Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 2.152
Filtrer
1.
Sci Rep ; 14(1): 18384, 2024 08 08.
Article de Anglais | MEDLINE | ID: mdl-39117762

RÉSUMÉ

The fundamental question of how forces are generated in a motile cell, a lamellipodium, and a comet tail is the subject of this note. It is now well established that cellular motility results from the polymerization of actin, the most abundant protein in eukaryotic cells, into an interconnected set of filaments. We portray this process in a continuum mechanics framework, claiming that polymerization promotes a mechanical swelling in a narrow zone around the nucleation loci, which ultimately results in cellular or bacterial motility. To this aim, a new paradigm in continuum multi-physics has been designed, departing from the well-known theory of Larché-Cahn chemo-transport-mechanics. In this note, we set up the theory of network growth and compare the outcomes of numerical simulations with experimental evidence.


Sujet(s)
Actines , Mouvement cellulaire , Actines/métabolisme , Modèles biologiques , Cytosquelette d'actine/métabolisme , Pseudopodes/métabolisme , Pseudopodes/physiologie , Phénomènes biomécaniques , Polymérisation
2.
J Extracell Vesicles ; 13(7): e12477, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38988257

RÉSUMÉ

Extracellular vesicles (EVs) are shed from the plasma membrane, but the regulation and function of these EVs remain unclear. We found that oxidative stress induced by H2O2 in Hela cells stimulated filopodia formation and the secretion of EVs. EVs were small (150 nm) and labeled for CD44, indicating that they were derived from filopodia. Filopodia-derived small EVs (sEVs) were enriched with the sphingolipid ceramide, consistent with increased ceramide in the plasma membrane of filopodia. Ceramide was colocalized with neutral sphingomyelinase 2 (nSMase2) and acid sphingomyelinase (ASM), two sphingomyelinases generating ceramide at the plasma membrane. Inhibition of nSMase2 and ASM prevented oxidative stress-induced sEV shedding but only nSMase2 inhibition prevented filopodia formation. nSMase2 was S-palmitoylated and interacted with ASM in filopodia to generate ceramide for sEV shedding. sEVs contained nSMase2 and ASM and decreased the level of these two enzymes in oxidatively stressed Hela cells. A novel metabolic labeling technique for EVs showed that oxidative stress induced secretion of fluorescent sEVs labeled with NBD-ceramide. NBD-ceramide-labeled sEVs transported ceramide to mitochondria, ultimately inducing cell death in a proportion of neuronal (N2a) cells. In conclusion, using Hela cells we provide evidence that oxidative stress induces interaction of nSMase2 and ASM at filopodia, which leads to shedding of ceramide-rich sEVs that target mitochondria and propagate cell death.


Sujet(s)
Céramides , Vésicules extracellulaires , Stress oxydatif , Pseudopodes , Sphingomyeline phosphodiesterase , Humains , Vésicules extracellulaires/métabolisme , Céramides/métabolisme , Pseudopodes/métabolisme , Pseudopodes/effets des médicaments et des substances chimiques , Cellules HeLa , Sphingomyeline phosphodiesterase/métabolisme , Peroxyde d'hydrogène/métabolisme , Membrane cellulaire/métabolisme
3.
Cell Death Dis ; 15(7): 537, 2024 Jul 29.
Article de Anglais | MEDLINE | ID: mdl-39075049

RÉSUMÉ

It has been shown that the formation of filopodia is a key step in tumor cell metastasis, but there is limited research regarding its mechanism. In this study, we demonstrated that fatty acid synthase (FASN) promoted filopodia formation in liver cancer cells by regulating fascin actin-bundling protein 1 (FSCN1), a marker protein for filopodia. Mechanistically, on the one hand, the accumulation of FASN is caused by the enhanced deubiquitination of FASN mediated by UCHL5 (ubiquitin c-terminal hydrolase L5). In this pathway, low expression of SIAH1 (Seven in absentia homolog 1) can decrease the ubiquitination and degradation of ADRM1 (adhesion regulating molecule 1) thereby increasing its protein level, which will recruit and activate the deubiquitination enzyme UCHL5, leading to FASN undergo deubiquitination and escape from proteasomal degradation. On the other hand, the accumulation of FASN is related to its weakened ubiquitination, where SIAH1 directly acts as a ubiquitin ligase toward FASN, and low expression of SIAH1 reduces the ubiquitination and degradation of FASN. Both the two pathways are involved in the regulation of FASN in liver cancer. Our results reveal a novel mechanism for FASN accumulation due to the low expression of SIAH1 in human liver cancer and suggest an important role of FASN in filopodia formation in liver cancer cells.


Sujet(s)
Tumeurs du foie , Protéines des microfilaments , Protéines nucléaires , Pseudopodes , Ubiquitin-protein ligases , Ubiquitination , Humains , Pseudopodes/métabolisme , Tumeurs du foie/métabolisme , Tumeurs du foie/anatomopathologie , Tumeurs du foie/génétique , Ubiquitin-protein ligases/métabolisme , Ubiquitin-protein ligases/génétique , Protéines des microfilaments/métabolisme , Protéines des microfilaments/génétique , Protéines nucléaires/métabolisme , Protéines nucléaires/génétique , Protéines de transport/métabolisme , Protéines de transport/génétique , Animaux , Lignée cellulaire tumorale , Souris nude , Fatty acid synthase type I/métabolisme , Fatty acid synthase type I/génétique , Cellules HepG2 , Souris
4.
Cancer Lett ; 601: 217145, 2024 Oct 01.
Article de Anglais | MEDLINE | ID: mdl-39084455

RÉSUMÉ

Metastasis is the primary stumbling block to the treatment of bladder cancer (BC). In order to spread, tumor cells must acquire increased migratory and invasive capacity, which is tightly linked with pseudopodia formation. Here, we unravel the effects of sulforaphane (SFN), an isothiocyanate in cruciferous vegetables, on the assembly of pseudopodia and BC metastasis, and its molecular mechanism in the process. Our database analysis revealed that in bladder tumor, pseudopodia-associated genes, CTTN, WASL and ACTR2/ARP2 are upregulated. SFN caused lamellipodia to collapse in BC cells by blocking the CTTN-ARP2 axis. SFN inhibited invadopodia formation and cell invasion by reducing WASL in different invasive BC cell lines. The production of ATP, essential for the assembly of pseudopodia, was significantly increased in bladder tumors and strongly inhibited by SFN. Overexpressing AKT1 reversed the downregulation of ATP in SFN-treated bladder cancer cells and restored filopodia and lamellipodia morphology and function. Bioluminescent imaging showed that SFN suppressed BC metastases to the lung of nude mice while downregulating Cttn and Arp2 expression. Our study thus reveals mechanisms of SFN action in inhibiting pseudopodia formation and highlights potential targeting options for the therapy of metastatic bladder cancer.


Sujet(s)
Mouvement cellulaire , Isothiocyanates , Souris nude , Pseudopodes , Sulfoxydes , Tumeurs de la vessie urinaire , Isothiocyanates/pharmacologie , Tumeurs de la vessie urinaire/anatomopathologie , Tumeurs de la vessie urinaire/traitement médicamenteux , Tumeurs de la vessie urinaire/génétique , Tumeurs de la vessie urinaire/métabolisme , Pseudopodes/effets des médicaments et des substances chimiques , Pseudopodes/métabolisme , Humains , Animaux , Sulfoxydes/pharmacologie , Lignée cellulaire tumorale , Mouvement cellulaire/effets des médicaments et des substances chimiques , Tumeurs du poumon/traitement médicamenteux , Tumeurs du poumon/secondaire , Tumeurs du poumon/anatomopathologie , Tumeurs du poumon/métabolisme , Tumeurs du poumon/génétique , Tests d'activité antitumorale sur modèle de xénogreffe , Actines/métabolisme , Actines/génétique , Invasion tumorale , Adénosine triphosphate/métabolisme , Protéines proto-oncogènes c-akt/métabolisme , Souris , Transduction du signal/effets des médicaments et des substances chimiques , Souris de lignée BALB C , Régulation de l'expression des gènes tumoraux/effets des médicaments et des substances chimiques
5.
Curr Opin Cell Biol ; 89: 102381, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38905917

RÉSUMÉ

The actin cortex, commonly described as a thin 2-dimensional layer of actin filaments beneath the plasma membrane, is beginning to be recognized as part of a more dynamic and three-dimensional composite material. In this review, we focus on the elements that contribute to the three-dimensional architecture of the actin cortex. We also argue that actin-rich structures such as filopodia and stress fibers can be viewed as specialized integral parts of the 3D actin cortex. This broadens our definition of the cortex, shifting from its simplified characterization as a thin, two-dimensional layer of actin filaments.


Sujet(s)
Cytosquelette d'actine , Actines , Animaux , Actines/métabolisme , Actines/composition chimique , Humains , Cytosquelette d'actine/métabolisme , Cytosquelette d'actine/composition chimique , Pseudopodes/métabolisme , Pseudopodes/composition chimique , Membrane cellulaire/métabolisme , Membrane cellulaire/composition chimique
6.
Commun Biol ; 7(1): 549, 2024 May 09.
Article de Anglais | MEDLINE | ID: mdl-38724689

RÉSUMÉ

Amphiphysin 2 (BIN1) is a membrane and actin remodeling protein mutated in congenital and adult centronuclear myopathies. Here, we report an unexpected function of this N-BAR domain protein BIN1 in filopodia formation. We demonstrated that BIN1 expression is necessary and sufficient to induce filopodia formation. BIN1 is present at the base of forming filopodia and all along filopodia, where it colocalizes with F-actin. We identify that BIN1-mediated filopodia formation requires IRSp53, which allows its localization at negatively-curved membrane topologies. Our results show that BIN1 bundles actin in vitro. Finally, we identify that BIN1 regulates the membrane-to-cortex architecture and functions as a molecular platform to recruit actin-binding proteins, dynamin and ezrin, to promote filopodia formation.


Sujet(s)
Protéines adaptatrices de la transduction du signal , Protéines de tissu nerveux , Protéines nucléaires , Pseudopodes , Protéines suppresseurs de tumeurs , Humains , Animaux , Cellules HeLa , Lignée cellulaire , Actines/métabolisme , Pseudopodes/métabolisme , Protéines nucléaires/métabolisme , Protéines suppresseurs de tumeurs/métabolisme , Protéines adaptatrices de la transduction du signal/métabolisme , Protéines de tissu nerveux/métabolisme , Membrane cellulaire/métabolisme
7.
Stem Cells ; 42(7): 607-622, 2024 Jul 08.
Article de Anglais | MEDLINE | ID: mdl-38717908

RÉSUMÉ

Cationic liposome-mediated delivery of drugs, DNA, or RNA plays a pivotal role in small molecule therapy, gene editing, and immunization. However, our current knowledge regarding the cellular structures that facilitate this process remains limited. Here, we used human pluripotent stem cells (hPSCs), which form compact colonies consisting of dynamically active cells at the periphery and epithelial-like cells at the core. We discovered that cells at the colony edges selectively got transfected by cationic liposomes through actin-related protein 2/3 (Arp2/3) dependent dynamic lamellipodia, which is augmented by myosin II inhibition. Conversely, cells at the core establish tight junctions at their apical surfaces, impeding liposomal access to the basal lamellipodia and thereby inhibiting transfection. In contrast, liposomes incorporating mannosylated lipids are internalized throughout the entire colony via receptor-mediated endocytosis. These findings contribute a novel mechanistic insight into enhancing therapeutic delivery via liposomes, particularly in cell types characterized by dynamic lamellipodia, such as immune cells or those comprising the epithelial layer.


Sujet(s)
Complexe Arp-2-3 , Liposomes , Pseudopodes , Liposomes/métabolisme , Humains , Complexe Arp-2-3/métabolisme , Complexe Arp-2-3/génétique , Pseudopodes/métabolisme , Pseudopodes/effets des médicaments et des substances chimiques , ADN/métabolisme , Transfection , Endocytose/effets des médicaments et des substances chimiques
8.
J Cell Biol ; 223(6)2024 06 03.
Article de Anglais | MEDLINE | ID: mdl-38748453

RÉSUMÉ

There has long been conflicting evidence as to how bundled actin filaments, found in cellular structures such as filopodia, are disassembled. In this issue, Chikireddy et al. (https://doi.org/10.1083/jcb.202312106) provide a detailed in vitro analysis of the steps involved in fragmentation of fascin-bundled actin filaments and propose a novel mechanism for severing two-filament bundles.


Sujet(s)
Cytosquelette d'actine , Cytosquelette d'actine/métabolisme , Protéines des microfilaments/métabolisme , Protéines des microfilaments/génétique , Actines/métabolisme , Pseudopodes/métabolisme , Humains , Animaux , Protéines de transport/métabolisme , Protéines de transport/génétique
9.
Life Sci Alliance ; 7(7)2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38719752

RÉSUMÉ

Septins are cytoskeletal proteins that participate in cell adhesion, migration, and polarity establishment. The septin subunit SEPT9 directly interacts with the single LIM domain of epithelial protein lost in neoplasm (EPLIN), an actin-bundling protein. Using a human SEPT9 KO fibroblast cell line, we show that cell adhesion and migration are regulated by the interplay between both proteins. The low motility of SEPT9-depleted cells could be partly rescued by increased levels of EPLIN. The normal organization of actin-related filopodia and stress fibers was directly dependent on the expression level of SEPT9 and EPLIN. Increased levels of SEPT9 and EPLIN enhanced the size of focal adhesions in cell protrusions, correlating with stabilization of actin bundles. Conversely, decreased levels had the opposite effect. Our work thus establishes the interaction between SEPT9 and EPLIN as an important link between the septin and the actin cytoskeleton, influencing cell adhesion, motility, and migration.


Sujet(s)
Adhérence cellulaire , Mouvement cellulaire , Fibroblastes , Contacts focaux , Protéines à domaine LIM , Septines , Humains , Septines/métabolisme , Septines/génétique , Mouvement cellulaire/génétique , Fibroblastes/métabolisme , Protéines à domaine LIM/métabolisme , Protéines à domaine LIM/génétique , Contacts focaux/métabolisme , Protéines du cytosquelette/métabolisme , Protéines du cytosquelette/génétique , Pseudopodes/métabolisme , Cytosquelette d'actine/métabolisme , Lignée cellulaire , Actines/métabolisme , Fibres de stress/métabolisme
10.
Elife ; 132024 May 31.
Article de Anglais | MEDLINE | ID: mdl-38819913

RÉSUMÉ

Development of the mammalian oocyte requires physical contact with the surrounding granulosa cells of the follicle, which provide it with essential nutrients and regulatory signals. This contact is achieved through specialized filopodia, termed transzonal projections (TZPs), that extend from the granulosa cells to the oocyte surface. Transforming growth factor (TGFß) family ligands produced by the oocyte increase the number of TZPs, but how they do so is unknown. Using an inducible Cre recombinase strategy together with expression of green fluorescent protein to verify Cre activity in individual cells, we examined the effect of depleting the canonical TGFß mediator, SMAD4, in mouse granulosa cells. We observed a 20-50% decrease in the total number of TZPs in SMAD4-depleted granulosa cell-oocyte complexes, and a 50% decrease in the number of newly generated TZPs when the granulosa cells were reaggregated with wild-type oocytes. Three-dimensional image analysis revealed that TZPs of SMAD4-depleted cells were longer than controls and more frequently oriented towards the oocyte. Strikingly, the transmembrane proteins, N-cadherin and Notch2, were reduced by 50% in SMAD4-depleted cells. SMAD4 may thus modulate a network of cell adhesion proteins that stabilize the attachment of TZPs to the oocyte, thereby amplifying signalling between the two cell types.


Sujet(s)
Cellules de la granulosa , Ovocytes , Protéine Smad-4 , Animaux , Protéine Smad-4/métabolisme , Protéine Smad-4/génétique , Ovocytes/métabolisme , Ovocytes/croissance et développement , Souris , Femelle , Cellules de la granulosa/métabolisme , Cellules de la granulosa/physiologie , Récepteur Notch2/métabolisme , Récepteur Notch2/génétique , Cadhérines/métabolisme , Cadhérines/génétique , Pseudopodes/métabolisme , Pseudopodes/physiologie
11.
Exp Cell Res ; 439(1): 114059, 2024 Jun 01.
Article de Anglais | MEDLINE | ID: mdl-38705228

RÉSUMÉ

Filopodia are thin, actin-rich projection from the plasma membrane that promote cancer cell invasion and migration. Sex-determining region Y-related high-mobility group-box 4 (SOX4) is a crucial transcription factor that plays a role in the development and metastasis of colorectal cancer (CRC). However, the involvement of SOX4 in cytoskeleton remodeling in CRC remains unknown. For the first time, we demonstrate that SOX4 is a potent regulator of filopodia formation in CRC cells. Overexpression of SOX4 protein enhances both migration and invasion ability of HCT116, and CACO2 cells, which is relevant to the metastasis. Furthermore, through phalloidin staining, cytoskeleton re-assembly was observed in SOX4-modified cell lines. Enhanced expression of SOX4 increased the number and length of filopodia on cell surface. In contrast, silencing SOX4 in SW620 cells with higher endogenous expression of SOX4, impeded the filopodia formation. Moreover, SOX4 was found to be positively regulating the expression of central regulators of actin cytoskeleton - N-Wiskott-Aldrich syndrome protein (N-WASP); WAVE2; Actin related proteins, ARP2 and ARP3. Inhibiting the N-WASP/ARP2/3 pathway diminishes the filopodia formation and the migration of CRC cells. These results indicate the crucial role of SOX4 in the regulation of filopodia formation mediated by N-WASP/ARP2/3 pathway in CRC cells.


Sujet(s)
Complexe Arp-2-3 , Mouvement cellulaire , Tumeurs colorectales , Cytosquelette , Pseudopodes , Facteurs de transcription SOX-C , Protéine neuronale du syndrome de Wiskott-Aldrich , Humains , Tumeurs colorectales/anatomopathologie , Tumeurs colorectales/métabolisme , Tumeurs colorectales/génétique , Facteurs de transcription SOX-C/métabolisme , Facteurs de transcription SOX-C/génétique , Mouvement cellulaire/génétique , Complexe Arp-2-3/métabolisme , Complexe Arp-2-3/génétique , Protéine neuronale du syndrome de Wiskott-Aldrich/métabolisme , Protéine neuronale du syndrome de Wiskott-Aldrich/génétique , Cytosquelette/métabolisme , Pseudopodes/métabolisme , Cellules Caco-2 , Transduction du signal , Régulation de l'expression des gènes tumoraux , Lignée cellulaire tumorale , Cellules HCT116 , Cytosquelette d'actine/métabolisme
12.
Oncogene ; 43(23): 1779-1795, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38649438

RÉSUMÉ

Transcription factors (TFs) engage in various cellular essential processes including differentiation, growth and migration. However, the master TF involved in distant metastasis of nasopharyngeal carcinoma (NPC) remains largely unclear. Here we show that KLF5 regulates actin remodeling to enhance NPC metastasis. We analyzed the msVIPER algorithm-generated transcriptional regulatory networks and identified KLF5 as a master TF of metastatic NPC linked to poor clinical outcomes. KLF5 regulates actin remodeling and lamellipodia formation to promote the metastasis of NPC cells in vitro and in vivo. Mechanistically, KLF5 preferentially occupies distal enhancer regions of ACTN4 to activate its transcription, whereby decoding the informative DNA sequences. ACTN4, extensively localized within actin cytoskeleton, facilitates dense and branched actin networks and lamellipodia formation at the cell leading edge, empowering cells to migrate faster. Collectively, our findings reveal that KLF5 controls robust transcription program of ACTN4 to modulate actin remodeling and augment cell motility which enhances NPC metastasis, and provide new potential biomarkers and therapeutic interventions for NPC.


Sujet(s)
Actinine , Actines , Mouvement cellulaire , Facteurs de transcription Krüppel-like , Cancer du nasopharynx , Tumeurs du rhinopharynx , Humains , Cancer du nasopharynx/génétique , Cancer du nasopharynx/anatomopathologie , Cancer du nasopharynx/métabolisme , Animaux , Actinine/génétique , Actinine/métabolisme , Mouvement cellulaire/génétique , Tumeurs du rhinopharynx/anatomopathologie , Tumeurs du rhinopharynx/génétique , Tumeurs du rhinopharynx/métabolisme , Facteurs de transcription Krüppel-like/génétique , Facteurs de transcription Krüppel-like/métabolisme , Souris , Lignée cellulaire tumorale , Actines/métabolisme , Actines/génétique , Régulation de l'expression des gènes tumoraux , Métastase tumorale , Pseudopodes/métabolisme , Pseudopodes/anatomopathologie , Souris nude
13.
Proc Natl Acad Sci U S A ; 121(18): e2320609121, 2024 Apr 30.
Article de Anglais | MEDLINE | ID: mdl-38652739

RÉSUMÉ

Regulation of subcellular messenger (m)RNA localization is a fundamental biological mechanism, which adds a spatial dimension to the diverse layers of post-transcriptional control of gene expression. The cellular compartment in which mRNAs are located may define distinct aspects of the encoded proteins, ranging from production rate and complex formation to localized activity. Despite the detailed roles of localized mRNAs that have emerged over the past decades, the identity of factors anchoring mRNAs to subcellular domains remains ill-defined. Here, we used an unbiased method to profile the RNA-bound proteome in migrating endothelial cells (ECs) and discovered that the plasma membrane (PM)-associated scaffolding protein A-kinase anchor protein (AKAP)12 interacts with various mRNAs, including transcripts encoding kinases with Actin remodeling activity. In particular, AKAP12 targets a transcript coding for the kinase Abelson Tyrosine-Protein Kinase 2 (ABL2), which we found to be necessary for adequate filopodia formation and angiogenic sprouting. Moreover, we demonstrate that AKAP12 is necessary for anchoring ABL2 mRNA to the PM and show that in the absence of AKAP12, the translation efficiency of ABL2 mRNA is reduced. Altogether, our work identified a unique post-transcriptional function for AKAP12 and sheds light into mechanisms of spatial control of gene expression.


Sujet(s)
Protéines d'ancrage aux protéines kinases A , Biosynthèse des protéines , ARN messager , Protéines d'ancrage aux protéines kinases A/métabolisme , Protéines d'ancrage aux protéines kinases A/génétique , ARN messager/métabolisme , ARN messager/génétique , Humains , Animaux , Cellules endothéliales/métabolisme , Pseudopodes/métabolisme , Pseudopodes/génétique , Souris , Protéines du cycle cellulaire/métabolisme , Protéines du cycle cellulaire/génétique , Membrane cellulaire/métabolisme , Mouvement cellulaire
14.
Open Biol ; 14(3): 230376, 2024 Mar.
Article de Anglais | MEDLINE | ID: mdl-38503329

RÉSUMÉ

Fascin-1-mediated actin-bundling activity is central to the generation of plasma membrane protrusions required for cell migration. Dysregulated formation of cellular protrusions is observed in metastatic cancers, where they are required for increased invasiveness, and is often correlated with increased Fascin-1 abundance. Therefore, there is interest in generating therapeutic Fascin-1 inhibitors. We present the identification of Nb 3E11, a nanobody inhibitor of Fascin-1 actin-bundling activity and filopodia formation. The crystal structure of the Fascin-1/Nb 3E11 complex reveals the structural mechanism of inhibition. Nb 3E11 occludes an actin-binding site on the third ß-trefoil domain of Fascin-1 that is currently not targeted by chemical inhibitors. Binding of Nb 3E11 to Fascin-1 induces a conformational change in the adjacent domains to stabilize Fascin-1 in an inhibitory state similar to that adopted in the presence of small-molecule inhibitors. Nb 3E11 could be used as a tool inhibitor molecule to aid in the development of Fascin-1 targeted therapeutics.


Sujet(s)
Actines , Protéines de transport , Protéines des microfilaments , Pseudopodes , Actines/métabolisme , Pseudopodes/métabolisme , Liaison aux protéines , Mouvement cellulaire
15.
Biophys J ; 123(9): 1069-1084, 2024 May 07.
Article de Anglais | MEDLINE | ID: mdl-38532625

RÉSUMÉ

Macrophage phagocytosis is critical for the immune response, homeostasis regulation, and tissue repair. This intricate process involves complex changes in cell morphology, cytoskeletal reorganization, and various receptor-ligand interactions controlled by mechanical constraints. However, there is a lack of comprehensive theoretical and computational models that investigate the mechanical process of phagocytosis in the context of cytoskeletal rearrangement. To address this issue, we propose a novel coarse-grained mesoscopic model that integrates a fluid-like cell membrane and a cytoskeletal network to study the dynamic phagocytosis process. The growth of actin filaments results in the formation of long and thin pseudopods, and the initial cytoskeleton can be disassembled upon target entry and reconstructed after phagocytosis. Through dynamic changes in the cytoskeleton, our macrophage model achieves active phagocytosis by forming a phagocytic cup utilizing pseudopods in two distinct ways. We have developed a new algorithm for modifying membrane area to prevent membrane rupture and ensure sufficient surface area during phagocytosis. In addition, the bending modulus, shear stiffness, and cortical tension of the macrophage model are investigated through computation of the axial force for the tubular structure and micropipette aspiration. With this model, we simulate active phagocytosis at the cytoskeletal level and investigate the mechanical process during the dynamic interplay between macrophage and target particles.


Sujet(s)
Macrophages , Modèles biologiques , Phagocytose , Pseudopodes , Macrophages/cytologie , Macrophages/métabolisme , Pseudopodes/métabolisme , Membrane cellulaire/métabolisme , Phénomènes biomécaniques , Cytosquelette/métabolisme
16.
J Cell Sci ; 137(6)2024 03 15.
Article de Anglais | MEDLINE | ID: mdl-38323924

RÉSUMÉ

Filopodia are narrow actin-rich protrusions with important roles in neuronal development where membrane-binding adaptor proteins, such as I-BAR- and F-BAR-domain-containing proteins, have emerged as upstream regulators that link membrane interactions to actin regulators such as formins and proteins of the Ena/VASP family. Both the adaptors and their binding partners are part of diverse and redundant protein networks that can functionally compensate for each other. To explore the significance of the F-BAR domain-containing neuronal membrane adaptor TOCA-1 (also known as FNBP1L) in filopodia we performed a quantitative analysis of TOCA-1 and filopodial dynamics in Xenopus retinal ganglion cells, where Ena/VASP proteins have a native role in filopodial extension. Increasing the density of TOCA-1 enhances Ena/VASP protein binding in vitro, and an accumulation of TOCA-1, as well as its coincidence with Ena, correlates with filopodial protrusion in vivo. Two-colour single-molecule localisation microscopy of TOCA-1 and Ena supports their nanoscale association. TOCA-1 clusters promote filopodial protrusion and this depends on a functional TOCA-1 SH3 domain and activation of Cdc42, which we perturbed using the small-molecule inhibitor CASIN. We propose that TOCA-1 clusters act independently of membrane curvature to recruit and promote Ena activity for filopodial protrusion.


Sujet(s)
Actines , Pseudopodes , Actines/métabolisme , Pseudopodes/métabolisme , Protéines de transport/métabolisme , Neurones/métabolisme , Formines/métabolisme
17.
J Cell Sci ; 137(4)2024 02 15.
Article de Anglais | MEDLINE | ID: mdl-38264939

RÉSUMÉ

Filopodia are slender, actin-filled membrane projections used by various cell types for environment exploration. Analyzing filopodia often involves visualizing them using actin, filopodia tip or membrane markers. Due to the diversity of cell types that extend filopodia, from amoeboid to mammalian, it can be challenging for some to find a reliable filopodia analysis workflow suited for their cell type and preferred visualization method. The lack of an automated workflow capable of analyzing amoeboid filopodia with only a filopodia tip label prompted the development of filoVision. filoVision is an adaptable deep learning platform featuring the tools filoTips and filoSkeleton. filoTips labels filopodia tips and the cytosol using a single tip marker, allowing information extraction without actin or membrane markers. In contrast, filoSkeleton combines tip marker signals with actin labeling for a more comprehensive analysis of filopodia shafts in addition to tip protein analysis. The ZeroCostDL4Mic deep learning framework facilitates accessibility and customization for different datasets and cell types, making filoVision a flexible tool for automated analysis of tip-marked filopodia across various cell types and user data.


Sujet(s)
Actines , Apprentissage profond , Animaux , Actines/métabolisme , Pseudopodes/métabolisme , Mammifères/métabolisme
18.
J R Soc Interface ; 21(210): 20230543, 2024 01.
Article de Anglais | MEDLINE | ID: mdl-38228181

RÉSUMÉ

The aim of this paper is to place the cell locomotion problem within the general framework of classical continuum mechanics, and while doing so, to account for the deformation of the actin network in the cytoskeleton; the myosin activity on the lamellum including its effect on depolymerization at the trailing edge; model the stress-dependent driving forces and kinetic laws controlling polymerization at the leading edge, depolymerization at the trailing edge and ATP hydrolysis consistently with the dissipation inequality; and, based on the observations in Gardel et al. (Gardel et al. 2008 J. Cell Biol. 183, 999-1005 (doi:10.1083/jcb.200810060)), include a biphasic velocity-dependent traction stress acting on the actin network. While we chose certain specific models for each of these, in part to allow for an analytical solution, the generality of the framework allows one to readily introduce different constitutive laws to describe these phenomena as might be needed, for example, to study some different type of cells. As described in §5, the predictions of the model compare well with observations such as the magnitude of the very different actin retrograde speeds in the lamellum and lamellipodium including their jump at the interface, the magnitude of the cell speed, and the relative lengths of the lamellipodium and lamellum.


Sujet(s)
Actines , Traction , Actines/métabolisme , Cytosquelette/métabolisme , Mouvement cellulaire , Pseudopodes/métabolisme , Cytosquelette d'actine/métabolisme
19.
Cell ; 187(2): 276-293.e23, 2024 01 18.
Article de Anglais | MEDLINE | ID: mdl-38171360

RÉSUMÉ

During development, morphogens pattern tissues by instructing cell fate across long distances. Directly visualizing morphogen transport in situ has been inaccessible, so the molecular mechanisms ensuring successful morphogen delivery remain unclear. To tackle this longstanding problem, we developed a mouse model for compromised sonic hedgehog (SHH) morphogen delivery and discovered that endocytic recycling promotes SHH loading into signaling filopodia called cytonemes. We optimized methods to preserve in vivo cytonemes for advanced microscopy and show endogenous SHH localized to cytonemes in developing mouse neural tubes. Depletion of SHH from neural tube cytonemes alters neuronal cell fates and compromises neurodevelopment. Mutation of the filopodial motor myosin 10 (MYO10) reduces cytoneme length and density, which corrupts neuronal signaling activity of both SHH and WNT. Combined, these results demonstrate that cytoneme-based signal transport provides essential contributions to morphogen dispersion during mammalian tissue development and suggest MYO10 is a key regulator of cytoneme function.


Sujet(s)
Structures de la membrane cellulaire , Myosines , Tube neural , Transduction du signal , Animaux , Souris , Transport biologique , Structures de la membrane cellulaire/métabolisme , Protéines Hedgehog/métabolisme , Myosines/métabolisme , Pseudopodes/métabolisme , Tube neural/cytologie , Tube neural/métabolisme
20.
Sci Rep ; 14(1): 1525, 2024 01 17.
Article de Anglais | MEDLINE | ID: mdl-38233537

RÉSUMÉ

The combination of oncogenes and tumor suppressors is involved in cancer development; however, it is still unknown whether their combination plays a critical role in cancer metastasis. We herein investigated whether genetic combinations affected cell migration ability by establishing the immortalized melanocytes, melan-a cells, with an oncogene, either BRAFV600E or GNA11Q209L, and the loss of mouse Pten. The loss of mouse Pten or human PTEN increased the cell migration ability of our established cells and human melanoma cell lines with oncogenic MAPK signaling and the BRAFV600E or NRASQ61R background, but not with the GNA11Q209L background or no oncogenes. Although increased migration was not related to PI3K-AKT activation, those migration is regulated by the induction of some components in the WAVE regulatory complex, resulting in a higher rate of the formation of lamellipodia. On the other hand, BRAFV600E induced EphA2 phosphorylation at serine 897 through RSK and was also required for cell migration and the formation of lamellipodia. Therefore, the oncogenic MAPK pathway and loss of Pten in melanoma were important for cell migration through the formation of lamellipodia, suggesting the significance of an appropriate combination of genetic alterations not only in cancer development, but also cancer metastasis.


Sujet(s)
Mélanome , Animaux , Humains , Souris , Lignée cellulaire tumorale , Mélanocytes/métabolisme , Mélanome/anatomopathologie , Phosphatidylinositol 3-kinases/métabolisme , Protéines proto-oncogènes B-raf/génétique , Protéines proto-oncogènes B-raf/métabolisme , Pseudopodes/métabolisme , Phosphohydrolase PTEN/génétique , Phosphohydrolase PTEN/métabolisme
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE