Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 3.217
Filtrer
1.
ACS Chem Neurosci ; 15(19): 3434-3436, 2024 Oct 02.
Article de Anglais | MEDLINE | ID: mdl-39354828

RÉSUMÉ

Recent advancements in Alzheimer's disease (AD) research have led to the approval of lecanemab and donanemab, highlighting the effectiveness of amyloid-beta (Aß) degradation as a treatment for AD. The prospect of small molecule Aß degraders as a potential treatment, which utilizes emerging targeted protein degradation technology, is exciting, given their ability to address some of the limitations of current therapies and their promising future in AD treatment. Despite facing challenges, these degraders are poised to become a future treatment option, harnessing scientific breakthroughs for more targeted and effective AD therapy.


Sujet(s)
Maladie d'Alzheimer , Peptides bêta-amyloïdes , Protéolyse , Maladie d'Alzheimer/traitement médicamenteux , Maladie d'Alzheimer/métabolisme , Humains , Protéolyse/effets des médicaments et des substances chimiques , Peptides bêta-amyloïdes/métabolisme , Animaux , Développement de médicament/méthodes
2.
Proc Natl Acad Sci U S A ; 121(42): e2406936121, 2024 Oct 15.
Article de Anglais | MEDLINE | ID: mdl-39388269

RÉSUMÉ

Kirsten rat sarcoma virus (KRAS) mutation is associated with malignant tumor transformation and drug resistance. However, the development of clinically effective targeted therapies for KRAS-mutant cancer has proven to be a formidable challenge. Here, we report that tripartite motif-containing protein 21 (TRIM21) functions as a target of extracellular signal-regulated kinase 2 (ERK2) in KRAS-mutant colorectal cancer (CRC), contributing to regorafenib therapy resistance. Mechanistically, TRIM21 directly interacts with and ubiquitinates v-myc avian myelocytomatosis viral oncogene homolog (c-Myc) at lysine 148 (K148) via K63-linkage, enabling c-Myc to be targeted to the autophagy machinery for degradation, ultimately resulting in the downregulation of enolase 2 expression and inhibition of glycolysis. However, mutant KRAS (KRAS/MT)-driven mitogen-activated protein kinase (MAPK) signaling leads to the phosphorylation of TRIM21 (p-TRIM21) at Threonine 396 (T396) by ERK2, disrupting the interaction between TRIM21 and c-Myc and thereby preventing c-Myc from targeting autophagy for degradation. This enhances glycolysis and contributes to regorafenib resistance. Clinically, high p-TRIM21 (T396) is associated with an unfavorable prognosis. Targeting TRIM21 to disrupt KRAS/MT-driven phosphorylation using the antidepressant vilazodone shows potential for enhancing the efficacy of regorafenib in treating KRAS-mutant CRC in preclinical models. These findings are instrumental for KRAS-mutant CRC treatment aiming at activating TRIM21-mediated selective autophagic degradation of c-Myc.


Sujet(s)
Autophagie , Tumeurs colorectales , Phénylurées , Protéines proto-oncogènes c-myc , Protéines proto-oncogènes p21(ras) , Pyridines , Ribonucléoprotéines , Tumeurs colorectales/traitement médicamenteux , Tumeurs colorectales/métabolisme , Tumeurs colorectales/génétique , Tumeurs colorectales/anatomopathologie , Humains , Autophagie/effets des médicaments et des substances chimiques , Phénylurées/pharmacologie , Animaux , Protéines proto-oncogènes p21(ras)/métabolisme , Protéines proto-oncogènes p21(ras)/génétique , Pyridines/pharmacologie , Protéines proto-oncogènes c-myc/métabolisme , Protéines proto-oncogènes c-myc/génétique , Souris , Ribonucléoprotéines/métabolisme , Ribonucléoprotéines/génétique , Lignée cellulaire tumorale , Résistance aux médicaments antinéoplasiques , Tests d'activité antitumorale sur modèle de xénogreffe , Protéolyse/effets des médicaments et des substances chimiques , Mutation , Souris nude
3.
Commun Biol ; 7(1): 1282, 2024 Oct 08.
Article de Anglais | MEDLINE | ID: mdl-39379572

RÉSUMÉ

Inhibitors of the integrated stress response (ISR) have been used to explore the potential beneficial effects of reducing the activation of this pathway in diseases. As the ISR is in essence a protective response, there is, however, a risk that inhibition may compromise the cell's ability to restore protein homeostasis. Here, we show that the experimental compound ISRIB impairs degradation of proteins by the ubiquitin-proteasome system (UPS) during proteotoxic stress in the cytosolic, but not nuclear, compartment. Accumulation of a UPS reporter substrate that is intercepted by ribosome quality control was comparable to the level observed after blocking the UPS with a proteasome inhibitor. Consistent with impairment of the cytosolic UPS, ISRIB treatment caused an accumulation of polyubiquitylated and detergent insoluble defective ribosome products (DRiPs) in the presence of puromycin. Our data suggest that the persistent protein translation during proteotoxic stress in the absence of a functional ISR increases the pool of DRiPs, thereby hindering the efficient clearance of cytosolic substrates by the UPS.


