Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 5.206
Filtrer
1.
Int J Mol Sci ; 25(17)2024 Sep 06.
Article de Anglais | MEDLINE | ID: mdl-39273619

RÉSUMÉ

Human lactoferrin (hLf) is an innate host defense protein that inhibits microbial H+-ATPases. This protein includes an ancestral structural motif (i.e., γ-core motif) intimately associated with the antimicrobial activity of many natural Cys-rich peptides. Peptides containing a complete γ-core motif from hLf or other phylogenetically diverse antimicrobial peptides (i.e., afnA, SolyC, PA1b, PvD1, thanatin) showed microbicidal activity with similar features to those previously reported for hLf and defensins. Common mechanistic characteristics included (1) cell death independent of plasma membrane (PM) lysis, (2) loss of intracellular K+ (mediated by Tok1p K+ channels in yeast), (3) inhibition of microbicidal activity by high extracellular K+, (4) influence of cellular respiration on microbicidal activity, (5) involvement of mitochondrial ATP synthase in yeast cell death processes, and (6) increment of intracellular ATP. Similar features were also observed with the BM2 peptide, a fungal PM H+-ATPase inhibitor. Collectively, these findings suggest host defense peptides containing a homologous γ-core motif inhibit PM H+-ATPases. Based on this discovery, we propose that the γ-core motif is an archetypal effector involved in the inhibition of PM H+-ATPases across kingdoms of life and contributes to the in vitro microbicidal activity of Cys-rich antimicrobial peptides.


Sujet(s)
Motifs d'acides aminés , Proton-Translocating ATPases , Humains , Proton-Translocating ATPases/métabolisme , Proton-Translocating ATPases/antagonistes et inhibiteurs , Peptides antimicrobiens/pharmacologie , Peptides antimicrobiens/composition chimique , Lactoferrine/pharmacologie , Lactoferrine/composition chimique , Anti-infectieux/pharmacologie , Anti-infectieux/composition chimique , Cystéine/métabolisme , Cystéine/composition chimique , Candida albicans/effets des médicaments et des substances chimiques , Membrane cellulaire/métabolisme , Membrane cellulaire/effets des médicaments et des substances chimiques
2.
Plant Sci ; 348: 112213, 2024 Nov.
Article de Anglais | MEDLINE | ID: mdl-39117001

RÉSUMÉ

Soil salinization, especially in arid environments, is a leading cause of land degradation and desertification. Excessive salt in the soil is detrimental to plants. Plants have developed various sophisticated regulatory mechanisms that allow them to withstand adverse environments. Through cross-adaptation, plants improve their resistance to an adverse condition after experiencing a different kind of adversity. Our analysis of Ammopiptanthus nanus, a desert shrub, showed that mechanical wounding activates the biosynthesis of jasmonic acid (JA) and abscisic acid (ABA), enhancing plasma membrane H+-ATPase activity to establish an electrochemical gradient that promotes Na+ extrusion via Na+/H+ antiporters. Mechanical wounding reduces K+ loss under salt stress, improving the K/Na and maintaining root ion balance. Meanwhile, mechanical damage enhances the activity of antioxidant enzymes and the content of osmotic substances, working together with cellular ions to alleviate water loss and growth inhibition under salt stress. This study provides new insights and approaches for enhancing salt tolerance and stress adaptation in plants by elucidating the signaling mechanisms of cross-adaptation.


Sujet(s)
Homéostasie , Racines de plante , Tolérance au sel , Racines de plante/métabolisme , Racines de plante/physiologie , Cyclopentanes/métabolisme , Climat désertique , Oxylipines/métabolisme , Acide abscissique/métabolisme , Sodium/métabolisme , Facteur de croissance végétal/métabolisme , Proton-Translocating ATPases/métabolisme
3.
Nat Commun ; 15(1): 7260, 2024 Aug 23.
Article de Anglais | MEDLINE | ID: mdl-39179563

RÉSUMÉ

Sweet potato starch is in high demand globally for food and industry. However, starch content is negatively correlated with fresh yield. It is urgent to uncover the genetic basis and molecular mechanisms underlying the starch yield of sweet potato. Here we systematically explore source-sink synergy-mediated sweet potato starch yield formation: the production, loading, and transport of photosynthates in leaves, as well as their unloading and allocation in storage roots, lead to starch content divergence between sweet potato varieties. Moreover, we find that six haplotypes of IbPMA1 encoding a plasma membrane H+-ATPase are significantly linked with starch accumulation. Overexpression of IbPMA1 in sweet potato results in significantly increased starch and sucrose contents, while its knockdown exhibits an opposing effect. Furthermore, a basic helix-loop-helix (bHLH) transcription factor IbbHLH49 directly targets IbPMA1 and activates its transcription. Overexpression of IbbHLH49 notably improves source-sink synergy-mediated fresh yield and starch accumulation in sweet potato. Both IbbHLH49 and IbPMA1 substantially influence sugar transport and starch biosynthesis in source and sink tissues. These findings expand our understanding of starch yield formation and provide strategies and candidate genes for high starch breeding in root and tuber crops.


Sujet(s)
Régulation de l'expression des gènes végétaux , Ipomoea batatas , Feuilles de plante , Protéines végétales , Racines de plante , Amidon , Ipomoea batatas/génétique , Ipomoea batatas/métabolisme , Ipomoea batatas/croissance et développement , Amidon/métabolisme , Protéines végétales/métabolisme , Protéines végétales/génétique , Racines de plante/métabolisme , Racines de plante/croissance et développement , Racines de plante/génétique , Feuilles de plante/métabolisme , Feuilles de plante/génétique , Végétaux génétiquement modifiés , Haplotypes , Saccharose/métabolisme , Proton-Translocating ATPases/métabolisme , Proton-Translocating ATPases/génétique
4.
J Agric Food Chem ; 72(35): 19333-19341, 2024 Sep 04.
Article de Anglais | MEDLINE | ID: mdl-39183467

RÉSUMÉ

The regulation solutions and mechanisms of reducing pesticide phytotoxicity to nontarget plants are not well-defined and detailed. Here, we have proposed a new detoxification strategy to control the toxic effects of herbicide imazethapyr (IM) induced in wheat seedlings from the perspective of the plasma membrane (PM) H+-ATPase. We found that the changes in PM H+-ATPase activity have a regulatory effect on the phytotoxic effects induced by IM in plants. Treatment with PM H+-ATPase activators restored the reduced auxin content and photosynthetic efficiency caused by IM, thereby promoting plant growth. Application of a PM H+-ATPase inhibitor further reduced phosphorus content and significantly increased 2,4-dihydroxy-7-methoxy-2H,1,4-benzoxazin-3(4H)one (DIMBOA) and jasmonic acid levels. These effects indicate that auxin and DIMBOA may regulate plant growth trends and detoxification effects mediated by PM H+-ATPase. This work opens a new strategy for regulating herbicide toxicity to nontarget plants from the PM H+-ATPase.


Sujet(s)
Herbicides , Acides nicotiniques , Protéines végétales , Proton-Translocating ATPases , Triticum , Triticum/croissance et développement , Triticum/effets des médicaments et des substances chimiques , Triticum/métabolisme , Triticum/enzymologie , Herbicides/toxicité , Proton-Translocating ATPases/métabolisme , Protéines végétales/métabolisme , Protéines végétales/génétique , Acides nicotiniques/toxicité , Acides nicotiniques/pharmacologie , Acides indolacétiques/métabolisme , Plant/effets des médicaments et des substances chimiques , Plant/croissance et développement , Plant/métabolisme , Oxylipines/pharmacologie , Cyclopentanes/pharmacologie
5.
Curr Opin Struct Biol ; 88: 102884, 2024 Oct.
Article de Anglais | MEDLINE | ID: mdl-39053417

RÉSUMÉ

Ion-driven membrane motors, essential across all domains of life, convert a gradient of ions across a membrane into rotational energy, facilitating diverse biological processes including ATP synthesis, substrate transport, and bacterial locomotion. Herein, we highlight recent structural advances in the understanding of two classes of ion-driven membrane motors: rotary ATPases and 5:2 motors. The recent structure of the human F-type ATP synthase is emphasised along with the gained structural insight into clinically relevant mutations. Furthermore, we highlight the diverse roles of 5:2 motors and recent mechanistic understanding gained through the resolution of ions in the structure of a sodium-driven motor, combining insights into potential unifying mechanisms of ion selectivity and rotational torque generation in the context of their function as part of complex biological systems.


Sujet(s)
Moteurs moléculaires , Humains , Moteurs moléculaires/métabolisme , Moteurs moléculaires/composition chimique , Membrane cellulaire/métabolisme , Membrane cellulaire/composition chimique , Ions/métabolisme , Ions/composition chimique , Proton-Translocating ATPases/composition chimique , Proton-Translocating ATPases/métabolisme , Modèles moléculaires , Relation structure-activité
6.
Int J Mol Sci ; 25(13)2024 Jul 04.
Article de Anglais | MEDLINE | ID: mdl-39000442

RÉSUMÉ

Human defensins are cysteine-rich peptides (Cys-rich peptides) of the innate immune system. Defensins contain an ancestral structural motif (i.e., γ-core motif) associated with the antimicrobial activity of natural Cys-rich peptides. In this study, low concentrations of human α- and ß-defensins showed microbicidal activity that was not associated with cell membrane permeabilization. The cell death pathway was similar to that previously described for human lactoferrin, also an immunoprotein containing a γ-core motif. The common features were (1) cell death not related to plasma membrane (PM) disruption, (2) the inhibition of microbicidal activity via extracellular potassium, (3) the influence of cellular respiration on microbicidal activity, and (4) the influence of intracellular pH on bactericidal activity. In addition, in yeast, we also observed (1) partial K+-efflux mediated via Tok1p K+-channels, (2) the essential role of mitochondrial ATP synthase in cell death, (3) the increment of intracellular ATP, (4) plasma membrane depolarization, and (5) the inhibition of external acidification mediated via PM Pma1p H+-ATPase. Similar features were also observed with BM2, an antifungal peptide that inhibits Pma1p H+-ATPase, showing that the above coincident characteristics were a consequence of PM H+-ATPase inhibition. These findings suggest, for the first time, that human defensins inhibit PM H+-ATPases at physiological concentrations, and that the subsequent cytosolic acidification is responsible for the in vitro microbicidal activity. This mechanism of action is shared with human lactoferrin and probably other antimicrobial peptides containing γ-core motifs.


Sujet(s)
Membrane cellulaire , Proton-Translocating ATPases , Humains , Membrane cellulaire/métabolisme , Membrane cellulaire/effets des médicaments et des substances chimiques , Proton-Translocating ATPases/métabolisme , Proton-Translocating ATPases/antagonistes et inhibiteurs , Perméabilité des membranes cellulaires/effets des médicaments et des substances chimiques , Anti-infectieux/pharmacologie , Défensines/pharmacologie , Défensines/métabolisme , Concentration en ions d'hydrogène , Saccharomyces cerevisiae/métabolisme , bêta-Défensines/métabolisme , bêta-Défensines/pharmacologie , Lactoferrine/pharmacologie , Lactoferrine/métabolisme , Potassium/métabolisme , Tests de sensibilité microbienne , Candida albicans/effets des médicaments et des substances chimiques
7.
J Immunol ; 213(2): 109-114, 2024 07 15.
Article de Anglais | MEDLINE | ID: mdl-38950331

RÉSUMÉ

ATPase cation transporting 13A2 (ATP13A2) is an endolysosomal P-type ATPase known to be a polyamine transporter, explored mostly in neurons. As endolysosomal functions are also crucial in innate immune cells, we aimed to explore the potential role of ATP13A2 in the human immunocellular compartment. We found that human plasmacytoid dendritic cells (pDCs), the professional type I IFN-producing immune cells, especially have a prominent enrichment of ATP13A2 expression in endolysosomal compartments. ATP13A2 knockdown in human pDCs interferes with cytokine induction in response to TLR9/7 activation in response to bona fide ligands. ATP13A2 plays this crucial role in TLR9/7 activation in human pDCs by regulating endolysosomal pH and mitochondrial reactive oxygen generation. This (to our knowledge) hitherto unknown regulatory mechanism in pDCs involving ATP13A2 opens up a new avenue of research, given the crucial role of pDC-derived type I IFNs in protective immunity against infections as well as in the immunopathogenesis of myriad contexts of autoreactive inflammation.


Sujet(s)
Cellules dendritiques , Endosomes , Lysosomes , Récepteur-9 de type Toll-like , Humains , Cellules dendritiques/immunologie , Cellules dendritiques/métabolisme , Lysosomes/métabolisme , Lysosomes/immunologie , Récepteur-9 de type Toll-like/métabolisme , Récepteur-9 de type Toll-like/immunologie , Endosomes/métabolisme , Endosomes/immunologie , Proton-Translocating ATPases/métabolisme , Espèces réactives de l'oxygène/métabolisme , Mitochondries/métabolisme , Mitochondries/immunologie , Cellules cultivées , Interféron de type I/métabolisme , Interféron de type I/immunologie , Récepteur de type Toll-7
8.
Theory Biosci ; 143(3): 217-227, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-39078560

RÉSUMÉ

The F1-ATPase enzyme is the smallest-known molecular motor that rotates in 120° steps, driven by the hydrolysis of ATP. It is a multi-subunit enzyme that contains three catalytic sites. A central question is how the elementary chemical reactions that occur in the three sites are coupled to mechanical rotation. Various models and coupling schemes have been formulated in an attempt to answer this question. They can be classified as 2-site (bi-site) models, exemplified by Boyer's binding change mechanism first proposed 50 years ago, and 3-site (tri-site) models such as Nath's torsional mechanism, first postulated 25 years ago and embellished 1 year back. Experimental data collated using diverse approaches have conclusively shown that steady-state ATP hydrolysis by F1-ATPase occurs in tri-site mode. Hence older models have been continually modified to make them conform to the new facts. Here, we have developed a pure mathematical approach based on combinatorics and conservation laws to test if proposed models are 2-site or 3-site. Based on this novel combinatorial approach, we have proved that older and modified models are effectively bi‒site models in that catalysis and rotation in F1-ATPase occurs in these models with only two catalytic sites occupied by bound nucleotide. Hence these models contradict consensus experimental data. The recent 2023 model of ATP hydrolysis by F1-ATPase has been proved to be a true tri-site model based on our novel mathematical approach. Such pure mathematical proofs constitute an important step forward for ATP mechanism. However, in what must be considered an aspect with great scientific potential, the power of such mathematical proofs has not been fully exploited to solve molecular biological problems, in our opinion. We believe that the creative application of pure mathematical proofs (for another example see Nath in Theory Biosci 141:249-260, 2022) can help resolve with finality various longstanding molecular-level issues that arise as a matter of course in the analysis of fundamental biological problems. Such issues have proved extraordinarily difficult to resolve by standard experimental, theoretical, or computational approaches.


Sujet(s)
Adénosine triphosphate , Proton-Translocating ATPases , Hydrolyse , Adénosine triphosphate/métabolisme , Adénosine triphosphate/composition chimique , Proton-Translocating ATPases/composition chimique , Proton-Translocating ATPases/métabolisme , Domaine catalytique , Cinétique , Algorithmes , Catalyse , Rotation , Sites de fixation , Modèles moléculaires
9.
Tree Physiol ; 44(8)2024 Aug 03.
Article de Anglais | MEDLINE | ID: mdl-38982738

RÉSUMÉ

To understand the role of reactive oxygen species (ROS) in regulation of the plasma membrane (PM) H+-ATPase in acid-stressed Masson pine roots, different acidity (pH 6.6 as the control, pH 5.6 and pH 4.6) of simulated acid rain (SAR) added with and without external chemicals (H2O2, enzyme inhibitors and ROS scavenger) was prepared. After 30 days of SAR exposure, the plant morphological phenotype attributes, levels of cellular ROS and lipid peroxidation, enzymatic activities of antioxidants, PM nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity and PM H+-ATPase activity in pine seedlings were measured. Compared with the control, the growth of pine seedlings exposed to SAR in the presence or absence of H2O2 was well-maintained, but the application of Na3VO4, 1,3-dimethyl-2-thiourea, N, N-dimethylthiourea (DMTU) and diphenyleneiodonium chloride (DPI) caused a substantial growth inhibition. In addition, SAR exposure, SAR with H2O2 treatment, and SAR with Na3VO4 treatment increased the cellular H2O2 content, O2- content and malondialdehyde (MDA) content, while the use of DMTU and DPI lead to relatively low levels. Similarly, the enzymatic activities of antioxidants, PM NADPH oxidase and PM H+-ATPase in acid stressed pine seedlings elevated with the increasing acidity. A significant stimulation of these enzymatic activities obtained from SAR with H2O2 treatment was observed, whereas which decreased obviously with the addition of Na3VO4, DMTU and DPI (P < 0.05). Moreover, a positive correlation was found between plant morphological attributes and the PM H+-ATPase activity (P < 0.05). Besides, the PM H+-ATPase activity positively correlated with the cellular ROS contents and the enzymatic activities of antioxidants and PM NADPH oxidase (P < 0.05). Therefore, the PM H+-ATPase is instrumental in the growth of pine seedlings resisting to acid stress by enhancing its activity. The process involves the signaling transduction of cellular ROS and coordination with PM NADPH oxidase.


Sujet(s)
Membrane cellulaire , Pinus , Racines de plante , Proton-Translocating ATPases , Espèces réactives de l'oxygène , Pinus/croissance et développement , Pinus/métabolisme , Pinus/effets des médicaments et des substances chimiques , Espèces réactives de l'oxygène/métabolisme , Proton-Translocating ATPases/métabolisme , Racines de plante/croissance et développement , Racines de plante/effets des médicaments et des substances chimiques , Racines de plante/métabolisme , Membrane cellulaire/métabolisme , Membrane cellulaire/effets des médicaments et des substances chimiques , Peroxyde d'hydrogène/métabolisme , Plant/croissance et développement , Plant/effets des médicaments et des substances chimiques , Plant/métabolisme , Pluies acides , Stress physiologique , Antioxydants/métabolisme
10.
Cell Calcium ; 123: 102909, 2024 Nov.
Article de Anglais | MEDLINE | ID: mdl-38861767

RÉSUMÉ

Many studies have focused on identifying the signaling pathway by which addition of glucose triggers post-translational activation of the plasma membrane H+-ATPase in yeast. They have revealed that calcium signaling is involved in the regulatory pathway, supported for instance by the phenotype of mutants inARG82 that encodes an inositol kinase that phosphorylates inositol triphosphate (IP3). Strong glucose-induced calcium signaling, and high glucose-induced plasma membrane H+-ATPase activation have been observed in a specific yeast strain with the PJ genetic background. In this study, we have applied pooled-segregant whole genome sequencing, QTL analysis and a new bioinformatics methodology for determining SNP frequencies to identify the cause of this discrepancy and possibly new components of the signaling pathway. This has led to the identification of an STT4 allele with 6 missense mutations as a major causative allele, further supported by the observation that deletion of STT4 in the inferior parent caused a similar increase in glucose-induced plasma membrane H+-ATPase activation. However, the effect on calcium signaling was different indicating the presence of additional relevant genetic differences between the superior and reference strains. Our results suggest that phosphatidylinositol-4-phosphate might play a role in the glucose-induced activation of plasma membrane H+-ATPase by controlling intracellular calcium release through the modulation of the activity of phospholipase C.


Sujet(s)
Membrane cellulaire , Glucose , Proton-Translocating ATPases , Protéines de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/métabolisme , Saccharomyces cerevisiae/génétique , Membrane cellulaire/métabolisme , Proton-Translocating ATPases/métabolisme , Proton-Translocating ATPases/génétique , Glucose/pharmacologie , Glucose/métabolisme , Protéines de Saccharomyces cerevisiae/métabolisme , Protéines de Saccharomyces cerevisiae/génétique , Génomique , Polymorphisme de nucléotide simple , Locus de caractère quantitatif , Activation enzymatique/effets des médicaments et des substances chimiques , Signalisation calcique/effets des médicaments et des substances chimiques
11.
Physiol Plant ; 176(3): e14380, 2024.
Article de Anglais | MEDLINE | ID: mdl-38894644

RÉSUMÉ

Phototropism movement is crucial for plants to adapt to various environmental changes. Plant P-type H+-ATPase (HA) plays diverse roles in signal transduction during cell expansion, regulation of cellular osmotic potential and stomatal opening, and circadian movement. Despite numerous studies on the genome-wide analysis of Vitis vinifera, no research has been done on the P-type H+-ATPase family genes, especially concerning pulvinus-driven leaf movement. In this study, 55 VvHAs were identified and classified into nine distinct subgroups (1 to 9). Gene members within the same subgroups exhibit similar features in motif, intron/exon, and protein tertiary structures. Furthermore, four pairs of genes were derived by segmental duplication in grapes. Cis-acting element analysis identified numerous light/circadian-related elements in the promoters of VvHAs. qRT-PCR analysis showed that several genes of subgroup 7 were highly expressed in leaves and pulvinus during leaf movement, especially VvHA14, VvHA15, VvHA16, VvHA19, VvHA51, VvHA52, and VvHA54. Additionally, we also found that the VvHAs genes were asymmetrically expressed on both sides of the extensor and flexor cell of the motor organ, the pulvinus. The expression of VvHAs family genes in extensor cells was significantly higher than that in flexor cells. Overall, this study serves as a foundation for further investigations into the functions of VvHAs and contributes to the complex mechanisms underlying grapevine pulvinus growth and development.


Sujet(s)
Régulation de l'expression des gènes végétaux , Phototropisme , Feuilles de plante , Protéines végétales , Proton-Translocating ATPases , Vitis , Vitis/génétique , Vitis/physiologie , Vitis/enzymologie , Feuilles de plante/génétique , Feuilles de plante/physiologie , Proton-Translocating ATPases/génétique , Proton-Translocating ATPases/métabolisme , Protéines végétales/génétique , Protéines végétales/métabolisme , Phototropisme/génétique , Phototropisme/physiologie , Pulvinus/génétique , Pulvinus/métabolisme , Pulvinus/physiologie , Membrane cellulaire/métabolisme , Phylogenèse , Famille multigénique
12.
Proc Natl Acad Sci U S A ; 121(21): e2314604121, 2024 May 21.
Article de Anglais | MEDLINE | ID: mdl-38748581

RÉSUMÉ

We developed a significantly improved genetically encoded quantitative adenosine triphosphate (ATP) sensor to provide real-time dynamics of ATP levels in subcellular compartments. iATPSnFR2 is a variant of iATPSnFR1, a previously developed sensor that has circularly permuted superfolder green fluorescent protein (GFP) inserted between the ATP-binding helices of the ε-subunit of a bacterial F0-F1 ATPase. Optimizing the linkers joining the two domains resulted in a ~fivefold to sixfold improvement in the dynamic range compared to the previous-generation sensor, with excellent discrimination against other analytes, and affinity variants varying from 4 µM to 500 µM. A chimeric version of this sensor fused to either the HaloTag protein or a suitable spectrally separated fluorescent protein provides an optional ratiometric readout allowing comparisons of ATP across cellular regions. Subcellular targeting the sensor to nerve terminals reveals previously uncharacterized single-synapse metabolic signatures, while targeting to the mitochondrial matrix allowed direct quantitative probing of oxidative phosphorylation dynamics.


Sujet(s)
Adénosine triphosphate , Protéines à fluorescence verte , Animaux , Humains , Adénosine triphosphate/analyse , Adénosine triphosphate/composition chimique , Adénosine triphosphate/métabolisme , Techniques de biocapteur/méthodes , Protéines à fluorescence verte/métabolisme , Protéines à fluorescence verte/génétique , Phosphorylation oxydative , Proton-Translocating ATPases/métabolisme , Proton-Translocating ATPases/génétique
13.
Mol Cell ; 84(10): 1917-1931.e15, 2024 May 16.
Article de Anglais | MEDLINE | ID: mdl-38723633

RÉSUMÉ

Many multi-spanning membrane proteins contain poorly hydrophobic transmembrane domains (pTMDs) protected from phospholipid in mature structure. Nascent pTMDs are difficult for translocon to recognize and insert. How pTMDs are discerned and packed into mature, muti-spanning configuration remains unclear. Here, we report that pTMD elicits a post-translational topogenesis pathway for its recognition and integration. Using six-spanning protein adenosine triphosphate-binding cassette transporter G2 (ABCG2) and cultured human cells as models, we show that ABCG2's pTMD2 can pass through translocon into the endoplasmic reticulum (ER) lumen, yielding an intermediate with inserted yet mis-oriented downstream TMDs. After translation, the intermediate recruits P5A-ATPase ATP13A1, which facilitates TMD re-orientation, allowing further folding and the integration of the remaining lumen-exposed pTMD2. Depleting ATP13A1 or disrupting pTMD-characteristic residues arrests intermediates with mis-oriented and exposed TMDs. Our results explain how a "difficult" pTMD is co-translationally skipped for insertion and post-translationally buried into the final correct structure at the late folding stage to avoid excessive lipid exposure.


Sujet(s)
Membre-2 de la sous-famille G des transporteurs à cassette liant l'ATP , Réticulum endoplasmique , Protéines membranaires , P-type ATPases , Pliage des protéines , Humains , Transporteurs ABC/métabolisme , Transporteurs ABC/génétique , Transporteurs ABC/composition chimique , Réticulum endoplasmique/métabolisme , Cellules HEK293 , Interactions hydrophobes et hydrophiles , Protéines membranaires/métabolisme , Protéines membranaires/génétique , Protéines membranaires/composition chimique , Domaines protéiques , Maturation post-traductionnelle des protéines , Proton-Translocating ATPases/métabolisme , Proton-Translocating ATPases/génétique , Proton-Translocating ATPases/composition chimique , P-type ATPases/métabolisme , Membre-2 de la sous-famille G des transporteurs à cassette liant l'ATP/composition chimique , Membre-2 de la sous-famille G des transporteurs à cassette liant l'ATP/génétique , Membre-2 de la sous-famille G des transporteurs à cassette liant l'ATP/métabolisme
14.
Plant Physiol Biochem ; 211: 108723, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38749376

RÉSUMÉ

Legume-rhizobia symbiosis requires high phosphorus (P) in the form of ATP to convert atmospheric nitrogen (N) into ammonia. The fixed ammonia is converted to NH4+ by H+-ATPase via protonation. To the best of our knowledge, most of these research works resort to using only inorganic P (Pi) to the neglect of the organic P (Po) counterpart. As it stands, the potential regulating roles of plasma membrane (PM) H+-ATPases during legume-rhizobia symbiosis in response to phytic acid supply and how it alters and modulates the regulation of PM H+-ATPases remain obscure. To contribute to the above hypothesis, we investigate the mechanisms that coordinately facilitate the growth, uptake, and transcript expression of PM H+-ATPase gene isoforms in response to different P sources when hydroponically grown Vicia faba plants were exposed to three P treatments, viz., low- and high-Pi (2.0 and 200 µM KH2PO4; LPi and HPi), and phytic acid (200 µM; Po) and inoculated with Rhizobium leguminosarum bv. viciae 384 for 30 days. The results consistently reveal that the supply of Po improved not only the growth and biomass, but also enhanced photosynthetic parameters, P uptake and phosphatase activities in symbiotically grown Vicia faba relative to Pi. The supply of Po induced higher transcriptional expression of all PM H+-ATPase gene isoforms, with possible interactions between phosphatases and H+-ATPase genes in Vicia faba plants when exclusively reliant on N derived from nodule symbiosis. Overall, preliminary results suggest that Po could be used as an alternative nutrition in symbiotic crops to improve plant growth.


Sujet(s)
Phosphore , Vicia faba , Vicia faba/croissance et développement , Vicia faba/physiologie , Symbiose , Biomasse , Phosphore/métabolisme , Phosphoric monoester hydrolases/métabolisme , Carbone/métabolisme , Membrane cellulaire/métabolisme , Proton-Translocating ATPases/métabolisme , Expression des gènes , Transcription génétique
15.
Plant Cell ; 36(9): 3498-3520, 2024 Sep 03.
Article de Anglais | MEDLINE | ID: mdl-38819320

RÉSUMÉ

The brassinosteroid (BR) receptor BRASSINOSTEROID-INSENSITIVE 1 (BRI1) plays a critical role in plant growth and development. Although much is known about how BR signaling regulates growth and development in many crop species, the role of StBRI1 in regulating potato (Solanum tuberosum) tuber development is not well understood. To address this question, a series of comprehensive genetic and biochemical methods were applied in this investigation. It was determined that StBRI1 and Solanum tuberosum PLASMA MEMBRANE (PM) PROTON ATPASE2 (PHA2), a PM-localized proton ATPase, play important roles in potato tuber development. The individual overexpression of StBRI1 and PHA2 led to a 22% and 25% increase in tuber yield per plant, respectively. Consistent with the genetic evidence, in vivo interaction analysis using double transgenic lines and PM H+-ATPase activity assays indicated that StBRI1 interacts with the C-terminus of PHA2, which restrains the intramolecular interaction of the PHA2 C-terminus with the PHA2 central loop to attenuate autoinhibition of PM H+-ATPase activity, resulting in increased PHA2 activity. Furthermore, the extent of PM H+-ATPase autoinhibition involving phosphorylation-dependent mechanisms corresponds to phosphorylation of the penultimate Thr residue (Thr-951) in PHA2. These results suggest that StBRI1 phosphorylates PHA2 and enhances its activity, which subsequently promotes tuber development. Altogether, our results uncover a BR-StBRI1-PHA2 module that regulates tuber development and suggest a prospective strategy for improving tuberous crop growth and increasing yield via the cell surface-based BR signaling pathway.


Sujet(s)
Brassinostéroïdes , Membrane cellulaire , Protéines végétales , Tubercules , Proton-Translocating ATPases , Solanum tuberosum , Solanum tuberosum/génétique , Solanum tuberosum/croissance et développement , Solanum tuberosum/métabolisme , Solanum tuberosum/enzymologie , Proton-Translocating ATPases/métabolisme , Proton-Translocating ATPases/génétique , Membrane cellulaire/métabolisme , Protéines végétales/métabolisme , Protéines végétales/génétique , Tubercules/croissance et développement , Tubercules/métabolisme , Tubercules/génétique , Brassinostéroïdes/métabolisme , Végétaux génétiquement modifiés , Régulation de l'expression des gènes végétaux , Phosphorylation , Transduction du signal
16.
Cardiovasc Res ; 120(7): 756-768, 2024 May 29.
Article de Anglais | MEDLINE | ID: mdl-38626311

RÉSUMÉ

AIMS: Potential loss-of-function variants of ATP13A3, the gene encoding a P5B-type transport ATPase of undefined function, were recently identified in patients with pulmonary arterial hypertension (PAH). ATP13A3 is implicated in polyamine transport but its function has not been fully elucidated. In this study, we sought to determine the biological function of ATP13A3 in vascular endothelial cells (ECs) and how PAH-associated variants may contribute to disease pathogenesis. METHODS AND RESULTS: We studied the impact of ATP13A3 deficiency and overexpression in EC models [human pulmonary ECs, blood outgrowth ECs (BOECs), and human microvascular EC 1], including a PAH patient-derived BOEC line harbouring an ATP13A3 variant (LK726X). We also generated mice harbouring an Atp13a3 variant analogous to a human disease-associated variant to establish whether these mice develop PAH. ATP13A3 localized to the recycling endosomes of human ECs. Knockdown of ATP13A3 in ECs generally reduced the basal polyamine content and altered the expression of enzymes involved in polyamine metabolism. Conversely, overexpression of wild-type ATP13A3 increased polyamine uptake. Functionally, loss of ATP13A3 was associated with reduced EC proliferation, increased apoptosis in serum starvation, and increased monolayer permeability to thrombin. The assessment of five PAH-associated missense ATP13A3 variants (L675V, M850I, V855M, R858H, and L956P) confirmed loss-of-function phenotypes represented by impaired polyamine transport and dysregulated EC function. Furthermore, mice carrying a heterozygous germline Atp13a3 frameshift variant representing a human variant spontaneously developed a PAH phenotype, with increased pulmonary pressures, right ventricular remodelling, and muscularization of pulmonary vessels. CONCLUSION: We identify ATP13A3 as a polyamine transporter controlling polyamine homeostasis in ECs, a deficiency of which leads to EC dysfunction and predisposes to PAH. This suggests a need for targeted therapies to alleviate the imbalances in polyamine homeostasis and EC dysfunction in PAH.


Sujet(s)
Cellules endothéliales , Polyamines , Animaux , Humains , Polyamines/métabolisme , Cellules endothéliales/métabolisme , Cellules endothéliales/anatomopathologie , Cellules endothéliales/enzymologie , Prolifération cellulaire , Artère pulmonaire/métabolisme , Artère pulmonaire/physiopathologie , Proton-Translocating ATPases/métabolisme , Proton-Translocating ATPases/génétique , Hypertension artérielle pulmonaire/métabolisme , Hypertension artérielle pulmonaire/génétique , Hypertension artérielle pulmonaire/physiopathologie , Hypertension artérielle pulmonaire/enzymologie , Hypertension artérielle pulmonaire/anatomopathologie , Apoptose , Hypertension pulmonaire/métabolisme , Hypertension pulmonaire/génétique , Hypertension pulmonaire/physiopathologie , Hypertension pulmonaire/anatomopathologie , Endosomes/métabolisme , Transport biologique , Modèles animaux de maladie humaine , Cellules cultivées , Phénotype , Souris de lignée C57BL , Souris
17.
Biophys Chem ; 309: 107232, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38593533

RÉSUMÉ

ATP-hydrolysis-associated conformational change of the ß-subunit during the rotation of F1-ATPase (F1) has been discussed using cryo-electron microscopy (cryo-EM). Since it is worthwhile to further investigate the conformation of ATP at the catalytic subunit through an alternative approach, the structure of ATP bound to the F1ß-subunit monomer (ß) was analyzed by solid-state NMR. The adenosine conformation of ATP-ß was similar to that of ATP analog in F1 crystal structures. 31P chemical shift analysis showed that the Pα and Pß conformations of ATP-ß are gauche-trans and trans-trans, respectively. The triphosphate chain is more extended in ATP-ß than in ATP analog in F1 crystals. This appears to be in the state just before ATP hydrolysis. Furthermore, the ATP-ß conformation is known to be more closed than the closed form in F1 crystal structures. In view of the cryo-EM results, ATP-ß would be a model of the most closed ß-subunit with ATP ready for hydrolysis in the hydrolysis stroke of the F1 rotation.


Sujet(s)
Adénosine triphosphate , Proton-Translocating ATPases , Proton-Translocating ATPases/composition chimique , Proton-Translocating ATPases/métabolisme , Hydrolyse , Adénosine triphosphate/métabolisme , Cryomicroscopie électronique , Domaine catalytique , Conformation des protéines
18.
Antimicrob Agents Chemother ; 68(5): e0160923, 2024 May 02.
Article de Anglais | MEDLINE | ID: mdl-38567956

RÉSUMÉ

The increasing prevalence of dermatophyte resistance to terbinafine, a key drug in the treatment of dermatophytosis, represents a significant obstacle to treatment. Trichophyton rubrum is the most commonly isolated fungus in dermatophytosis. In T. rubrum, we identified TERG_07844, a gene encoding a previously uncharacterized putative protein kinase, as an ortholog of budding yeast Saccharomyces cerevisiae polyamine transport kinase 2 (Ptk2), and found that T. rubrum Ptk2 (TrPtk2) is involved in terbinafine tolerance. In both T. rubrum and S. cerevisiae, Ptk2 knockout strains were more sensitive to terbinafine compared with the wild types, suggesting that promotion of terbinafine tolerance is a conserved function of fungal Ptk2. Pma1 is activated through phosphorylation by Ptk2 in S. cerevisiae. Overexpression of T. rubrum Pma1 (TrPma1) in T. rubrum Ptk2 knockout strain (ΔTrPtk2) suppressed terbinafine sensitivity, suggesting that the induction of terbinafine tolerance by TrPtk2 is mediated by TrPma1. Furthermore, omeprazole, an inhibitor of plasma membrane proton pump Pma1, increased the terbinafine sensitivity of clinically isolated terbinafine-resistant strains. These findings suggest that, in dermatophytes, the TrPtk2-TrPma1 pathway plays a key role in promoting intrinsic terbinafine tolerance and may serve as a potential target for combinational antifungal therapy against terbinafine-resistant dermatophytes.


Sujet(s)
Antifongiques , Arthrodermataceae , Résistance des champignons aux médicaments , Tests de sensibilité microbienne , Saccharomyces cerevisiae , Terbinafine , Terbinafine/pharmacologie , Antifongiques/pharmacologie , Saccharomyces cerevisiae/effets des médicaments et des substances chimiques , Saccharomyces cerevisiae/génétique , Résistance des champignons aux médicaments/génétique , Arthrodermataceae/effets des médicaments et des substances chimiques , Arthrodermataceae/génétique , Protéines fongiques/génétique , Protéines fongiques/métabolisme , Proton-Translocating ATPases/génétique , Proton-Translocating ATPases/métabolisme , Protéines de Saccharomyces cerevisiae/génétique , Protéines de Saccharomyces cerevisiae/métabolisme , Phosphorylation
19.
Plant Physiol ; 195(4): 2635-2651, 2024 Jul 31.
Article de Anglais | MEDLINE | ID: mdl-38652805

RÉSUMÉ

The bundle sheath cell (BSC) layer tightly enveloping the xylem throughout the leaf is recognized as a major signal-perceiving "valve" in series with stomata, regulating leaf hydraulic conductance (Kleaf) and thereby radial water flow via the transpiring leaf. The BSC blue light (BL) signaling pathway increases Kleaf and the underlying BSC water permeability. Here, we explored the hypothesis that BSCs also harbor a Kleaf-downregulating signaling pathway related to the stress phytohormone abscisic acid (ABA). We employed fluorescence imaging of xylem sap in detached leaves and BSC protoplasts from different genotypes of Arabidopsis (Arabidopsis thaliana) plants, using pH and membrane potential probes to monitor physiological responses to ABA and BL in combination with pharmacological agents. We found that BL-enhanced Kleaf required elevated BSC cytosolic Ca2+. ABA inhibited BL-activated xylem-sap-acidifying BSC H+-ATPase AHA2 (Arabidopsis H+-ATPase 2), resulting in depolarized BSCs and alkalinized xylem sap. ABA also stimulated BSC vacuolar H+-ATPase (VHA), which alkalinized the BSC cytosol. Each pump stimulation, AHA2 by BL and VHA by ABA (under BL), also required Ca2+. ABA stimulated VHA in the dark depending on Ca2+, but only in an alkaline external medium. Taken together with earlier findings on the pH sensitivity of BSC osmotic water permeability (i.e. aquaporin activity), our results suggest a Ca2+-dependent and pH-mediated causative link between the BL- and ABA-regulated activities of two BSC H+-ATPases and Kleaf.


Sujet(s)
Acide abscissique , Arabidopsis , Lumière , Feuilles de plante , Proton-Translocating ATPases , Xylème , Acide abscissique/métabolisme , Acide abscissique/pharmacologie , Arabidopsis/physiologie , Arabidopsis/effets des médicaments et des substances chimiques , Proton-Translocating ATPases/métabolisme , Feuilles de plante/effets des médicaments et des substances chimiques , Feuilles de plante/physiologie , Xylème/effets des médicaments et des substances chimiques , Xylème/physiologie , Protéines d'Arabidopsis/métabolisme , Protéines d'Arabidopsis/génétique , Eau/métabolisme , Concentration en ions d'hydrogène , Calcium/métabolisme , Transduction du signal ,
20.
Trends Plant Sci ; 29(9): 978-994, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-38582687

RÉSUMÉ

Plasma membrane H+-ATPases (PMAs) pump H+ out of the cytoplasm by consuming ATP to generate a membrane potential and proton motive force for the transmembrane transport of nutrients into and out of plant cells. PMAs are involved in nutrient acquisition by regulating root growth, nutrient uptake, and translocation, as well as the establishment of symbiosis with arbuscular mycorrhizas. Under nutrient stresses, PMAs are activated to pump more H+ and promote organic anion excretion, thus improving nutrient availability in the rhizosphere. Herein we review recent progress in the physiological functions and the underlying molecular mechanisms of PMAs in the efficient acquisition and utilization of various nutrients in plants. We also discuss perspectives for the application of PMAs in improving crop production and quality.


Sujet(s)
Membrane cellulaire , Produits agricoles , Proton-Translocating ATPases , Proton-Translocating ATPases/métabolisme , Produits agricoles/croissance et développement , Produits agricoles/métabolisme , Membrane cellulaire/métabolisme , Minéraux/métabolisme , Racines de plante/croissance et développement , Racines de plante/métabolisme , Racines de plante/microbiologie , Mycorhizes/physiologie
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE