Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 184
Filtrer
1.
Aging (Albany NY) ; 16(11): 9558-9568, 2024 05 31.
Article de Anglais | MEDLINE | ID: mdl-38829778

RÉSUMÉ

Osteoarthritis (OA) is one of the most important causes of global disability, and dysfunction of chondrocytes is an important risk factor. The treatment of OA is still a challenge. Orexin-A is a hypothalamic peptide, and its effects in OA are unknown. In this study, we found that exposure to interleukin-1ß (IL-1ß) reduced the expression of orexin-2R, the receptor of orexin-A in TC-28a2 chondrocytes. Importantly, the senescence-associated ß-galactosidase (SA-ß-gal) staining assay demonstrated that orexin-A treatment ameliorates IL-1ß-induced cellular senescence. Importantly, the presence of IL-1ß significantly reduced the telomerase activity of TC-28a2 chondrocytes, which was rescued by orexin-A. We also found that orexin-A prevented IL-1ß-induced increase in the levels of Acetyl-p53 and the expression of p21. It is shown that orexin-A mitigates IL-1ß-induced reduction of sirtuin 3 (SIRT3). Silencing of SIRT3 abolished the protective effects of orexin-A against IL-1ß-induced cellular senescence. These results imply that orexin-A might serve as a promising therapeutic agent for OA.


Sujet(s)
Vieillissement de la cellule , Chondrocytes , Interleukine-1 bêta , Orexines , Vieillissement de la cellule/effets des médicaments et des substances chimiques , Chondrocytes/effets des médicaments et des substances chimiques , Chondrocytes/métabolisme , Orexines/pharmacologie , Orexines/métabolisme , Interleukine-1 bêta/métabolisme , Interleukine-1 bêta/pharmacologie , Arthrose/métabolisme , Arthrose/traitement médicamenteux , Humains , Sirtuine-3/métabolisme , Sirtuine-3/génétique , Animaux , Protéine p53 suppresseur de tumeur/métabolisme , Inhibiteur p21 de kinase cycline-dépendante/métabolisme , Récepteurs des orexines/métabolisme , Récepteurs des orexines/génétique , Lignée cellulaire
2.
Int J Mol Sci ; 25(11)2024 Jun 05.
Article de Anglais | MEDLINE | ID: mdl-38892431

RÉSUMÉ

Orexin-A is a neuropeptide product of the lateral hypothalamus that acts on two receptors, OX1R and OX2R. The orexinergic system is involved in feeding, sleep, and pressure regulation. Recently, orexin-A levels have been found to be negatively correlated with renal function. Here, we analyzed orexin-A levels as well as the incidence of SNPs in the hypocretin neuropeptide precursor (HCRT) and its receptors, HCRTR1 and HCRTR2, in 64 patients affected by autosomal dominant polycystic kidney disease (ADPKD) bearing truncating mutations in the PKD1 or PKD2 genes. Twenty-four healthy volunteers constituted the control group. Serum orexin-A was assessed by ELISA, while the SNPs were investigated through Sanger sequencing. Correlations with the main clinical features of PKD patients were assessed. PKD patients showed impaired renal function (mean eGFR 67.8 ± 34.53) and a statistically higher systolic blood pressure compared with the control group (p < 0.001). Additionally, orexin-A levels in PKD patients were statistically higher than those in healthy controls (477.07 ± 69.42 pg/mL vs. 321.49 ± 78.01 pg/mL; p < 0.001). Furthermore, orexin-A inversely correlated with blood pressure (p = 0.0085), while a direct correlation with eGFR in PKD patients was found. None of the analyzed SNPs showed any association with orexin-A levels in PKD. In conclusion, our data highlights the emerging role of orexin-A in renal physiology and its potential relevance to PKD. Further research is essential to elucidate the intricate mechanisms underlying orexin-A signaling in renal function and its therapeutic implications for PKD and associated cardiovascular complications.


Sujet(s)
Récepteurs des orexines , Orexines , Polymorphisme de nucléotide simple , Humains , Orexines/métabolisme , Orexines/génétique , Mâle , Femelle , Adulte d'âge moyen , Récepteurs des orexines/métabolisme , Récepteurs des orexines/génétique , Adulte , Canaux cationiques TRPP/génétique , Canaux cationiques TRPP/métabolisme , Polykystose rénale autosomique dominante/métabolisme , Polykystose rénale autosomique dominante/génétique , Polykystose rénale autosomique dominante/sang , Études cas-témoins , Sujet âgé , Pression sanguine , Polykystoses rénales/génétique , Polykystoses rénales/métabolisme , Polykystoses rénales/sang
3.
Tissue Cell ; 88: 102381, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38692160

RÉSUMÉ

Diabetic retinopathy (DR) is established as the primary cause of visual impairment and preventable blindness, posing significant social and economic burdens on healthcare systems worldwide. Oxidative stress has been identified as a major contributor to DR, yet the precise role of the transmembrane glycoprotein CD200R in this context remains elusive. We studied human retinal pigment epithelia ARPE-19 cells to investigate the role of CD200R in high-glucose (HG) induced oxidative stress. Under HG conditions, we found a significant increase in CD200R expression in a time-dependent pattern. Conversely, knockdown of CD200R effectively alleviated oxidative stress and restored cell viability in HG-treated ARPE-19 cells, a phenomenon corroborated by the addition of a reactive oxygen species (ROS) scavenger. Exploration of the AKT/mTOR signaling pathway confirmed its mediating role regarding CD200R knockdown suppression of the expression of key proteins induced by HG conditions. Additionally, we found that the inhibition of mTOR signaling with Rapamycin effectively countered HG-induced oxidative stress in ARPE-19 cells, suggesting a promising therapeutic target against oxidative stress in the context of DR. This study establishes the crucial role of CD200R in HG-induced oxidative stress and identifies potential therapeutic avenues for the treatment of DR.


Sujet(s)
Glucose , Stress oxydatif , Épithélium pigmentaire de la rétine , Transduction du signal , Sérine-thréonine kinases TOR , Humains , Stress oxydatif/effets des médicaments et des substances chimiques , Sérine-thréonine kinases TOR/métabolisme , Transduction du signal/effets des médicaments et des substances chimiques , Épithélium pigmentaire de la rétine/métabolisme , Épithélium pigmentaire de la rétine/effets des médicaments et des substances chimiques , Épithélium pigmentaire de la rétine/anatomopathologie , Glucose/pharmacologie , Lignée cellulaire , Récepteurs des orexines/métabolisme , Récepteurs des orexines/génétique , Espèces réactives de l'oxygène/métabolisme , Cellules épithéliales/métabolisme , Cellules épithéliales/effets des médicaments et des substances chimiques , Survie cellulaire/effets des médicaments et des substances chimiques , Rétinopathie diabétique/métabolisme , Rétinopathie diabétique/anatomopathologie
4.
Aging (Albany NY) ; 16(9): 7946-7960, 2024 05 06.
Article de Anglais | MEDLINE | ID: mdl-38713160

RÉSUMÉ

BACKGROUND: Traumatic brain injury (TBI) is a significant contributor to global mortality and disability, and emerging evidence indicates that trigeminal nerve electrical stimulation (TNS) is a promising therapeutic intervention for neurological impairment following TBI. However, the precise mechanisms underlying the neuroprotective effects of TNS in TBI are poorly understood. Thus, the objective of this study was to investigate the potential involvement of the orexin-A (OX-A)/orexin receptor 1 (OX1R) mediated TLR4/NF-κB/NLRP3 signaling pathway in the neuroprotective effects of TNS in rats with TBI. METHODS: Sprague-Dawley rats were randomly assigned to four groups: sham, TBI, TBI+TNS+SB334867, and TBI+TNS. TBI was induced using a modified Feeney's method, and subsequent behavioral assessments were conducted to evaluate neurological function. The trigeminal nerve trunk was isolated, and TNS was administered following the establishment of the TBI model. The levels of neuroinflammation, brain tissue damage, and proteins associated with the OX1R/TLR4/NF-κB/NLRP3 signaling pathway were assessed using hematoxylin-eosin staining, Nissl staining, western blot analysis, quantitative real-time polymerase chain reaction, and immunofluorescence techniques. RESULTS: The findings of our study indicate that TNS effectively mitigated tissue damage, reduced brain edema, and alleviated neurological deficits in rats with TBI. Furthermore, TNS demonstrated the ability to attenuate neuroinflammation levels and inhibit the expression of proteins associated with the TLR4/NF-κB/NLRP3 signaling pathway. However, it is important to note that the aforementioned effects of TNS were reversible upon intracerebroventricular injection of an OX1R antagonist. CONCLUSION: TNS may prevent brain damage and relieve neurological deficits after a TBI by inhibiting inflammation, possibly via the TLR4/NF-κB/NLRP3 signaling pathway mediated by OX-A/OX1R.


Sujet(s)
Lésions traumatiques de l'encéphale , Facteur de transcription NF-kappa B , Protéine-3 de la famille des NLR contenant un domaine pyrine , Récepteurs des orexines , Rat Sprague-Dawley , Transduction du signal , Récepteur de type Toll-4 , Nerf trijumeau , Animaux , Lésions traumatiques de l'encéphale/métabolisme , Lésions traumatiques de l'encéphale/thérapie , Récepteur de type Toll-4/métabolisme , Récepteur de type Toll-4/génétique , Récepteurs des orexines/métabolisme , Récepteurs des orexines/génétique , Rats , Facteur de transcription NF-kappa B/métabolisme , Protéine-3 de la famille des NLR contenant un domaine pyrine/métabolisme , Mâle , Nerf trijumeau/métabolisme , Orexines/métabolisme , Électrothérapie/méthodes , Modèles animaux de maladie humaine
5.
Cell Mol Life Sci ; 81(1): 231, 2024 May 23.
Article de Anglais | MEDLINE | ID: mdl-38780647

RÉSUMÉ

CD200 is an anti-inflammatory protein that facilitates signal transduction through its receptor, CD200R, in cells, resulting in immune response suppression. This includes reducing M1-like macrophages, enhancing M2-like macrophages, inhibiting NK cell cytotoxicity, and downregulating CTL responses. Activation of CD200R has been found to modulate dendritic cells, leading to the induction or enhancement of Treg cells expressing Foxp3. However, the precise mechanisms behind this process are still unclear. Our previous study demonstrated that B cells in Peyer's patches can induce Treg cells, so-called Treg-of-B (P) cells, through STAT6 phosphorylation. This study aimed to investigate the role of CD200 in Treg-of-B (P) cell generation. To clarify the mechanisms, we used wild-type, STAT6 deficient, and IL-24 deficient T cells to generate Treg-of-B (P) cells, and antagonist antibodies (anti-CD200 and anti-IL-20RB), an agonist anti-CD200R antibody, CD39 inhibitors (ARL67156 and POM-1), a STAT6 inhibitor (AS1517499), and soluble IL-20RB were also applied. Our findings revealed that Peyer's patch B cells expressed CD200 to activate the CD200R on T cells and initiate the process of Treg-of-B (P) cells generation. CD200 and CD200R interaction triggers the phosphorylation of STAT6, which regulated the expression of CD200R, CD39, and IL-24 in T cells. CD39 regulated the expression of IL-24, which sustained the expression of CD223 and IL-10 and maintained the cell viability. In summary, the generation of Treg-of-B (P) cells by Peyer's patch B cells was through the CD200R-STAT6-CD39-IL-24 axis pathway.


Sujet(s)
Lymphocytes B , Facteur de transcription STAT-6 , Lymphocytes T régulateurs , Animaux , Lymphocytes T régulateurs/immunologie , Lymphocytes T régulateurs/métabolisme , Souris , Lymphocytes B/immunologie , Lymphocytes B/métabolisme , Facteur de transcription STAT-6/métabolisme , Souris de lignée C57BL , Récepteurs des orexines/métabolisme , Récepteurs des orexines/génétique , Antigènes CD/métabolisme , Antigènes CD/génétique , Antigènes CD/immunologie , Transduction du signal , Phosphorylation , Plaques de Peyer/immunologie , Plaques de Peyer/métabolisme , Plaques de Peyer/cytologie , Apyrase/métabolisme , Apyrase/immunologie , Glycoprotéines membranaires
6.
Exp Eye Res ; 244: 109943, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38797259

RÉSUMÉ

Orexin A and B (OXA and OXB) and their receptors are expressed in the majority of retinal neurons in humans, rats, and mice. Orexins modulate signal transmission between the different layers of the retina. The suprachiasmatic nucleus (SCN) and the retina are central and peripheral components of the body's biological clocks; respectively. The SCN receives photic information from the retina through the retinohypothalamic tract (RHT) to synchronize bodily functions with environmental changes. In present study, we aimed to investigate the impact of inhibiting retinal orexin receptors on the expression of retinal Bmal1 and c-fos, as well as hypothalamic c-fos, Bmal1, Vip, and PACAP at four different time-points (Zeitgeber time; ZT 3, 6, 11, and ZT-0). The intravitreal injection (IVI) of OX1R antagonist (SB-334867) and OX2R antagonist (JNJ-10397049) significantly up-regulated c-fos expression in the retina. Additionally, compared to the control group, the combined injection of SB-334867 and JNJ-10397049 showed a greater increase in retinal expression of this gene. Moreover, the expression of hypothalamic Vip and PACAP was significantly up-regulated in both the SB-334867 and JNJ-10397049 groups. In contrast, the expression of Bmal1 was down-regulated. Furthermore, the expression of hypothalamic c-fos was down-regulated in all groups treated with SB-334867 and JNJ-10397049. Additionally, the study demonstrated that blocking these receptors in the retina resulted in alterations in circadian rhythm parameters such as mesor, amplitude, and acrophase. Finally, it affected the phase of gene expression rhythms in both the retina and hypothalamus, as identified through cosinor analysis and the zero-amplitude test. This study represents the initial exploration of how retinal orexin receptors influence expression of rhythmic genes in the retina and hypothalamus. These findings could provide new insights into how the retina regulates the circadian rhythm in both regions and illuminate the role of the orexinergic system expression within the retina.


Sujet(s)
Hypothalamus , Récepteurs des orexines , Polypeptide activateur de l'adénylcyclase hypophysaire , Protéines proto-oncogènes c-fos , Rat Wistar , Rétine , Peptide vasoactif intestinal , Animaux , Mâle , Rats , Protéines proto-oncogènes c-fos/métabolisme , Protéines proto-oncogènes c-fos/génétique , Hypothalamus/métabolisme , Polypeptide activateur de l'adénylcyclase hypophysaire/métabolisme , Polypeptide activateur de l'adénylcyclase hypophysaire/génétique , Récepteurs des orexines/métabolisme , Récepteurs des orexines/génétique , Rétine/métabolisme , Peptide vasoactif intestinal/métabolisme , Naphtyridines , Facteurs de transcription ARNTL/génétique , Facteurs de transcription ARNTL/métabolisme , Régulation de l'expression des gènes , Antagonistes des récepteurs des orexines/pharmacologie , Benzoxazoles/pharmacologie , Urée/analogues et dérivés , Urée/pharmacologie , Rythme circadien/physiologie , Noyau suprachiasmatique/métabolisme , Dioxanes , Isoquinoléines , Phénylurées , Pyridines
7.
Zhen Ci Yan Jiu ; 49(5): 441-447, 2024 May 25.
Article de Anglais, Chinois | MEDLINE | ID: mdl-38764114

RÉSUMÉ

OBJECTIVES: To observe the effect of electroacupuncture (EA) at "Neiguan" (PC6) on pain response in mice injected with complete Freund's adjuvant (CFA) in the hind paw, so as to investigate the mechanism of orexin 1 receptor (OX1R) -endogenous cannabinoid 1 receptor (CB1R) pathway in acupuncture analgesia. METHODS: A total of 48 male C57BL/6 mice were used in the present study. In the first part of this study, 18 mice were randomized into control, model and EA groups, with 6 mice in each group. In the second part of this study, 30 mice were randomized into control, model, EA, EA+Naloxone, EA+OX1R antagonist (SB33486) groups, with 6 mice in each group. Inflammatory pain model was established by subcutaneous injection of 20 µL CFA solution in the left hind paw. EA (2 Hz, 2 mA ) was applied to bilateral PC6 for 20 min, once a day for 5 consecutive days. The mice in the EA+Naloxone and EA+SB33486 groups were intraperitoneally injected with naloxone (10 mg/kg) or SB33486 (15 mg/kg) 15 min before EA intervention on day 5, respectively. Tail-flick method and Von Frey method were used to detect the thermal pain threshold and mechanical pain threshold of mice. Quantitative real-time PCR was used to detect the expression level of ß-endorphin mRNA in periaqueductal gray (PAG) of mice. The expression of OX1R positive cells in the lateral hypothalamic area (LH) and CB1R positive cells in the ventrolateral periaqueductal gray (vlPAG) were detected by immunofluorescence. RESULTS: Compared with the control group, the thermal pain threshold and mechanical pain threshold of the model group were decreased (P<0.001), the expression level of ß-endorphin mRNA in PAG was decreased (P<0.001), and the numbers of OX1R positive cells in LH and CB1R positive cells in vlPAG were decreased (P<0.05, P<0.001). Compared with the model group, the thermal pain threshold and mechanical pain threshold of the EA group were significantly increased (P<0.001), and the numbers of OX1R positive cells in LH and CB1R positive cells in vlPAG were increased (P<0.01, P<0.001). Compared with the EA group, the mechanical pain threshold in the EA+SB33486 group was significantly decreased (P<0.01), but there was no significant difference in the mechanical pain threshold between the EA+Naloxone group and EA group, and the numbers of OX1R positive neurons in LH and CB1R positive neurons in vlPAG were decreased in the EA+SB33486 group (P<0.001). CONCLUSIONS: EA at PC6 can achieve analgesic effect on CFA mice by activating the OX1R-CB1R pathway in the brain, and this effect is opioid-independent.


Sujet(s)
Points d'acupuncture , Encéphale , Électroacupuncture , Récepteurs des orexines , Douleur , Animaux , Humains , Mâle , Souris , Encéphale/métabolisme , Inflammation/thérapie , Inflammation/métabolisme , Inflammation/génétique , Souris de lignée C57BL , Récepteurs des orexines/métabolisme , Récepteurs des orexines/génétique , Douleur/métabolisme , Douleur/génétique , Gestion de la douleur
8.
Xenotransplantation ; 31(3): e12863, 2024.
Article de Anglais | MEDLINE | ID: mdl-38751087

RÉSUMÉ

Overexpression of human CD200 (hCD200) in porcine endothelial cells (PECs) has been reported to suppress xenogeneic immune responses of human macrophages against porcine endothelial cells. The current study aimed to address whether the above-mentioned beneficial effect of hCD200 is mediated by overcoming the molecular incompatibility between porcine CD200 (pCD200) and hCD200 receptor or simply by increasing the expression levels of CD200 without any molecular incompatibility across the two species. We overexpressed hCD200 or pCD200 using lentiviral vectors with V5 marker in porcine endothelial cells and compared their suppressive activity against U937-derived human macrophage-like cells (hMCs) and primary macrophages. In xenogeneic coculture of porcine endothelial cells and human macrophage-like cells or macrophages, hCD200-porcine endothelial cells suppressed phagocytosis and cytotoxicity of human macrophages to a greater extent than pCD200-porcine endothelial cells. Secretion of tumor necrosis factor-α, interleukin-1ß, and monocyte chemoattractant protein-1 from human macrophages and expression of M1 phenotypes (inducible nitric oxide synthase, dectin-1, and CD86) were also suppressed by hCD200 to a greater extent than pCD200. Furthermore, in signal transduction downstream of CD200 receptor, hCD200 induced Dok2 phosphorylation and suppressed IκB phosphorylation to a greater extent than pCD200. The above data supported the possibility of a significant molecular incompatibility between pCD200 and human CD200 receptor, suggesting that the beneficial effects of hCD200 overexpression in porcine endothelial cells could be mediated by overcoming the molecular incompatibility across the species barrier rather than by simple overexpression effects of CD200.


Sujet(s)
Antigènes CD , Cellules endothéliales , Macrophages , Transplantation hétérologue , Animaux , Humains , Antigènes CD/immunologie , Antigènes CD/métabolisme , Antigènes CD/génétique , Suidae , Macrophages/immunologie , Macrophages/métabolisme , Transplantation hétérologue/méthodes , Cellules endothéliales/immunologie , Phagocytose , Récepteurs des orexines/génétique , Récepteurs des orexines/métabolisme , Récepteurs des orexines/immunologie , Techniques de coculture
9.
Sci Rep ; 14(1): 7690, 2024 04 02.
Article de Anglais | MEDLINE | ID: mdl-38565870

RÉSUMÉ

Tunicates are evolutionary model organisms bridging the gap between vertebrates and invertebrates. A genomic sequence in Ciona intestinalis (CiOX) shows high similarity to vertebrate orexin receptors and protostome allatotropin receptors (ATR). Here, molecular phylogeny suggested that CiOX is divergent from ATRs and human orexin receptors (hOX1/2). However, CiOX appears closer to hOX1/2 than to ATR both in terms of sequence percent identity and in its modelled binding cavity, as suggested by molecular modelling. CiOX was heterologously expressed in a recombinant HEK293 cell system. Human orexins weakly but concentration-dependently activated its Gq signalling (Ca2+ elevation), and the responses were inhibited by the non-selective orexin receptor antagonists TCS 1102 and almorexant, but only weakly by the OX1-selective antagonist SB-334867. Furthermore, the 5-/6-carboxytetramethylrhodamine (TAMRA)-labelled human orexin-A was able to bind to CiOX. Database mining was used to predict a potential endogenous C. intestinalis orexin peptide (Ci-orexin-A). Ci-orexin-A was able to displace TAMRA-orexin-A, but not to induce any calcium response at the CiOX. Consequently, we suggested that the orexin signalling system is conserved in Ciona intestinalis, although the relevant peptide-receptor interaction was not fully elucidated.


Sujet(s)
Ciona intestinalis , Animaux , Humains , Récepteurs des orexines/génétique , Récepteurs des orexines/métabolisme , Orexines/génétique , Orexines/métabolisme , Ciona intestinalis/génétique , Ciona intestinalis/métabolisme , Cellules HEK293 , Transduction du signal , Vertébrés/métabolisme , Protéines de transport/métabolisme
10.
Structure ; 32(3): 352-361.e5, 2024 Mar 07.
Article de Anglais | MEDLINE | ID: mdl-38194963

RÉSUMÉ

Orexin neuropeptides have many physiological roles in the sleep-wake cycle, feeding behavior, reward demands, and stress responses by activating cognitive receptors, the orexin receptors (OX1R and OX2R), distributed in the brain. There are only subtle differences between OX1R and OX2R in the orthosteric site, which has hindered the rational development of subtype-selective antagonists. In this study, we utilized solution-state NMR to capture the structural plasticity of OX2R labeled with 13CH3-ε-methionine in complex with antagonists. Mutations in the orthosteric site allosterically affected the intracellular tip of TM6. Ligand exchange experiments with the subtype-selective EMPA and the nonselective suvorexant identified three methionine residues that were substantially perturbed. The NMR spectra suggested that the suvorexant-bound state exhibited more structural plasticity than the EMPA-bound state, which has not been foreseen from the close similarity of their crystal structures, providing insights into dynamic features to be considered in understanding the ligand recognition mode.


Sujet(s)
Méthionine , Humains , Orexines , Ligands , Récepteurs des orexines/génétique , Récepteurs des orexines/composition chimique , Spectroscopie par résonance magnétique
11.
eNeuro ; 11(2)2024 Feb.
Article de Anglais | MEDLINE | ID: mdl-38199807

RÉSUMÉ

Orexins, which are produced within neurons of the lateral hypothalamic area, play a pivotal role in the regulation of various behaviors, including sleep/wakefulness, reward behavior, and energy metabolism, via orexin receptor type 1 (OX1R) and type 2 (OX2R). Despite the advanced understanding of orexinergic regulation of behavior at the circuit level, the precise distribution of orexin receptors in the brain remains unknown. Here, we develop a new branched in situ hybridization chain reaction (bHCR) technique to visualize multiple target mRNAs in a semiquantitative manner, combined with immunohistochemistry, which provided comprehensive distribution of orexin receptor mRNA and neuron subtypes expressing orexin receptors in mouse brains. Only a limited number of cells expressing both Ox1r and Ox2r were observed in specific brain regions, such as the dorsal raphe nucleus and ventromedial hypothalamic nucleus. In many brain regions, Ox1r-expressing cells and Ox2r-expressing cells belong to different cell types, such as glutamatergic and GABAergic neurons. Moreover, our findings demonstrated considerable heterogeneity in Ox1r- or Ox2r-expressing populations of serotonergic, dopaminergic, noradrenergic, cholinergic, and histaminergic neurons. The majority of orexin neurons did not express orexin receptors. This study provides valuable insights into the mechanism underlying the physiological and behavioral regulation mediated by the orexin system, as well as the development of therapeutic agents targeting orexin receptors.


Sujet(s)
Noyau dorsal du raphé , Récepteurs couplés aux protéines G , Souris , Animaux , Récepteurs des orexines/génétique , Récepteurs des orexines/métabolisme , Orexines/métabolisme , Récepteurs couplés aux protéines G/métabolisme , Noyau dorsal du raphé/métabolisme , Cartographie cérébrale , Hybridation in situ , ARN messager
12.
Am J Drug Alcohol Abuse ; 50(1): 84-94, 2024 Jan 02.
Article de Anglais | MEDLINE | ID: mdl-38295363

RÉSUMÉ

Background: Methamphetamine use disorder (MUD) is a worldwide health concern. The hypothalamic orexin system regulates stress response and addictive behaviors. The genetic variation in the hypocretin receptor 2 (HCRTR2), rs2653349, is associated with substance use disorder.Objectives: We explored the gene-environment (GxE) interaction of rs2653349 and adverse childhood experiences (ACEs) associated with MUD susceptibility.Methods: Four hundred and one individuals (336 males, 65 females) with MUD and 348 healthy controls (288 males, 60 females) completed a self-report questionnaire evaluating ACEs, encompassing childhood abuse and household dysfunction categories, and were genotyped for SNP rs2653349. Methamphetamine use variables were collected using the Diagnostic Interview for Genetic Studies. We used regression analyses to assess the GxE effect on MUD risk.Results: The MUD group had a comparable genotypic distribution for rs2653349 to the control group, albeit with a higher prevalence and number of types of ACEs, correlating with an increased MUD risk (p < .05). No significant genetic impact of rs2653349 on MUD risk was found. However, we observed a GxE interaction effect between the minor allele of rs2653349 and the number of childhood abuse or household dysfunction types, correlating with a reduced MUD risk (OR = -0.71, p = .04, Benjamini-Hochberg adjusted p = .08 and OR = -0.59, p = .045, Benjamini-Hochberg adjusted p = .09, respectively).Conclusion: HCRTR2 SNP rs2653349 has no significant impact on MUD risk, but ACEs may increase this risk. GxE results suggest that rs2653349 could offer protection against developing MUD in individuals experiencing multiple types of ACEs.


Sujet(s)
Expériences défavorables de l'enfance , Métamfétamine , Mâle , Femelle , Humains , Enfant , Récepteurs des orexines/génétique , Polymorphisme de nucléotide simple/génétique , Métamfétamine/effets indésirables , Génotype
13.
J Neurol ; 270(10): 5064-5070, 2023 Oct.
Article de Anglais | MEDLINE | ID: mdl-37418013

RÉSUMÉ

PURPOSE: Cluster headache (CH) is a debilitating condition with severe and recurrent headaches characterized by circannual and circadian rhythms. A genetic contingent was suggested, and several loci were described in large cohorts. However, no variant associated with CH for multiplex families has been described. The purpose of our study was to examine candidate genes and new genetic variants in a multigenerational family of cluster headaches in which two members have original chronobiological characteristics that we have called the phenomenon of "family periodicity". METHODS AND RESULTS: We performed a whole genome sequencing in four patients in a large multigenerational family of cluster headache to identify additional loci associated with CH. This allowed us to replicate the genomic association of HCRTR2 and CLOCK as candidate genes. In two family members with the same phenotypic circadian pattern (familial periodicity) the association of polymorphism NM_001526.4:c.922G > A was shown in the HCRTR2 gene, and NM_004898.4:c.213T > C in the CLOCK gene. INTERPRETATION: This whole genome sequencing reproduced two genetic risk loci for CH already involved in its pathogenicity. This is the first time that the combination of HCRTR2 and CLOCK gene variants is identified in a multigenerational family of CH with striking periodicity characteristics. Our study supports the hypothesis that the combination of HCRTR2 and CLOCK gene variants can contribute to the risk of cluster headache and offer the prospect of a new area of research on the molecular circadian clock.


Sujet(s)
Algie vasculaire de la face , Humains , Rythme circadien/génétique , Algie vasculaire de la face/génétique , Famille , Génotype , Récepteurs des orexines/génétique , Périodicité , Phénotype
14.
Proc Natl Acad Sci U S A ; 120(20): e2220353120, 2023 05 16.
Article de Anglais | MEDLINE | ID: mdl-37155875

RÉSUMÉ

Early-life stress has long-term impacts on the structure and function of the anterior cingulate cortex (ACC), and raises the risk of adult neuropsychiatric disorders including social dysfunction. The underlying neural mechanisms, however, are still uncertain. Here, we show that, in female mice, maternal separation (MS) during the first three postnatal weeks results in social impairment accompanied with hypoactivity in pyramidal neurons (PNs) of the ACC. Activation of ACC PNs ameliorates MS-induced social impairment. Neuropeptide Hcrt, which encodes hypocretin (orexin), is the top down-regulated gene in the ACC of MS females. Activating ACC orexin terminals enhances the activity of ACC PNs and rescues the diminished sociability observed in MS females via an orexin receptor 2 (OxR2)-dependent mechanism. Our results suggest orexin signaling in the ACC is critical in mediating early-life stress-induced social impairment in females.


Sujet(s)
Neuropeptides , Stress psychologique , Animaux , Femelle , Souris , Gyrus du cingulum , Séparation d'avec la mère , Neuropeptides/métabolisme , Récepteurs des orexines/génétique , Orexines/génétique , Orexines/métabolisme
15.
Peptides ; 165: 171009, 2023 07.
Article de Anglais | MEDLINE | ID: mdl-37054895

RÉSUMÉ

Orexin-A and -B (identical to hypocretin-1 and -2) are neuropeptides synthesized in the lateral hypothalamus and perifornical area, and orexin neurons project their axon terminals broadly throughout the entire central nervous system (CNS). The activity of orexins is mediated by two specific G protein-coupled receptors (GPCRs), termed orexin type1 receptor (OX1R) and orexin type2 receptor (OX2R). The orexin system plays a relevant role in various physiological functions, including arousal, feeding, reward, and thermogenesis, and is key to human health. Orexin neurons receive various signals related to environmental, physiological, and emotional stimuli. Previous studies have reported that several neurotransmitters and neuromodulators influence the activation or inhibition of orexin neuron activity. In this review, we summarize the modulating factors of orexin neurons in the sleep/wake rhythm and feeding behavior, particularly in the context of the modulation of appetite, body fluids, and circadian signaling. We also describe the effects of life activity, behavior, and diet on the orexin system. Some studies have observed phenomena that have been verified in animal experiments, revealing the detailed mechanism and neural pathway, while their applications to humans is expected in future research.


Sujet(s)
Récepteurs des orexines , Orexines , Animaux , Humains , Neuropeptides/métabolisme , Agents neuromédiateurs/pharmacologie , Récepteurs des orexines/génétique , Récepteurs des orexines/métabolisme , Orexines/métabolisme , Récepteurs couplés aux protéines G/métabolisme , Sommeil/physiologie
16.
J Pharmacol Exp Ther ; 385(3): 193-204, 2023 06.
Article de Anglais | MEDLINE | ID: mdl-37001988

RÉSUMÉ

Loss of orexin neurons is associated with narcolepsy type 1 (NT1), which is characterized by multiple symptoms including excessive daytime sleepiness and cataplexy. Orexin 2 receptor (OX2R) knockout (KO) mice, but not orexin 1 receptor (OX1R) KO mice, show narcolepsy-like phenotypes, thus OX2R agonists are potentially promising for treating NT1. In fact, in early proof-of-concept studies, intravenous infusion of danavorexton, an OX2R-selective agonist, significantly increased wakefulness in individuals with NT1. However, danavorexton has limited oral availability. Here, we report pharmacological characteristics of a novel OX2R agonist, TAK-994 [N-{(2S,3S)-1-(2-hydroxy-2-methylpropanoyl)-2-[(2,3',5'-trifluorobiphenyl-3-yl)methyl]pyrrolidin-3-yl}methanesulfonamide sesquihydrate]. TAK-994 activated recombinant human OX2R (EC50 value of 19 nM) with > 700-fold selectivity against OX1R and activated OX2R-downstream signaling similar to those by orexin peptides in vitro. Oral administration of TAK-994 promoted wakefulness in normal mice but not in OX2R KO mice. TAK-994 also ameliorated narcolepsy-like symptoms in two mouse models of narcolepsy: orexin/ataxin-3 mice and orexin-tTA;TetO diphtheria toxin A mice. The wake-promoting effects of TAK-994 in orexin/ataxin-3 mice were maintained after chronic dosing for 14 days. These data suggest that overall in vitro and in vivo properties, except oral availability, are very similar between TAK-994 and danavorexton. Preclinical characteristics of TAK-994 shown here, together with upcoming clinical study results, can improve our understanding for orally available OX2R agonists as new therapeutic drugs for NT1 and other hypersomnia disorders. SIGNIFICANCE STATEMENT: Narcolepsy type 1 (NT1) is caused by a loss of orexin neurons, and thus an orexin 2 receptor (OX2R) agonist is considered to address the underlying pathophysiology of NT1. Oral administration of TAK-994, a novel OX2R agonist, promoted wakefulness in normal mice, but not in OX2R knockout mice, and ameliorated fragmentation of wakefulness and cataplexy-like episodes in mouse models of narcolepsy. These findings indicate that TAK-994 is an orally available brain-penetrant OX2R-selective agonist with potential to improve narcolepsy-like symptoms.


Sujet(s)
Cataplexie , Narcolepsie , Souris , Humains , Animaux , Cataplexie/traitement médicamenteux , Vigilance , Ataxine-3 , Sommeil/génétique , Narcolepsie/traitement médicamenteux , Narcolepsie/génétique , Orexines/génétique , Orexines/métabolisme , Orexines/pharmacologie , Encéphale/métabolisme , Souris knockout , Récepteurs des orexines/agonistes , Récepteurs des orexines/génétique , Récepteurs des orexines/usage thérapeutique
17.
J Am Heart Assoc ; 12(6): e028987, 2023 03 21.
Article de Anglais | MEDLINE | ID: mdl-36892078

RÉSUMÉ

Background The hypocretin/orexin system has been shown to play a role in heart failure. Whether it also influences myocardial infarction (MI) outcomes is unknown. We evaluated the effect of the rs7767652 minor allele T associated with decreased transcription of the hypocretin/orexin receptor-2 and circulating orexin A concentrations on mortality risk after MI. Methods and Results Data from a single-center, prospectively designed registry of consecutive patients hospitalized for MI at a large tertiary cardiology center were analyzed. Patients without previous history of MI or heart failure were included. A random population sample was used to compare allele frequencies in the general population. Out of 1009 patients (aged 64±12 years, 74.6% men) after MI, 6.1% were homozygotes (TT) and 39.4% heterozygotes (CT) for minor allele. Allele frequencies in the MI group did not differ from 1953 subjects from general population (χ2 P=0.62). At index hospitalization, MI size was the same, but ventricular fibrillation and the need for cardiopulmonary resuscitation were more prevalent in the TT allele variant. Among patients with ejection fraction ≤40% at discharge, the TT variant was associated with a lower increase in left ventricular ejection fraction during follow-up (P=0.03). During the 27-month follow-up, there was a statistically significant association of the TT variant with increased mortality risk (hazard ratio [HR], 2.83; P=0.001). Higher circulating orexin A was associated with a lower mortality risk (HR, 0.41; P<0.05). Conclusions Attenuation of hypocretin/orexin signaling is associated with increased mortality risk after MI. This effect may be partially explained by the increased arrhythmic risk and the effect on the left ventricular systolic function recovery.


Sujet(s)
Défaillance cardiaque , Infarctus du myocarde , Mâle , Humains , Femelle , Orexines/génétique , Débit systolique , Fonction ventriculaire gauche , Récepteurs des orexines/génétique
18.
Peptides ; 164: 170979, 2023 06.
Article de Anglais | MEDLINE | ID: mdl-36841281

RÉSUMÉ

The orexins (OXs) were first reported in hypothalamus of rat, and they play an important role in diverse physiological actions. The OXs consist of orexin A (OXA) and orexin B (OXB) peptides and their actions are mediated via two G-protein-coupled receptors, orexin 1 receptor (OX1R) and orexin 2 receptor (OX2R), respectively. Presence of OXA and OX1R has been also reported in peripheral organs like reproductive tissues. These findings, therefore, highlight a possible role of OXs and their receptors in male reproductive health. Though, expression and localization of OXB and OX2R in the testis and their role in spermatogenesis are not finally clarified. Herein, we elucidated the localization and the patterns of expression of OXB and OX2R in Parkes mice testes during postnatal development. Results suggest that the precursor prepro-orexin (PPO), OXB and OX2R are expressed at the transcript and protein levels in mouse testis throughout the postnatal development. Immunostaining further showed the localization of OXB and OX2R both in interstitium and tubular compartments of the testis. On 7 day postpartum (7 dpp), only spermatogonia showed immunoreactivity of OXB and OX2R, while at 14, 28, 42 and 90 dpp, immunolocalization of OXB and OX2R were noted in the seminiferous tubules, especially in leptotene, pachytene spermatocytes, round and elongating spermatids, and in Leydig cells and Sertoli cells. The immunoreactivity of OXB and OX2R appeared to be stage-specific in adult mouse testis. The results suggest the expression of OXB and OX2R in mouse testis and their possible regulatory role in spermatogenesis and steroidogenesis.


Sujet(s)
Spermatides , Testicule , Animaux , Mâle , Souris , Cellules de Leydig/métabolisme , Récepteurs des orexines/génétique , Récepteurs des orexines/métabolisme , Orexines/génétique , Orexines/métabolisme , Spermatides/métabolisme , Testicule/métabolisme
19.
Int J Biol Macromol ; 229: 873-884, 2023 Feb 28.
Article de Anglais | MEDLINE | ID: mdl-36587646

RÉSUMÉ

Pacific abalone (Haliotis discus hannai) is a typical nocturnal organism. To examine the circadian expression pattern of orexin receptor type 2 (OX2R) and its potential effect on the feeding behavior of abalone, the coding region sequence of OX2R that is 1215 bp in length and encodes 404 amino acids was first cloned using the rapid amplification of cDNA ends technique. A recombinant expression vector was constructed for H. discus hannai based on the OX2R protein, obtaining a recombinant protein with a molecular weight of 46 kDa. Polyclonal antibody was prepared with the purified recombinant protein used as the antigen, and the antibody titer of ≥512 K was detected by enzyme-linked immunosorbent assay. The expression levels of OX2R determined using western blotting were highest in the intestinal tract (P < 0.05), but they were not significantly different from the levels in the pedal. Immunofluorescence experiments affirmed that OX2R was widely expressed in the columnar cells of the intestinal mucosal epithelium. To further account for the relationship between the onset of feeding behavior and the expression level of OX2R in abalone, the circadian expression characteristics of OX2R were analyzed by dissecting the intestinal tissues after three days of normal feeding and fasting and following the refeeding treatment. The expression levels of OX2R in the refeeding group were significantly higher than those in the normal feeding and fasting groups at any time point (P < 0.05). The cosine curve analysis revealed that the expression levels of OX2R lost rhythmicity after fasting. Based on the quantification of behavioral data for abalone after fasting and refeeding, the cumulative movement distance and movement duration in each group followed a significant cosine rhythm (P < 0.05), which is consistent with abalone's nocturnal ecological habits. However, the cumulative movement distance and movement duration in the fasting group were significantly lower than those in the normal feeding and refeeding groups (P < 0.05). The peak phases of the cumulative movement distance and movement duration in the refeeding group (ZT08:22 and ZT08:44) shifted backward compared to the normal feeding group (ZT07:33 and ZT07:39). The above results first identified the structural characteristics and circadian expression patterns of OX2R in the marine mollusk abalone, which may reveal the molecular mechanism behind the generation of a feeding rhythm in marine nocturnal organisms and serve as a tool helping to maintain the diversity of marine benthic resources.


Sujet(s)
Jeûne , Gastropoda , Animaux , Récepteurs des orexines/génétique , Récepteurs des orexines/métabolisme , Séquence nucléotidique , Protéines recombinantes/génétique , ADN complémentaire/génétique , Gastropoda/génétique
20.
Structure ; 30(12): 1582-1589.e4, 2022 12 01.
Article de Anglais | MEDLINE | ID: mdl-36417909

RÉSUMÉ

Orexin receptors are a family of G protein-coupled receptors that consist of two subtypes: orexin-1 receptors (OX1Rs) and OX2Rs. They are expressed throughout the central nervous system and are involved in regulating the sleep-wake cycle. The development of antagonists to orexin receptors has become important in drug discovery because modulation of these receptors can lead to novel treatments for diseases related to the regulation of sleep and wakefulness, such as insomnia. In this study, we determined that the structure of OX2R bound to lemborexant, a dual orexin receptor antagonist (DORA), at 2.89 Å resolution. Comparisons of kinetic and dynamic properties of DORAs based on structures and simulations suggest that the enthalpy of molecular binding to receptors and the entropy derived from intramolecular structure can be separately controlled. These results complement existing structural information and allow us to discuss the usefulness of pharmacophore models and target selectivity to OXRs.


Sujet(s)
Conception de médicament , Pyridines , Orexines , Récepteurs des orexines/génétique
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...