Sujet(s)
Proteasome endopeptidase complex , Stress physiologique , Ubiquitine , Proteasome endopeptidase complex/métabolisme , Ubiquitine/métabolisme , Stress physiologique/effets des médicaments et des substances chimiques , Humains , Ribosomes/métabolisme , Ribosomes/effets des médicaments et des substances chimiques , Inhibiteurs du protéasome/pharmacologie , Protéolyse/effets des médicaments et des substances chimiques , Puromycine/pharmacologie , Cytosol/métabolisme , Cellules HeLa , Acétamides , Cyclohexylamines
4.
Nat Commun ; 15(1): 8731, 2024 Oct 09.
Article de Anglais | MEDLINE | ID: mdl-39384759

RÉSUMÉ

Many disease-causing proteins have multiple pathogenic mechanisms, and conventional inhibitors struggle to reliably disrupt more than one. Targeted protein degradation (TPD) can eliminate the protein, and thus all its functions, by directing a cell's protein turnover machinery towards it. Two established strategies either engage catalytic E3 ligases or drive uptake towards the endolysosomal pathway. Here we describe CYpHER (CatalYtic pH-dependent Endolysosomal delivery with Recycling) technology with potency and durability from a catalytic mechanism that shares the specificity and straightforward modular design of endolysosomal uptake. By bestowing pH-dependent release on the target engager and using the rapid-cycling transferrin receptor as the uptake receptor, CYpHER induces endolysosomal delivery of surface and extracellular targets while re-using drug, potentially yielding increased potency and reduced off-target tissue exposure risks. The TfR-based approach allows targeting to tumors that overexpress this receptor and offers the potential for transport to the CNS. CYpHER function was demonstrated in vitro with EGFR and PD-L1, and in vivo with EGFR in a model of EGFR-driven non-small cell lung cancer.


Sujet(s)
Récepteurs ErbB , Lysosomes , Protéolyse , Récepteurs à la transferrine , Humains , Protéolyse/effets des médicaments et des substances chimiques , Récepteurs à la transferrine/métabolisme , Animaux , Lignée cellulaire tumorale , Récepteurs ErbB/métabolisme , Lysosomes/métabolisme , Souris , Carcinome pulmonaire non à petites cellules/métabolisme , Carcinome pulmonaire non à petites cellules/traitement médicamenteux , Carcinome pulmonaire non à petites cellules/génétique , Carcinome pulmonaire non à petites cellules/anatomopathologie , Concentration en ions d'hydrogène , Antigène CD274/métabolisme , Femelle , Tumeurs du poumon/métabolisme , Tumeurs du poumon/traitement médicamenteux , Tumeurs du poumon/génétique , Catalyse , Endosomes/métabolisme , Tests d'activité antitumorale sur modèle de xénogreffe
5.
Dev Growth Differ ; 66(7): 384-393, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-39305158

RÉSUMÉ

The development of new technologies opens new avenues in the research field. Gene knockout is a key method for analyzing gene function in mice. Currently, conditional gene knockout strategies are employed to examine temporal and spatial gene function. However, phenotypes are sometimes not observed because of the time required for depletion due to the long half-life of the target proteins. Protein knockdown using an improved auxin-inducible degron system, AID2, overcomes such difficulties owing to rapid and efficient target depletion. We observed depletion of AID-tagged proteins within a few to several hours by a simple intraperitoneal injection of the auxin analog, 5-Ph-IAA, which is much shorter than the time required for target depletion using conditional gene knockout. Importantly, the loss of protein is reversible, making protein knockdown useful to measure the effects of transient loss of protein function. Here, we also established several mouse lines useful for AID2-medicated protein knockdown, which include knock-in mouse lines in the ROSA26 locus; one expresses TIR1(F74G), and the other is the reporter expressing AID-mCherry. We also established a germ-cell-specific TIR1 line and confirmed the protein knockdown specificity. In addition, we introduced an AID tag to an endogenous protein, DCP2 via the CAS9-mediated gene editing method. We confirmed that the protein was effectively eliminated by TIR1(F74G), which resulted in the similar phenotype observed in knockout mouse within 20 h.


Sujet(s)
Acides indolacétiques , Animaux , Souris , Acides indolacétiques/pharmacologie , Acides indolacétiques/métabolisme , Protéolyse/effets des médicaments et des substances chimiques , Techniques de knock-down de gènes , Degrons
6.
Sci Adv ; 10(38): eadp0334, 2024 Sep 20.
Article de Anglais | MEDLINE | ID: mdl-39292784

RÉSUMÉ

Lin28, a highly conserved carcinogenic protein, plays an important role in the generation of cancer stem cells, contributing to the unfavorable prognosis of cancer patients. This RNA binding protein specifically binds to pri/pre-microRNA (miRNA) lethal-7 (let-7), impeding its miRNA maturation. The reduced expression of tumor suppressor miRNA let-7 fosters development and progression-related traits such as proliferation, invasion, metastasis, and drug resistance. We report a series of miRNA-based Lin28A-miRNA proteolysis-targeting chimeras (Lin28A-miRNA-PROTACs) designed to efficiently degrade Lin28A through a ubiquitin-proteasome-dependent mechanism, resulting in up-regulation of mature let-7 family. The augmented levels of matured let-7 miRNAs further exert inhibitory effects on cancer cell proliferation and migration, and increase its sensitivity to chemotherapy. In a mouse ectopic tumor model, Lin28A-miRNA-PROTAC demonstrates a substantial efficacy in inhibiting tumor growth. When combined with tamoxifen, the tumors exhibit gradual regression. This study displays an effective miRNA-based PROTACs to degrade Lin28A and inhibit tumor growth, providing a promising therapeutic avenue for cancer treatment with miRNA-based therapy.


Sujet(s)
Tumeurs du sein , Prolifération cellulaire , microARN , Protéolyse , Protéines de liaison à l'ARN , microARN/génétique , microARN/métabolisme , Humains , Protéines de liaison à l'ARN/métabolisme , Protéines de liaison à l'ARN/génétique , Tumeurs du sein/traitement médicamenteux , Tumeurs du sein/génétique , Tumeurs du sein/anatomopathologie , Tumeurs du sein/métabolisme , Animaux , Femelle , Souris , Protéolyse/effets des médicaments et des substances chimiques , Lignée cellulaire tumorale , Prolifération cellulaire/effets des médicaments et des substances chimiques , Régulation de l'expression des gènes tumoraux/effets des médicaments et des substances chimiques , Tests d'activité antitumorale sur modèle de xénogreffe , Mouvement cellulaire/effets des médicaments et des substances chimiques , Proteasome endopeptidase complex/métabolisme , Chimère ciblant la protéolyse
7.
Cell Chem Biol ; 31(9): 1688-1698, 2024 Sep 19.
Article de Anglais | MEDLINE | ID: mdl-39303702

RÉSUMÉ

This minireview explores the burgeoning field of targeted protein degradation (TPD) and its promising applications in neuroscience and clinical development. TPD offers innovative strategies for modulating protein levels, presenting a paradigm shift in small-molecule drug discovery and therapeutic interventions. Importantly, small-molecule protein degraders specifically target and remove pathogenic proteins from central nervous system cells without the drug delivery challenges of genomic and antibody-based modalities. Here, we review recent advancements in TPD technologies, highlight proteolysis targeting chimera (PROTAC) protein degrader molecules with proximity-induced degradation event-driven and iterative pharmacology, provide applications in neuroscience research, and discuss the high potential for translation of TPD into clinical settings.


Sujet(s)
Protéolyse , Humains , Protéolyse/effets des médicaments et des substances chimiques , Animaux , Neurosciences , Bibliothèques de petites molécules/composition chimique , Bibliothèques de petites molécules/pharmacologie , Découverte de médicament
8.
J Med Virol ; 96(9): e29926, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-39295251

RÉSUMÉ

H5N1, a highly pathogenic avian influenza virus, poses an ongoing and significant threat to global public health, primarily due to its potential to cause severe respiratory illness and high mortality rates in humans. Despite extensive efforts in vaccination and antiviral therapy, H5N1 continues to exhibit high mutation rates, resulting in recurrent outbreaks and the emergence of drug-resistant strains. Traditional antiviral therapies, such as neuraminidase inhibitors and M2 ion channel blockers, have demonstrated limited efficacy, necessitating the exploration of innovative therapeutic strategies. Proteolysis-targeting chimeras (PROTACs) emerge as a novel and promising approach, leveraging the ubiquitin-proteasome system to selectively degrade pathogenic proteins. Unlike conventional inhibitors that only block protein function, PROTACs eliminate the target protein, providing a sustained therapeutic effect and potentially reducing the development of resistance. This paper offers a comprehensive examination of the current landscape of H5N1 infections, detailing the pathogenesis and challenges associated with existing treatments. It further explores the mechanism of action, design, and therapeutic potential of PROTACs in inhibiting H5N1. By targeting essential viral proteins, such as hemagglutinin and the RNA-dependent RNA polymerase complex, PROTACs hold the potential to revolutionize the treatment of H5N1 infections, offering a new frontier in antiviral therapy.


Sujet(s)
Antiviraux , Sous-type H5N1 du virus de la grippe A , Grippe humaine , Protéolyse , Humains , Sous-type H5N1 du virus de la grippe A/effets des médicaments et des substances chimiques , Antiviraux/pharmacologie , Antiviraux/usage thérapeutique , Grippe humaine/traitement médicamenteux , Grippe humaine/virologie , Protéolyse/effets des médicaments et des substances chimiques , Animaux , Protéines virales/antagonistes et inhibiteurs , Protéines virales/métabolisme , Protéines virales/génétique , Chimère ciblant la protéolyse
9.
Sci Rep ; 14(1): 20824, 2024 09 06.
Article de Anglais | MEDLINE | ID: mdl-39242638

RÉSUMÉ

Multiple studies have demonstrated that cancer cells with microsatellite instability (MSI) are intolerant to loss of the Werner syndrome helicase (WRN), whereas microsatellite-stable (MSS) cancer cells are not. Therefore, WRN represents a promising new synthetic lethal target for developing drugs to treat cancers with MSI. Given the uncertainty of how effective inhibitors of WRN activity will prove in clinical trials, and the likelihood of tumours developing resistance to WRN inhibitors, alternative strategies for impeding WRN function are needed. Proteolysis-targeting chimeras (PROTACs) are heterobifunctional small molecules that target specific proteins for degradation. Here, we engineered the WRN locus so that the gene product is fused to a bromodomain (Bd)-tag, enabling conditional WRN degradation with the AGB-1 PROTAC specific for the Bd-tag. Our data revealed that WRN degradation is highly toxic in MSI but not MSS cell lines. In MSI cells, WRN degradation caused G2/M arrest, chromosome breakage and ATM kinase activation. We also describe a multi-colour cell-based platform for facile testing of selective toxicity in MSI versus MSS cell lines. Together, our data show that a degrader approach is a potentially powerful way of targeting WRN in MSI cancers and paves the way for the development of WRN-specific PROTAC compounds.


Sujet(s)
Instabilité des microsatellites , Protéolyse , Werner syndrome helicase , Humains , Werner syndrome helicase/métabolisme , Werner syndrome helicase/génétique , Instabilité des microsatellites/effets des médicaments et des substances chimiques , Protéolyse/effets des médicaments et des substances chimiques , Lignée cellulaire tumorale , Tumeurs/traitement médicamenteux , Tumeurs/génétique , Tumeurs/métabolisme , Tumeurs/anatomopathologie , Protéines mutées dans l'ataxie-télangiectasie/métabolisme
10.
Cells ; 13(17)2024 Aug 29.
Article de Anglais | MEDLINE | ID: mdl-39273024

RÉSUMÉ

Overexpression of HER2 occurs in 25% of breast cancer. Targeting HER2 has proven to be an effective therapeutic strategy for HER2-positive breast cancer. While trastuzumab is the most commonly used HER2 targeting agent, which has significantly improved outcomes, the overall response rate is low. To develop novel therapies to boost trastuzumab efficacy, it is critical to identify the mechanisms underlying trastuzumab action and resistance. We recently showed that the inhibition of breast cancer cell growth by trastuzumab is not through the inhibition of HER2 canonical signaling. Here we report the identification of a novel non-canonical HER2 signaling pathway and its interference by trastuzumab. We showed that HER2 signaled through a non-canonical pathway, regulated intramembrane proteolysis (RIP). In this pathway, HER2 is first cleaved by metalloprotease ADAM10 to produce an extracellular domain (ECD) that is released and the p95HER2 that contains the transmembrane domain (TM) and intracellular domain (ICD). p95HER2, if further cleaved by an intramembrane protease, γ-secretase, produced a soluble ICD p75HER2 with nuclear localization signal (NLS). p75HER2 is phosphorylated and translocated to the nucleus. Nuclear p75HER2 promotes cell proliferation. Trastuzumab targets this non-canonical HER2 pathway via inhibition of the proteolytic cleavage of HER2 by both ADAM10 and γ-secretase. However, p75HER2 pathway also confers resistance to trastuzumab once aberrantly activated. Combination of trastuzumab with ADAM10 and γ-secretase inhibitors completely blocks p75HER2 production in both BT474 and SKBR3 cells. We concluded that HER2 signals through the RIP signaling pathway that promotes cell proliferation and is targeted by trastuzumab. The aberrant HER2 RIP signaling confers resistance to trastuzumab that could be overcome by the application of inhibitors to ADAM10 and γ-secretase.


Sujet(s)
Tumeurs du sein , Résistance aux médicaments antinéoplasiques , Récepteur ErbB-2 , Transduction du signal , Trastuzumab , Humains , Trastuzumab/pharmacologie , Trastuzumab/usage thérapeutique , Tumeurs du sein/métabolisme , Tumeurs du sein/traitement médicamenteux , Tumeurs du sein/anatomopathologie , Transduction du signal/effets des médicaments et des substances chimiques , Résistance aux médicaments antinéoplasiques/effets des médicaments et des substances chimiques , Femelle , Récepteur ErbB-2/métabolisme , Lignée cellulaire tumorale , Amyloid precursor protein secretases/métabolisme , Amyloid precursor protein secretases/antagonistes et inhibiteurs , Protéine ADAM10/métabolisme , Prolifération cellulaire/effets des médicaments et des substances chimiques , Protéolyse/effets des médicaments et des substances chimiques , Protéines membranaires
11.
J Hematol Oncol ; 17(1): 77, 2024 Sep 02.
Article de Anglais | MEDLINE | ID: mdl-39218923

RÉSUMÉ

BACKGROUND: Targeted protein degradation of neosubstrates plays a crucial role in hematological cancer treatment involving immunomodulatory imide drugs (IMiDs) therapy. Nevertheless, the persistence of inevitable drug resistance and hematological toxicities represents a significant obstacle to their clinical effectiveness. METHODS: Phenotypic profiling of a small molecule compounds library in multiple hematological cancer cell lines was conducted to screen for hit degraders. Molecular dynamic-based rational design and cell-based functional assays were conducted to develop more potent degraders. Multiple myeloma (MM) tumor xenograft models were employed to investigate the antitumor efficacy of the degraders as single or combined agents with standard of care agents. Unbiased proteomics was employed to identify multiple therapeutically relevant neosubstrates targeted by the degraders. MM patient-derived cell lines (PDCs) and a panel of solid cancer cell lines were utilized to investigate the effects of candidate degrader on different stage of MM cells and solid malignancies. Unbiased proteomics of IMiDs-resistant MM cells, cell-based functional assays and RT-PCR analysis of clinical MM specimens were utilized to explore the role of BRD9 associated with IMiDs resistance and MM progression. RESULTS: We identified a novel cereblon (CRBN)-dependent lead degrader with phthalazinone scaffold, MGD-4, which induced the degradation of Ikaros proteins. We further developed a novel potent candidate, MGD-28, significantly inhibited the growth of hematological cancer cells and induced the degradation of IKZF1/2/3 and CK1α with nanomolar potency via a Cullin-CRBN dependent pathway. Oral administration of MGD-4 and MGD-28 effectively inhibited MM tumor growth and exhibited significant synergistic effects with standard of care agents. MGD-28 exhibited preferentially profound cytotoxicity towards MM PDCs at different disease stages and broad antiproliferative activity in multiple solid malignancies. BRD9 modulated IMiDs resistance, and the expression of BRD9 was significant positively correlated with IKZF1/2/3 and CK1α in MM specimens at different stages. We also observed pronounced synergetic efficacy between the BRD9 inhibitor and MGD-28 for MM treatment. CONCLUSIONS: Our findings present a strategy for the multi-targeted degradation of Ikaros proteins and CK1α against hematological cancers, which may be expanded to additional targets and indications. This strategy may enhance efficacy treatment against multiple hematological cancers and solid tumors.


Sujet(s)
Tumeurs hématologiques , Humains , Animaux , Lignée cellulaire tumorale , Tumeurs hématologiques/traitement médicamenteux , Tumeurs hématologiques/métabolisme , Souris , Tests d'activité antitumorale sur modèle de xénogreffe , Antinéoplasiques/pharmacologie , Antinéoplasiques/usage thérapeutique , Myélome multiple/traitement médicamenteux , Myélome multiple/métabolisme , Myélome multiple/anatomopathologie , Protéolyse/effets des médicaments et des substances chimiques , Ubiquitin-protein ligases/métabolisme , Facteur de transcription Ikaros/métabolisme , Résistance aux médicaments antinéoplasiques/effets des médicaments et des substances chimiques , Protéines adaptatrices de la transduction du signal
12.
Oncogene ; 43(40): 3003-3017, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-39232218

RÉSUMÉ

Hepatocellular carcinoma (HCC) stands as one of the most aggressively advancing and lethal malignancies. Sorafenib is presently endorsed as a primary therapy for advanced liver cancer, but its resistance presents a formidable challenge. Previous studies have implicated a connection between post-sorafenib discontinuation rebound and the development of drug resistance, yet the underlying mechanism remains elusive. In this study, we discerned that Sorafenib induced a senescent phenotype in HCC cells and caused a cleavage of ubiquitin-binding protein p62. Mechanistic studies establish that truncated p62 drives cellular senescence by promoting proteasome-dependent degradation of 4EBP1. Furthermore, truncated p62 induced specific ubiquitination of 4EBP1. Crucially, virtual drug screening uncovered that dacinostat inhibited cellular senescence by blocking sorafenib-induced p62 cleavage. In summary, our findings imply that truncated p62 from sorafenib cleavage promotes senescence via 4EBP1 degradation. The prevention of p62 cleavage could emerge as a crucial strategy for impeding the sorafenib-induced cellular senescence.


Sujet(s)
Carcinome hépatocellulaire , Vieillissement de la cellule , Tumeurs du foie , Sorafénib , Sorafénib/pharmacologie , Humains , Vieillissement de la cellule/effets des médicaments et des substances chimiques , Carcinome hépatocellulaire/traitement médicamenteux , Carcinome hépatocellulaire/anatomopathologie , Carcinome hépatocellulaire/métabolisme , Carcinome hépatocellulaire/génétique , Tumeurs du foie/traitement médicamenteux , Tumeurs du foie/anatomopathologie , Tumeurs du foie/métabolisme , Tumeurs du foie/génétique , Antinéoplasiques/pharmacologie , Résistance aux médicaments antinéoplasiques/effets des médicaments et des substances chimiques , Lignée cellulaire tumorale , Protéines du cycle cellulaire/métabolisme , Protéines du cycle cellulaire/génétique , Séquestosome-1/métabolisme , Séquestosome-1/génétique , Phosphoprotéines/métabolisme , Souris , Animaux , Protéolyse/effets des médicaments et des substances chimiques , Ubiquitination/effets des médicaments et des substances chimiques , Protéines adaptatrices de la transduction du signal/métabolisme , Protéines adaptatrices de la transduction du signal/génétique , Protéines de liaison à l'ARN
13.
J Am Chem Soc ; 146(37): 25490-25500, 2024 Sep 18.
Article de Anglais | MEDLINE | ID: mdl-39226482

RÉSUMÉ

The emergence of lysosome-targeting chimeras (LYTACs), which represents a promising strategy for membrane protein degradation based on lysosomal pathways, has attracted much attention in disease intervention and treatment. However, the expression level of commonly used lysosome-targeting receptors (LTRs) varies in different cell lines, thus limiting the broad applications of LYTACs. To overcome this difficulty, we herein report the development of integrin α3ß1 (ITGA3B1)-facilitated bispecific aptamer chimeras (ITGBACs) as a platform for the degradation of membrane proteins. ITGBACs consist of two aptamers, one targeting ITGA3B1 and another binding to the membrane-associated protein of interest (POI), effectively transporting the POI into lysosomes for degradation. Our findings demonstrate that ITGBACs effectively eliminate pathological membrane proteins, such as CD71 and PTK7, inducing significant cell-cycle arrest and apoptosis and markedly inhibiting tumor growth in tumor-bearing mice models. Therefore, this work provides a novel and versatile membrane protein degradation platform, offering a promising targeted therapy based on tumor-specific LTRs.


Sujet(s)
Aptamères nucléotidiques , Récepteurs à la transferrine , Humains , Aptamères nucléotidiques/composition chimique , Aptamères nucléotidiques/pharmacologie , Animaux , Souris , Récepteurs à la transferrine/métabolisme , Protéines membranaires/métabolisme , Protéolyse/effets des médicaments et des substances chimiques , Apoptose/effets des médicaments et des substances chimiques , Lysosomes/métabolisme , Lysosomes/composition chimique , Intégrine alpha3 bêta1/métabolisme , Lignée cellulaire tumorale , Antigènes CD/métabolisme , Molécules d'adhérence cellulaire/métabolisme , Molécules d'adhérence cellulaire/antagonistes et inhibiteurs , Prolifération cellulaire/effets des médicaments et des substances chimiques , Antinéoplasiques/pharmacologie , Antinéoplasiques/composition chimique , Antinéoplasiques/synthèse chimique , Récepteurs à activité tyrosine kinase
14.
J Med Chem ; 67(18): 16712-16736, 2024 Sep 26.
Article de Anglais | MEDLINE | ID: mdl-39230973

RÉSUMÉ

Targeted protein degradation (TPD) is an emerging therapeutic paradigm aimed at eliminating the disease-causing protein with aberrant expression. Herein, we report a new approach to inducing intracellular glutathione peroxidase 4 (GPX4) protein degradation to trigger ferroptosis by bridging the target protein to heat shock protein 90 (HSP90), termed HSP90 interactome-mediated proteolysis targeting chimera (HIM-PROTAC). Different series of HIM-PROTACs were synthesized and evaluated, and two of them, GDCNF-2/GDCNF-11 potently induced ferroptosis via HSP90-mediated ubiquitin-proteasomal degradation of GPX4 in HT-1080 cells with DC50 values of 0.18 and 0.08 µM, respectively. In particular, GDCNF-11 showed 15-fold more ferroptosis selectivity over GPX4 inhibitor ML162. Moreover, these two degraders effectively suppress tumor growth in the mice model with relatively low toxicity as compared to the combination therapy of GPX4 and HSP90 inhibitors. In general, this study demonstrated the feasibility of degrading GPX4 via HSP90 interactome, and thus provided a significant complement to existing TPD strategies.


Sujet(s)
Ferroptose , Protéines du choc thermique HSP90 , Phospholipid hydroperoxide glutathione peroxidase , Protéolyse , Ferroptose/effets des médicaments et des substances chimiques , Protéines du choc thermique HSP90/métabolisme , Protéines du choc thermique HSP90/antagonistes et inhibiteurs , Humains , Phospholipid hydroperoxide glutathione peroxidase/métabolisme , Phospholipid hydroperoxide glutathione peroxidase/antagonistes et inhibiteurs , Protéolyse/effets des médicaments et des substances chimiques , Animaux , Souris , Lignée cellulaire tumorale , Antinéoplasiques/pharmacologie , Antinéoplasiques/composition chimique , Antinéoplasiques/synthèse chimique , Souris nude , Souris de lignée BALB C , Chimère ciblant la protéolyse
15.
J Med Chem ; 67(18): 15996-16001, 2024 Sep 26.
Article de Anglais | MEDLINE | ID: mdl-39231796

RÉSUMÉ

Herein, we discuss advancements in the field of a unique class of antibody-drug conjugates (ADCs) named molecular glue-antibody conjugate (MAC). ADCs traditionally employ cytotoxic agents as payloads, and this approach has been used in all approved ADCs to treat cancer. Complementary to this approach, proteolysis targeting chimera (PROTAC) degrader antibody conjugates (DACs) provide a unique opportunity to deliver these bifunctional agents to tumors by using antibodies as a delivery mechanism to overcome the bioavailability issues encountered by PROTAC payloads. Recently, a cereblon binding monovalent degrader called molecular glues has been used in new ADCs that we have coined the term molecular-glue antibody conjugates (MACs). In this article, we intend to review advancements made in the field of targeted delivery of cereblon-based molecular glue degraders.


Sujet(s)
Immunoconjugués , Humains , Immunoconjugués/composition chimique , Immunoconjugués/usage thérapeutique , Immunoconjugués/pharmacologie , Tumeurs/traitement médicamenteux , Animaux , Protéolyse/effets des médicaments et des substances chimiques , Antinéoplasiques/composition chimique , Antinéoplasiques/usage thérapeutique , Antinéoplasiques/pharmacologie , Ubiquitin-protein ligases/métabolisme , Protéines adaptatrices de la transduction du signal
16.
J Med Chem ; 67(18): 16355-16380, 2024 Sep 26.
Article de Anglais | MEDLINE | ID: mdl-39271471

RÉSUMÉ

Emerging drug candidates more often fall in the beyond-rule-of-five chemical space. Among them, proteolysis targeting chimeras (PROTACs) have gained great attention in the past decade. Although physicochemical properties of small molecules accomplishing Lipinski's rule-of-five can now be easily predicted through models generated by large data collections, for PROTACs the knowledge is still limited and heterogeneous, hampering their prediction. Here, the kinetic solubility and the coefficient of distribution at pH 7.4 (LogD7.4) of 44 PROTACs, designed and synthesized to cover a wide chemical space, were measured. Their generally low solubility and high lipophilicity required an optimization of the experimental methods. Concerning the LogD7.4, several in silico prediction tools were tested, which were quite accurate for classical small molecules but provided dissimilar outcomes for PROTACs. Finally, in silico models for the prediction of PROTACs' kinetic solubility and LogD7.4 were proposed by combining in-house generated experimental data with 3D description of PROTACs' structures.


Sujet(s)
Protéolyse , Solubilité , Protéolyse/effets des médicaments et des substances chimiques , Simulation numérique , Cinétique , Bibliothèques de petites molécules/composition chimique , Bibliothèques de petites molécules/pharmacologie , Bibliothèques de petites molécules/synthèse chimique , Interactions hydrophobes et hydrophiles , Chimère ciblant la protéolyse
17.
Expert Opin Ther Pat ; 34(10): 929-951, 2024 Oct.
Article de Anglais | MEDLINE | ID: mdl-39219068

RÉSUMÉ

INTRODUCTION: Bromodomain-containing protein 4 (BRD4), an important epigenetic reader, is closely associated with the pathogenesis and development of many diseases, including various cancers, inflammation, and infectious diseases. Targeting BRD4 inhibition or protein elimination with small molecules represents a promising therapeutic strategy, particularly for cancer therapy. AREAS COVERED: The recent advances of patented BRD4 degraders were summarized. The challenges, opportunities, and future directions for developing novel potent and selective BRD4 degraders are also discussed. The patents of BRD4 degraders were searched using the SciFinder and Cortellis Drug Discovery Intelligence database. EXPERT OPINION: BRD4 degraders exhibit superior efficacy and selectivity to BRD4 inhibitors, given their unique mechanism of protein degradation instead of protein inhibition. Excitingly, RNK05047 is now in phase I/II clinical trials, indicating that selective BRD4 protein degradation may offer a viable therapeutic strategy, particularly for cancer. Targeting BRD4 with small-molecule degraders provides a promising approach with the potential to overcome therapeutic resistance for treating various BRD4-associated diseases.


Sujet(s)
Antinéoplasiques , Protéines du cycle cellulaire , Développement de médicament , Tumeurs , Brevets comme sujet , Facteurs de transcription , Humains , Facteurs de transcription/métabolisme , Facteurs de transcription/antagonistes et inhibiteurs , Protéines du cycle cellulaire/métabolisme , Protéines du cycle cellulaire/antagonistes et inhibiteurs , Tumeurs/traitement médicamenteux , Tumeurs/anatomopathologie , Animaux , Antinéoplasiques/pharmacologie , Thérapie moléculaire ciblée , Protéolyse/effets des médicaments et des substances chimiques , Découverte de médicament , Protéines contenant un bromodomaine
18.
J Agric Food Chem ; 72(39): 21772-21780, 2024 Oct 02.
Article de Anglais | MEDLINE | ID: mdl-39295075

RÉSUMÉ

This study aimed to explore the effects of S-nitrosylation on caspase-3 modification and its subsequent effects on beef myofibril degradation in vitro. Recombinant caspase-3 was reacted with different concentrations of S-nitrosoglutathione (GSNO, nitric oxide donor) at 37 °C for 30 min and subsequently incubated with purified myofibrillar protein from bovine semimembranosus muscle. Results indicated that the activity of caspase-3 was significantly reduced after GSNO treatments (P < 0.05) and showed a dose-dependent inhibitory effect, which was attributed to the increased S-nitrosylation extent of caspase-3. LC-MS/MS analysis revealed that caspase-3 was S-nitrosylated at cysteine sites 116, 170, 184, 220, and 264. Moreover, the degradation of desmin and troponin-T was notably suppressed by S-nitrosylated caspase-3 (P < 0.05). To conclude, protein S-nitrosylation could modify the cysteine residues of caspase-3, which accounts for the reduced caspase-3 activity and further represses its proteolytic ability on beef myofibrillar protein.


Sujet(s)
Caspase-3 , Myofibrilles , Animaux , Bovins , Myofibrilles/composition chimique , Myofibrilles/métabolisme , Caspase-3/métabolisme , Caspase-3/composition chimique , Caspase-3/génétique , S-Nitroso-glutathion/composition chimique , S-Nitroso-glutathion/métabolisme , S-Nitroso-glutathion/pharmacologie , Spectrométrie de masse en tandem , Cystéine/métabolisme , Cystéine/composition chimique , Protéolyse/effets des médicaments et des substances chimiques , Muscles squelettiques/composition chimique , Muscles squelettiques/métabolisme , Muscles squelettiques/effets des médicaments et des substances chimiques , Muscles squelettiques/enzymologie , Monoxyde d'azote/métabolisme , Troponine T/métabolisme , Troponine T/composition chimique , Protéines du muscle/métabolisme , Protéines du muscle/composition chimique
19.
Cell Genom ; 4(10): 100651, 2024 Oct 09.
Article de Anglais | MEDLINE | ID: mdl-39255790

RÉSUMÉ

The emerging field of induced proximity therapeutics, which involves designing molecules to bring together an effector and target protein-typically to induce target degradation-is rapidly advancing. However, its progress is constrained by the lack of scalable and unbiased tools to explore effector-target protein interactions. We combine pooled endogenous gene tagging using a ligand-binding domain with generic small-molecule-based recruitment to screen for induction of protein proximity. We apply this methodology to identify effectors for degradation in two orthogonal screens: using fluorescence to monitor target levels and a cellular growth that depends on the degradation of an essential protein. Our screens revealed new effector proteins for degradation, including previously established examples, and converged on members of the C-terminal-to-LisH (CTLH) complex. We introduce a platform for pooled induction of endogenous protein-protein interactions to expand our toolset of effector proteins for protein degradation and other forms of induced proximity.


Sujet(s)
Protéolyse , Humains , Protéolyse/effets des médicaments et des substances chimiques , Protéines/métabolisme , Cellules HEK293 , Liaison aux protéines , Cartographie d'interactions entre protéines/méthodes
20.
J Med Chem ; 67(19): 17319-17349, 2024 Oct 10.
Article de Anglais | MEDLINE | ID: mdl-39323022

RÉSUMÉ

Sirtuin 6 (SIRT6), a member of the SIRT family, plays essential roles in the regulation of metabolism, inflammation, aging, DNA repair, and cancer development, making it a promising anticancer drug target. Herein, we present our use of proteolysis-targeting chimera (PROTAC) technology to formulate a series of highly potent and selective SIRT6 degraders. One of the degraders, SZU-B6, induced the near-complete degradation of SIRT6 in both SK-HEP-1 and Huh-7 cell lines and more potently inhibited hepatocellular carcinoma (HCC) cell proliferation than the parental inhibitors. In preliminary mechanistic studies, SZU-B6 hampered DNA damage repair, promoting the cellular radiosensitization of cancer cells. Our SIRT6 degrader SZU-B6 displayed promising antitumor activity, particularly when combined with the well-known kinase inhibitor sorafenib or irradiation in an SK-HEP-1 xenograft mouse model. Our results suggest that these PROTACs might constitute a potent therapeutic strategy for HCC.


Sujet(s)
Antinéoplasiques , Carcinome hépatocellulaire , Prolifération cellulaire , Tumeurs du foie , Protéolyse , Sirtuines , Humains , Carcinome hépatocellulaire/traitement médicamenteux , Carcinome hépatocellulaire/anatomopathologie , Carcinome hépatocellulaire/métabolisme , Sirtuines/antagonistes et inhibiteurs , Sirtuines/métabolisme , Tumeurs du foie/traitement médicamenteux , Tumeurs du foie/anatomopathologie , Tumeurs du foie/métabolisme , Animaux , Antinéoplasiques/pharmacologie , Antinéoplasiques/synthèse chimique , Antinéoplasiques/composition chimique , Antinéoplasiques/usage thérapeutique , Protéolyse/effets des médicaments et des substances chimiques , Souris , Prolifération cellulaire/effets des médicaments et des substances chimiques , Lignée cellulaire tumorale , Souris nude , Tests d'activité antitumorale sur modèle de xénogreffe , Découverte de médicament , Relation structure-activité
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE