18S/génétique , Humains , Animaux , Conformation d'acide nucléique , Protéines ribosomiques/métabolisme , Protéines ribosomiques/génétique , ARN messager/génétique , ARN messager/métabolisme , Séquence nucléotidique , Guanine/métabolisme , Mammifères/génétique
3.
Mol Biol Rep ; 51(1): 952, 2024 Sep 04.
Article de Anglais | MEDLINE | ID: mdl-39230600

RÉSUMÉ

Ribosomal protein SA (RPSA) plays multiple roles in cells, including ribosomal biogenesis and translation, cellular migration, and cytoskeleton reorganization. RPSA is crucial in the process of pathogen infection. Extensive research has examined RPSA's role in pathogen adhesion and invasion, but its broader functions, particularly its anti-infective capabilities, have garnered increasing attention in recent years. This dual role is closely related to its structural domains, which influence its localization and function. This review summarizes key research findings concerning the functional domains of RPSA and analyzes the relationship between its membrane localization and structural domains. Additionally, the functional implications of RPSA are categorized based on its different localizations during pathogen infection. Specifically, when RPSA is located on the cell surface, it promotes pathogen adhesion and invasion of host cells; conversely, when RPSA is located intracellularly, it exhibits anti-infective properties. Overall, RPSA shows a dual nature, both in facilitating pathogen invasion of the host and in possessing the ability to resist pathogen infection. This review comprehensively examines the dual role of RPSA in pathogen infection by analyzing its structural domains, localization, and interactions with cellular and pathogen molecules. Our aim is to update and deepen researchers' understanding of the various functions of RPSA during pathogen infection.


Sujet(s)
Protéines ribosomiques , Protéines ribosomiques/métabolisme , Humains , Interactions hôte-pathogène , Protéines bactériennes/métabolisme , Protéines bactériennes/composition chimique , Animaux
4.
Elife ; 132024 Aug 02.
Article de Anglais | MEDLINE | ID: mdl-39093940

RÉSUMÉ

Aminoglycoside antibiotics target ribosomes and are effective against a wide range of bacteria. Here, we demonstrated that knockout strains related to energy metabolism in Escherichia coli showed increased tolerance to aminoglycosides during the mid-exponential growth phase. Contrary to expectations, these mutations did not reduce the proton motive force or aminoglycoside uptake, as there were no significant changes in metabolic indicators or intracellular gentamicin levels between wild-type and mutant strains. Our comprehensive proteomics analysis unveiled a noteworthy upregulation of proteins linked to the tricarboxylic acid (TCA) cycle in the mutant strains during the mid-exponential growth phase, suggesting that these strains compensate for the perturbation in their energy metabolism by increasing TCA cycle activity to maintain their membrane potential and ATP levels. Furthermore, our pathway enrichment analysis shed light on local network clusters displaying downregulation across all mutant strains, which were associated with both large and small ribosomal binding proteins, ribosome biogenesis, translation factor activity, and the biosynthesis of ribonucleoside monophosphates. These findings offer a plausible explanation for the observed tolerance of aminoglycosides in the mutant strains. Altogether, this research provides valuable insights into the mechanisms of aminoglycoside tolerance, paving the way for novel strategies to combat such cells.


Bacteria that are resistant to antibiotic drugs pose a significant challenge to human health around the globe. They have acquired genetic mutations that allow them to survive and grow in the presence of one or more antibiotics, making it harder for clinicians to eliminate such bacteria from human patients with life-threatening infections. Some bacteria may be able to temporarily develop tolerance to an antibiotic by altering how they grow and behave, without acquiring any new genetic mutations. Such drug-tolerant bacteria are more likely to survive long enough to gain mutations that may promote drug resistance. Recent studies suggest that genes involved in processes collectively known as energy metabolism, which convert food sources into the chemical energy cells need to survive and grow, may play a role in both tolerance and resistance. For example, Escherichia coli bacteria develop mutations in energy metabolism genes when exposed to members of a family of antibiotics known as the aminoglycosides. However, it remains unclear what exact role energy metabolism plays in antibiotic tolerance. To address this question, Shiraliyev and Orman studied how a range of E. coli strains with different genetic mutations affecting energy metabolism could survive in the presence of aminoglycosides. The experiments found that most of the mutant strains had a higher tolerance to the drugs than normal E. coli. Unexpectedly, this increased tolerance did not appear to be due to the drugs entering the mutant bacterium cells less than they enter normal cells (a common strategy of drug resistance and tolerance). Further experiments using a technique, known as proteomics, revealed that many genes involved in energy metabolism were upregulated in the mutant bacteria, suggesting these cells were compensating for the genetic abnormalities they have. Furthermore, the mutant bacteria had lower levels of the molecules the antibiotics target than normal bacteria. The findings of Shiraliyev and Orman offer critical insights into how bacteria become tolerant of aminoglycoside antibiotics. In the future, this may guide the development of new strategies to combat bacterial diseases.


Sujet(s)
Aminosides , Antibactériens , Escherichia coli , Protéines ribosomiques , Protéines ribosomiques/métabolisme , Protéines ribosomiques/génétique , Aminosides/pharmacologie , Antibactériens/pharmacologie , Escherichia coli/génétique , Escherichia coli/effets des médicaments et des substances chimiques , Escherichia coli/métabolisme , Métabolisme énergétique/effets des médicaments et des substances chimiques , Protéines Escherichia coli/métabolisme , Protéines Escherichia coli/génétique , Tolérance aux médicaments , Protéomique , Cycle citrique/effets des médicaments et des substances chimiques
5.
Int J Mol Sci ; 25(15)2024 Aug 01.
Article de Anglais | MEDLINE | ID: mdl-39125999

RÉSUMÉ

Elastin, a key structural protein essential for the elasticity of the skin and elastogenic tissues, degrades with age. Replenishing elastin holds promise for anti-aging cosmetics and the supplementation of elastic activities of the cardiovascular system. We employed RiboScreenTM, a technology for identifying molecules that enhance the production of specific proteins, to target the production of tropoelastin. We make use of RiboScreenTM in two crucial steps: first, to pinpoint a target ribosomal protein (TRP), which acts as a switch to increase the production of the protein of interest (POI), and second, to identify small molecules that activate this ribosomal protein switch. Using RiboScreenTM, we identified ribosomal protein L40, henceforth eL40, as a TRP switch to boost tropoelastin production. Drug discovery identified a small-molecule hit that binds to eL40. In-cell treatment demonstrated activity of the eL40 ligand and delivered increased tropoelastin production levels in a dose-dependent manner. Thus, we demonstrate that RiboScreenTM can successfully identify a small-molecule hit capable of selectively enhancing tropoelastin production. This compound has the potential to be developed for topical or systemic applications to promote skin rejuvenation and to supplement elastic functionality within the cardiovascular system.


Sujet(s)
Élastine , Protéines ribosomiques , Ribosomes , Tropoélastine , Tropoélastine/métabolisme , Tropoélastine/génétique , Humains , Protéines ribosomiques/métabolisme , Protéines ribosomiques/génétique , Élastine/métabolisme , Élastine/génétique , Ribosomes/métabolisme , Ribosomes/effets des médicaments et des substances chimiques , Ligands , Bibliothèques de petites molécules/pharmacologie
6.
Nat Commun ; 15(1): 7458, 2024 Aug 28.
Article de Anglais | MEDLINE | ID: mdl-39198484

RÉSUMÉ

Cellular senescence is characterized by a permanent growth arrest and is associated with tissue aging and cancer. Senescent cells secrete a number of different cytokines referred to as the senescence-associated secretory phenotype (SASP), which impacts the surrounding tissue and immune response. Here, we find that senescent cells exhibit higher rates of protein synthesis compared to proliferating cells and identify eIF5A as a crucial regulator of this process. Polyamine metabolism and hypusination of eIF5A play a pivotal role in sustaining elevated levels of protein synthesis in senescent cells. Mechanistically, we identify a p53-dependent program in senescent cells that maintains hypusination levels of eIF5A. Finally, we demonstrate that functional eIF5A is required for synthesizing mitochondrial ribosomal proteins and monitoring the immune clearance of premalignant senescent cells in vivo. Our findings establish an important role of protein synthesis during cellular senescence and suggest a link between eIF5A, polyamine metabolism, and senescence immune surveillance.


Sujet(s)
Vieillissement de la cellule , , Mitochondries , Facteurs initiation chaîne peptidique , Biosynthèse des protéines , Protéines de liaison à l'ARN , Protéine p53 suppresseur de tumeur , Facteurs initiation chaîne peptidique/métabolisme , Facteurs initiation chaîne peptidique/génétique , Protéine p53 suppresseur de tumeur/métabolisme , Protéines de liaison à l'ARN/métabolisme , Protéines de liaison à l'ARN/génétique , Humains , Mitochondries/métabolisme , Animaux , Souris , Surveillance immunologique , Polyamines/métabolisme , Protéines ribosomiques/métabolisme , Protéines ribosomiques/génétique , Lysine/métabolisme , Lysine/analogues et dérivés
7.
Cell Rep ; 43(8): 114610, 2024 Aug 27.
Article de Anglais | MEDLINE | ID: mdl-39116201

RÉSUMÉ

The tumor suppressor p53 and its antagonists MDM2 and MDM4 integrate stress signaling. For instance, dysbalanced assembly of ribosomes in nucleoli induces p53. Here, we show that the ribosomal protein L22 (RPL22; eL22), under conditions of ribosomal and nucleolar stress, promotes the skipping of MDM4 exon 6. Upon L22 depletion, more full-length MDM4 is maintained, leading to diminished p53 activity and enhanced cellular proliferation. L22 binds to specific RNA elements within intron 6 of MDM4 that correspond to a stem-loop consensus, leading to exon 6 skipping. Targeted deletion of these intronic elements largely abolishes L22-mediated exon skipping and re-enables cell proliferation, despite nucleolar stress. L22 also governs alternative splicing of the L22L1 (RPL22L1) and UBAP2L mRNAs. Thus, L22 serves as a signaling intermediate that integrates different layers of gene expression. Defects in ribosome synthesis lead to specific alternative splicing, ultimately triggering p53-mediated transcription and arresting cell proliferation.


Sujet(s)
Épissage alternatif , Exons , Précurseurs des ARN , Protéines ribosomiques , Protéine p53 suppresseur de tumeur , Protéines ribosomiques/métabolisme , Protéines ribosomiques/génétique , Protéine p53 suppresseur de tumeur/métabolisme , Protéine p53 suppresseur de tumeur/génétique , Humains , Exons/génétique , Précurseurs des ARN/métabolisme , Précurseurs des ARN/génétique , Épissage alternatif/génétique , Nucléole/métabolisme , Prolifération cellulaire , Protéines proto-oncogènes/métabolisme , Protéines proto-oncogènes/génétique , Liaison aux protéines , Protéines du cycle cellulaire/métabolisme , Protéines du cycle cellulaire/génétique , Protéines nucléaires/métabolisme , Protéines nucléaires/génétique , Ribosomes/métabolisme , Stress physiologique/génétique , Protéines de liaison à l'ARN
8.
Cell Rep ; 43(8): 114622, 2024 Aug 27.
Article de Anglais | MEDLINE | ID: mdl-39146182

RÉSUMÉ

Microsatellite instability-high (MSI-H) tumors are malignant tumors that, despite harboring a high mutational burden, often have intact TP53. One of the most frequent mutations in MSI-H tumors is a frameshift mutation in RPL22, a ribosomal protein. Here, we identified RPL22 as a modulator of MDM4 splicing through an alternative splicing switch in exon 6. RPL22 loss increases MDM4 exon 6 inclusion and cell proliferation and augments resistance to the MDM inhibitor Nutlin-3a. RPL22 represses the expression of its paralog, RPL22L1, by mediating the splicing of a cryptic exon corresponding to a truncated transcript. Therefore, damaging mutations in RPL22 drive oncogenic MDM4 induction and reveal a common splicing circuit in MSI-H tumors that may inform therapeutic targeting of the MDM4-p53 axis and oncogenic RPL22L1 induction.


Sujet(s)
Protéines du cycle cellulaire , Protéines ribosomiques , Humains , Protéines ribosomiques/métabolisme , Protéines ribosomiques/génétique , Protéines du cycle cellulaire/métabolisme , Protéines du cycle cellulaire/génétique , Protéines proto-oncogènes/métabolisme , Protéines proto-oncogènes/génétique , Tumeurs/génétique , Tumeurs/anatomopathologie , Tumeurs/métabolisme , Lignée cellulaire tumorale , Épissage alternatif/génétique , Prolifération cellulaire/génétique , Animaux , Exons/génétique , Souris , Protéine p53 suppresseur de tumeur/métabolisme , Protéine p53 suppresseur de tumeur/génétique , Protéines nucléaires/métabolisme , Protéines nucléaires/génétique , Régulation de l'expression des gènes tumoraux , Pipérazines/pharmacologie , Imidazoles/pharmacologie
9.
J Med Virol ; 96(8): e29869, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-39165093

RÉSUMÉ

Epstein-Barr virus (EBV) is a highly successful pathogen that infects ~95% of the adult population and is associated with diverse cancers and autoimmune diseases. The most abundant viral factor in latently infected cells is not a protein but a noncoding RNA called EBV-encoded RNA 1 (EBER1). Even though EBER1 is highly abundant and was discovered over forty years ago, the function of EBER1 has remained elusive. EBER1 interacts with the ribosomal protein L22, which normally suppresses the expression of its paralog L22-like 1 (L22L1). Here we show that when L22 binds EBER1, it cannot suppress L22L1, resulting in L22L1 being expressed and incorporated into ribosomes. We further show that L22L1-containing ribosomes preferentially translate mRNAs involved in the oxidative phosphorylation pathway. Moreover, upregulation of L22L1 is indispensable for growth transformation and immortalization of resting B cells upon EBV infection. Taken together, our results suggest that the function of EBER1 is to modulate host gene expression at the translational level, thus bypassing the need for dysregulating host gene transcription.


Sujet(s)
Herpèsvirus humain de type 4 , Phosphorylation oxydative , ARN viral , Protéines ribosomiques , Protéines ribosomiques/génétique , Protéines ribosomiques/métabolisme , Humains , Herpèsvirus humain de type 4/génétique , Herpèsvirus humain de type 4/physiologie , ARN viral/génétique , ARN viral/métabolisme , Lymphocytes B/virologie , Interactions hôte-pathogène/génétique , Infections à virus Epstein-Barr/virologie , Infections à virus Epstein-Barr/génétique , Infections à virus Epstein-Barr/métabolisme , Ribosomes/métabolisme , Ribosomes/génétique , Protéines de liaison à l'ARN
10.
EMBO Rep ; 25(9): 4078-4090, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-39122863

RÉSUMÉ

The human immunodeficiency virus (HIV-1) is highly dependent on a variety of host factors. Beside proteins, host RNA molecules are reported to aid HIV-1 replication and latency maintenance. Here, we implement multiple workflows of native RNA immunoprecipitation and sequencing (nRIPseq) to determine direct host RNA interaction partners of all 18 HIV-1 (poly)proteins. We identify 1,727 HIV-1 protein - human RNA interactions in the Jurkat cell line and 1,558 interactions in SupT1 cells for a subset of proteins, and discover distinct cellular pathways that seem to be used or controlled by HIV-1 on the RNA level: Tat binds mRNAs of proteins involved in the super elongation complex (AFF1-4, Cyclin-T1). Correlation of the interaction scores (based on binding abundancy) allows identifying the highest confidence interactions, for which we perform a small-scale knockdown screen that leads to the identification of three HIV-1 protein binding RNA interactors involved in HIV-1 replication (AFF2, H4C9 and RPLP0).


Sujet(s)
VIH-1 (Virus de l'Immunodéficience Humaine de type 1) , Protéome , Réplication virale , Humains , VIH-1 (Virus de l'Immunodéficience Humaine de type 1)/génétique , VIH-1 (Virus de l'Immunodéficience Humaine de type 1)/métabolisme , VIH-1 (Virus de l'Immunodéficience Humaine de type 1)/physiologie , Cellules Jurkat , Protéome/métabolisme , Réplication virale/génétique , Interactions hôte-pathogène/génétique , Liaison aux protéines , Cycline T/métabolisme , Cycline T/génétique , ARN messager/métabolisme , ARN messager/génétique , Infections à VIH/virologie , Infections à VIH/métabolisme , Infections à VIH/génétique , ARN viral/métabolisme , ARN viral/génétique , Produits du gène tat du virus de l'immunodéficience humaine/métabolisme , Produits du gène tat du virus de l'immunodéficience humaine/génétique , Protéines virales/métabolisme , Protéines virales/génétique , Protéines ribosomiques/métabolisme , Protéines ribosomiques/génétique , Protéines de liaison à l'ARN/métabolisme , Protéines de liaison à l'ARN/génétique , Protéines de liaison à l'ADN/métabolisme , Protéines de liaison à l'ADN/génétique
11.
Cell Res ; 34(9): 648-660, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-39103523

RÉSUMÉ

While lysine methylation is well-known for regulating gene expression transcriptionally, its implications in translation have been largely uncharted. Trimethylation at lysine 22 (K22me3) on RPL40, a core ribosomal protein located in the GTPase activation center, was first reported 27 years ago. Yet, its methyltransferase and role in translation remain unexplored. Here, we report that SMYD5 has robust in vitro activity toward RPL40 K22 and primarily catalyzes RPL40 K22me3 in cells. The loss of SMYD5 and RPL40 K22me3 leads to reduced translation output and disturbed elongation as evidenced by increased ribosome collisions. SMYD5 and RPL40 K22me3 are upregulated in hepatocellular carcinoma (HCC) and negatively correlated with patient prognosis. Depleting SMYD5 renders HCC cells hypersensitive to mTOR inhibition in both 2D and 3D cultures. Additionally, the loss of SMYD5 markedly inhibits HCC development and growth in both genetically engineered mouse and patient-derived xenograft (PDX) models, with the inhibitory effect in the PDX model further enhanced by concurrent mTOR suppression. Our findings reveal a novel role of the SMYD5 and RPL40 K22me3 axis in translation elongation and highlight the therapeutic potential of targeting SMYD5 in HCC, particularly with concurrent mTOR inhibition. This work also conceptually broadens the understanding of lysine methylation, extending its significance from transcriptional regulation to translational control.


Sujet(s)
Carcinome hépatocellulaire , Histone-lysine N-methyltransferase , Tumeurs du foie , Lysine , Methyltransferases , Protéines ribosomiques , Animaux , Humains , Souris , Carcinome hépatocellulaire/métabolisme , Carcinome hépatocellulaire/anatomopathologie , Carcinome hépatocellulaire/génétique , Lignée cellulaire tumorale , Histone-lysine N-methyltransferase/métabolisme , Histone-lysine N-methyltransferase/génétique , Tumeurs du foie/métabolisme , Tumeurs du foie/anatomopathologie , Tumeurs du foie/génétique , Lysine/métabolisme , Méthylation , Souris nude , Biosynthèse des protéines , Protéines ribosomiques/métabolisme , Protéines ribosomiques/génétique , Methyltransferases/génétique , Methyltransferases/métabolisme
12.
Biomolecules ; 14(8)2024 Aug 09.
Article de Anglais | MEDLINE | ID: mdl-39199362

RÉSUMÉ

Here we review the functions of ribosomal proteins (RPs) in the nucleolar stages of large ribosomal subunit assembly in the yeast Saccharomyces cerevisiae. We summarize the effects of depleting RPs on pre-rRNA processing and turnover, on the assembly of other RPs, and on the entry and exit of assembly factors (AFs). These results are interpreted in light of recent near-atomic-resolution cryo-EM structures of multiple assembly intermediates. Results are discussed with respect to each neighborhood of RPs and rRNA. We identify several key mechanisms related to RP behavior. Neighborhoods of RPs can assemble in one or more than one step. Entry of RPs can be triggered by molecular switches, in which an AF is replaced by an RP binding to the same site. To drive assembly forward, rRNA structure can be stabilized by RPs, including clamping rRNA structures or forming bridges between rRNA domains.


Sujet(s)
ARN ribosomique , Protéines ribosomiques , Saccharomyces cerevisiae , Saccharomyces cerevisiae/métabolisme , Saccharomyces cerevisiae/génétique , Protéines ribosomiques/métabolisme , Protéines ribosomiques/composition chimique , ARN ribosomique/métabolisme , ARN ribosomique/composition chimique , ARN ribosomique/génétique , Protéines de Saccharomyces cerevisiae/métabolisme , Protéines de Saccharomyces cerevisiae/composition chimique , Protéines de Saccharomyces cerevisiae/génétique , Nucléole/métabolisme
13.
Nat Commun ; 15(1): 7511, 2024 Aug 29.
Article de Anglais | MEDLINE | ID: mdl-39209816

RÉSUMÉ

The formation of new ribosomes is tightly coordinated with cell growth and proliferation. In eukaryotes, the correct assembly of all ribosomal proteins and RNAs follows an intricate scheme of maturation and rearrangement steps across three cellular compartments: the nucleolus, nucleoplasm, and cytoplasm. We demonstrate that usnic acid, a lichen secondary metabolite, inhibits the maturation of the large ribosomal subunit in yeast. We combine biochemical characterization of pre-ribosomal particles with a quantitative single-particle cryo-EM approach to monitor changes in nucleolar particle populations upon drug treatment. Usnic acid rapidly blocks the transition from nucleolar state B to C of Nsa1-associated pre-ribosomes, depleting key maturation factors such as Dbp10 and hindering pre-rRNA processing. This primary nucleolar block rapidly rebounds on earlier stages of the pathway which highlights the regulatory linkages between different steps. In summary, we provide an in-depth characterization of the effect of usnic acid on ribosome biogenesis, which may have implications for its reported anti-cancer activities.


Sujet(s)
Benzofuranes , Nucléole , Cryomicroscopie électronique , Protéines de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Benzofuranes/pharmacologie , Saccharomyces cerevisiae/effets des médicaments et des substances chimiques , Saccharomyces cerevisiae/métabolisme , Protéines de Saccharomyces cerevisiae/métabolisme , Protéines de Saccharomyces cerevisiae/génétique , Nucléole/métabolisme , Nucléole/effets des médicaments et des substances chimiques , Protéines ribosomiques/métabolisme , Ribosomes/métabolisme , Ribosomes/effets des médicaments et des substances chimiques , ARN ribosomique/métabolisme , Grande sous-unité du ribosome/métabolisme , Précurseurs des ARN/métabolisme , Précurseurs des ARN/génétique , Grande sous-unité du ribosome des eucaryotes/métabolisme , Lichens/métabolisme
14.
Nat Commun ; 15(1): 7419, 2024 Aug 28.
Article de Anglais | MEDLINE | ID: mdl-39198388

RÉSUMÉ

Sequential lytic cycles driven by cascading transcriptional waves underlie pathogenesis in the apicomplexan parasite Toxoplasma gondii. This parasite's unique division by internal budding, short cell cycle, and jumbled up classically defined cell cycle stages have restrained in-depth transcriptional program analysis. Here, unbiased transcriptome and chromatin accessibility maps throughout the lytic cell cycle are established at the single-cell level. Correlated pseudo-timeline assemblies of expression and chromatin profiles maps transcriptional versus chromatin level transition points promoting the cell division cycle. Sequential clustering analysis identifies functionally related gene groups promoting cell cycle progression. Promoter DNA motif mapping reveals patterns of combinatorial regulation. Pseudo-time trajectory analysis reveals transcriptional bursts at different cell cycle points. The dominant burst in G1 is driven largely by transcription factor AP2XII-8, which engages a conserved DNA motif, and promotes the expression of 44 ribosomal proteins encoding regulon. Overall, the study provides integrated, multi-level insights into apicomplexan transcriptional regulation.


Sujet(s)
Chromatine , Protéines de protozoaire , Régulon , Ribosomes , Analyse sur cellule unique , Toxoplasma , Toxoplasma/génétique , Toxoplasma/métabolisme , Chromatine/métabolisme , Chromatine/génétique , Régulon/génétique , Protéines de protozoaire/métabolisme , Protéines de protozoaire/génétique , Ribosomes/métabolisme , Ribosomes/génétique , Régulation de l'expression des gènes , Régions promotrices (génétique)/génétique , Cycle cellulaire/génétique , Humains , Motifs nucléotidiques/génétique , Transcriptome , Protéines ribosomiques/métabolisme , Protéines ribosomiques/génétique
15.
Biomolecules ; 14(8)2024 Jul 23.
Article de Anglais | MEDLINE | ID: mdl-39199272

RÉSUMÉ

Mouse double minute 2 (MDM2) is an oncoprotein that is frequently overexpressed in tumors and enhances cellular transformation. Owing to the important role of MDM2 in modulating p53 function, it is crucial to understand the mechanism underlying the regulation of MDM2 levels. We identified ribosomal protein S4X-linked (RPS4X) as a novel binding partner of MDM2 and showed that RPS4X promotes MDM2 stability. RPS4X suppressed polyubiquitination of MDM2 by suppressing homodimer formation and preventing auto-ubiquitination. Moreover, RPS4X inhibited the interaction between MDM2 and Cullin1, a scaffold protein of the Skp1-Cullin1-F-box protein (SCF) complex and an E3 ubiquitin ligase for MDM2. RPS4X expression in cells enhanced the steady-state level of MDM2 protein. RPS4X was associated not only with MDM2 but also with Cullin1 and then blocked the MDM2/Cullin1 interaction. This is the first report of an interaction between ribosomal proteins (RPs) and Cullin1. Our results contribute to the elucidation of the MDM2 stabilization mechanism in cancer cells, expanding our understanding of the new functions of RPs.


Sujet(s)
Cullines , Protéines proto-oncogènes c-mdm2 , Protéines ribosomiques , Ubiquitination , Protéines proto-oncogènes c-mdm2/métabolisme , Protéines ribosomiques/métabolisme , Protéines ribosomiques/génétique , Humains , Cullines/métabolisme , Cullines/génétique , Animaux , Stabilité protéique , Souris , Liaison aux protéines , SKP cullin F-box protein ligases/métabolisme , SKP cullin F-box protein ligases/génétique , Cellules HEK293
16.
Int J Mol Sci ; 25(16)2024 Aug 13.
Article de Anglais | MEDLINE | ID: mdl-39201491

RÉSUMÉ

The analysis of protein fold usage, similar to codon usage, offers profound insights into the evolution of biological systems and the origins of modern proteomes. While previous studies have examined fold distribution in modern genomes, our study focuses on the comparative distribution and usage of protein folds in ribosomes across bacteria, archaea, and eukaryotes. We identify the prevalence of certain 'super-ribosome folds,' such as the OB fold in bacteria and the SH3 domain in archaea and eukaryotes. The observed protein fold distribution in the ribosomes announces the future power-law distribution where only a few folds are highly prevalent, and most are rare. Additionally, we highlight the presence of three copies of proto-Rossmann folds in ribosomes across all kingdoms, showing its ancient and fundamental role in ribosomal structure and function. Our study also explores early mechanisms of molecular convergence, where different protein folds bind equivalent ribosomal RNA structures in ribosomes across different kingdoms. This comparative analysis enhances our understanding of ribosomal evolution, particularly the distinct evolutionary paths of the large and small subunits, and underscores the complex interplay between RNA and protein components in the transition from the RNA world to modern cellular life. Transcending the concept of folds also makes it possible to group a large number of ribosomal proteins into five categories of urfolds or metafolds, which could attest to their ancestral character and common origins. This work also demonstrates that the gradual acquisition of extensions by simple but ordered folds constitutes an inexorable evolutionary mechanism. This observation supports the idea that simple but structured ribosomal proteins preceded the development of their disordered extensions.


Sujet(s)
Archéobactéries , Évolution moléculaire , Pliage des protéines , Protéines ribosomiques , Ribosomes , Ribosomes/métabolisme , Protéines ribosomiques/métabolisme , Protéines ribosomiques/composition chimique , Protéines ribosomiques/génétique , Archéobactéries/métabolisme , Archéobactéries/génétique , Eucaryotes/métabolisme , Eucaryotes/génétique , Bactéries/métabolisme , Bactéries/génétique , ARN ribosomique/métabolisme , ARN ribosomique/génétique , ARN ribosomique/composition chimique
17.
Int J Mol Sci ; 25(16)2024 Aug 21.
Article de Anglais | MEDLINE | ID: mdl-39201756

RÉSUMÉ

Thiosemicarbazones and their metal complexes have been studied for their biological activities against bacteria, cancer cells and protozoa. Short-term in vitro treatment with one gold (III) complex (C3) and its salicyl-thiosemicarbazone ligand (C4) selectively inhibited proliferation of T. gondii. Transmission Electron Microscopy (TEM) detected transient structural alterations in the parasitophorous vacuole membrane and the tachyzoite cytoplasm, but the mitochondrial membrane potential appeared unaffected by these compounds. Proteins potentially interacting with C3 and C4 were identified using differential affinity chromatography coupled with mass spectrometry (DAC-MS). Moreover, long-term in vitro treatment was performed to investigate parasitostatic or parasiticidal activity of the compounds. DAC-MS identified 50 ribosomal proteins binding both compounds, and continuous drug treatments for up to 6 days caused the loss of efficacy. Parasite tolerance to both compounds was, however, rapidly lost in their absence and regained shortly after re-exposure. Proteome analyses of six T. gondii ME49 clones adapted to C3 and C4 compared to the non-adapted wildtype revealed overexpression of ribosomal proteins, of two transmembrane proteins involved in exocytosis and of an alpha/beta hydrolase fold domain-containing protein. Results suggest that C3 and C4 may interfere with protein biosynthesis and that adaptation may be associated with the upregulated expression of tachyzoite transmembrane proteins and transporters, suggesting that the in vitro drug tolerance in T. gondii might be due to reversible, non-drug specific stress-responses mediated by phenotypic plasticity.


Sujet(s)
Protéines ribosomiques , Thiosemicarbazones , Toxoplasma , Toxoplasma/effets des médicaments et des substances chimiques , Toxoplasma/métabolisme , Thiosemicarbazones/pharmacologie , Protéines ribosomiques/métabolisme , Protéines de protozoaire/métabolisme , Protéines de protozoaire/génétique , Adaptation physiologique/effets des médicaments et des substances chimiques , Protéines membranaires/métabolisme , Protéines membranaires/génétique , Régulation positive/effets des médicaments et des substances chimiques , Humains , Protéines de transport membranaire/métabolisme , Protéines de transport membranaire/génétique , Animaux
18.
Mol Cell ; 84(16): 3008-3010, 2024 Aug 22.
Article de Anglais | MEDLINE | ID: mdl-39178837

RÉSUMÉ

In a recent study in Cell, Cheng and Wang et al.1 show that the small nucleolar RNA (snoRNA) SNORA13 has a non-canonical role in ribosome biogenesis and senescence by acting directly on RPL23 and regulating its assembly into the 60S ribosomal subunit.


Sujet(s)
Petit ARN nucléolaire , Protéines ribosomiques , Ribosomes , Petit ARN nucléolaire/métabolisme , Petit ARN nucléolaire/génétique , Ribosomes/métabolisme , Ribosomes/génétique , Protéines ribosomiques/génétique , Protéines ribosomiques/métabolisme , Humains , Grande sous-unité du ribosome des eucaryotes/métabolisme , Grande sous-unité du ribosome des eucaryotes/génétique , Saccharomyces cerevisiae/génétique , Saccharomyces cerevisiae/métabolisme
19.
Nat Commun ; 15(1): 7188, 2024 Aug 21.
Article de Anglais | MEDLINE | ID: mdl-39169056

RÉSUMÉ

The transcriptional control of sporulation in Bacillus subtilis is reasonably well understood, but its translational control is underexplored. Here, we use RNA-seq, ribosome profiling and fluorescence microscopy to study the translational dynamics of B. subtilis sporulation. We identify two events of translation silencing and describe spatiotemporal changes in subcellular localization of ribosomes during sporulation. We investigate the potential regulatory role of ribosomes during sporulation using a strain lacking zinc-independent paralogs of three zinc-dependent ribosomal proteins (L31, L33 and S14). The mutant strain exhibits delayed sporulation, reduced germination efficiency, dysregulated translation of metabolic and sporulation-related genes, and disruptions in translation silencing, particularly in late sporulation.


Sujet(s)
Bacillus subtilis , Protéines bactériennes , Régulation de l'expression des gènes bactériens , Biosynthèse des protéines , Protéines ribosomiques , Ribosomes , Spores bactériens , Bacillus subtilis/génétique , Bacillus subtilis/métabolisme , Bacillus subtilis/physiologie , Spores bactériens/métabolisme , Spores bactériens/génétique , Spores bactériens/croissance et développement , Ribosomes/métabolisme , Protéines bactériennes/métabolisme , Protéines bactériennes/génétique , Protéines ribosomiques/métabolisme , Protéines ribosomiques/génétique , Mutation , Microscopie de fluorescence
20.
Nat Commun ; 15(1): 6873, 2024 Aug 11.
Article de Anglais | MEDLINE | ID: mdl-39127721

RÉSUMÉ

Ribosomes are regulated by evolutionarily conserved ubiquitination/deubiquitination events. We uncover the role of the deubiquitinase OTUD6 in regulating global protein translation through deubiquitination of the RPS7/eS7 subunit on the free 40 S ribosome in vivo in Drosophila. Coimmunoprecipitation and enrichment of monoubiquitinated proteins from catalytically inactive OTUD6 flies reveal RPS7 as the ribosomal substrate. The 40 S protein RACK1 and E3 ligases CNOT4 and RNF10 function upstream of OTUD6 to regulate alkylation stress. OTUD6 interacts with RPS7 specifically on the free 40 S, and not on 43 S/48 S initiation complexes or the translating ribosome. Global protein translation levels are bidirectionally regulated by OTUD6 protein abundance. OTUD6 protein abundance is physiologically regulated in aging and in response to translational and alkylation stress. Thus, OTUD6 may promote translation initiation, the rate limiting step in protein translation, by titering the amount of 40 S ribosome that recycles.


Sujet(s)
Protéines de Drosophila , Biosynthèse des protéines , Protéines ribosomiques , Ubiquitination , Animaux , Protéines ribosomiques/métabolisme , Protéines ribosomiques/génétique , Protéines de Drosophila/métabolisme , Protéines de Drosophila/génétique , Drosophila melanogaster/métabolisme , Drosophila melanogaster/génétique , Ribosomes/métabolisme , Stress physiologique , Ubiquitin-protein ligases/métabolisme , Ubiquitin-protein ligases/génétique
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE