Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 12.945
Filtrer
1.
Commun Biol ; 7(1): 806, 2024 Jul 03.
Article de Anglais | MEDLINE | ID: mdl-38961250

RÉSUMÉ

Developmental synapse elimination is crucial for shaping mature neural circuits. In the neonatal mouse cerebellum, Purkinje cells (PCs) receive excitatory synaptic inputs from multiple climbing fibers (CFs) and synapses from all but one CF are eliminated by around postnatal day 20. Heterosynaptic interaction between CFs and parallel fibers (PFs), the axons of cerebellar granule cells (GCs) forming excitatory synapses onto PCs and molecular layer interneurons (MLIs), is crucial for CF synapse elimination. However, mechanisms for this heterosynaptic interaction are largely unknown. Here we show that deletion of AMPA-type glutamate receptor functions in GCs impairs CF synapse elimination mediated by metabotropic glutamate receptor 1 (mGlu1) signaling in PCs. Furthermore, CF synapse elimination is impaired by deleting NMDA-type glutamate receptors from MLIs. We propose that PF activity is crucial for CF synapse elimination by directly activating mGlu1 in PCs and indirectly enhancing the inhibition of PCs through activating NMDA receptors in MLIs.


Sujet(s)
Cervelet , Récepteurs métabotropes au glutamate , Synapses , Animaux , Cervelet/métabolisme , Cervelet/physiologie , Cervelet/cytologie , Synapses/physiologie , Synapses/métabolisme , Souris , Récepteurs métabotropes au glutamate/métabolisme , Récepteurs métabotropes au glutamate/génétique , Cellules de Purkinje/métabolisme , Cellules de Purkinje/physiologie , Récepteur de l'AMPA/métabolisme , Récepteurs du N-méthyl-D-aspartate/métabolisme , Interneurones/métabolisme , Interneurones/physiologie , Souris knockout , Souris de lignée C57BL
2.
Biochemistry (Mosc) ; 89(6): 1045-1060, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38981700

RÉSUMÉ

Astrocytic NMDA receptors (NMDARs) are heterotetramers, whose expression and properties are largely determined by their subunit composition. Astrocytic NMDARs are characterized by a low sensitivity to magnesium ions and low calcium conductivity. Their activation plays an important role in the regulation of various intracellular processes, such as gene expression and mitochondrial function. Astrocytic NMDARs are involved in calcium signaling in astrocytes and can act through the ionotropic and metabotropic pathways. Astrocytic NMDARs participate in the interactions of the neuroglia, thus affecting synaptic plasticity. They are also engaged in the astrocyte-vascular interactions and contribute to the regulation of vascular tone. Astrocytic NMDARs are involved in various pathologies, such as ischemia and hyperammonemia, and their blockade prevents negative changes in astrocytes during these diseases.


Sujet(s)
Astrocytes , Récepteurs du N-méthyl-D-aspartate , Récepteurs du N-méthyl-D-aspartate/métabolisme , Astrocytes/métabolisme , Humains , Animaux , Signalisation calcique , Plasticité neuronale
3.
Transl Psychiatry ; 14(1): 272, 2024 Jul 03.
Article de Anglais | MEDLINE | ID: mdl-38961057

RÉSUMÉ

Valproic acid (VPA) is one of the most effective antiepileptic drugs, and exposing animals to VPA during gestation has been used as a model for autism spectrum disorder (ASD). Numerous studies have shown that impaired synaptic transmission in the cerebellar cortical circuits is one of the reasons for the social deficits and repetitive behavior seen in ASD. In this study, we investigated the effect of VPA exposure during pregnancy on tactile stimulation-evoked cerebellar mossy fiber-granule cell (MF-GC) synaptic transmission in mice anesthetized with urethane. Three-chamber testing showed that mice exposed to VPA mice exhibited a significant reduction in social interaction compared with the control group. In vivo electrophysiological recordings revealed that a pair of air-puff stimulation on ipsilateral whisker pad evoked MF-GC synaptic transmission, N1, and N2. The evoked MF-GC synaptic responses in VPA-exposed mice exhibited a significant increase in the area under the curve (AUC) of N1 and the amplitude and AUC of N2 compared with untreated mice. Cerebellar surface application of the selective N-methyl-D-aspartate (NMDA) receptor blocker D-APV significantly inhibited facial stimulation-evoked MF-GC synaptic transmission. In the presence of D-APV, there were no significant differences between the AUC of N1 and the amplitude and AUC of N2 in the VPA-exposed mice and those of the untreated mice. Notably, blockade of the GluN2A subunit-containing, but not the GluN2B subunit-containing, NMDA receptor, significantly inhibited MF-GC synaptic transmission and decreased the AUC of N1 and the amplitude and AUC of N2 in VPA-exposed mice to levels similar to those seen in untreated mice. In addition, the GluN2A subunit-containing NMDA receptor was expressed at higher levels in the GC layer of VPA-treated mice than in control mice. These results indicate that gestational VPA exposure in mice produces ASD-like behaviors, accompanied by increased cerebellar MF-GC synaptic transmission and an increase in GluN2A subunit-containing NMDA receptor expression in the offspring.


Sujet(s)
Trouble du spectre autistique , Modèles animaux de maladie humaine , Effets différés de l'exposition prénatale à des facteurs de risque , Récepteurs du N-méthyl-D-aspartate , Transmission synaptique , Acide valproïque , Animaux , Récepteurs du N-méthyl-D-aspartate/métabolisme , Acide valproïque/pharmacologie , Grossesse , Femelle , Souris , Effets différés de l'exposition prénatale à des facteurs de risque/physiopathologie , Transmission synaptique/effets des médicaments et des substances chimiques , Trouble du spectre autistique/induit chimiquement , Mâle , Cervelet/effets des médicaments et des substances chimiques , Cervelet/métabolisme , Anticonvulsivants/pharmacologie
4.
Commun Biol ; 7(1): 852, 2024 Jul 12.
Article de Anglais | MEDLINE | ID: mdl-38997325

RÉSUMÉ

Astrocytes play a key role in the regulation of synaptic strength and are thought to orchestrate synaptic plasticity and memory. Yet, how specifically astrocytes and their neuroactive transmitters control learning and memory is currently an open question. Recent experiments have uncovered an astrocyte-mediated feedback loop in CA1 pyramidal neurons which is started by the release of endocannabinoids by active neurons and closed by astrocytic regulation of the D-serine levels at the dendrites. D-serine is a co-agonist for the NMDA receptor regulating the strength and direction of synaptic plasticity. Activity-dependent D-serine release mediated by astrocytes is therefore a candidate for mediating between long-term synaptic depression (LTD) and potentiation (LTP) during learning. Here, we show that the mathematical description of this mechanism leads to a biophysical model of synaptic plasticity consistent with the phenomenological model known as the BCM model. The resulting mathematical framework can explain the learning deficit observed in mice upon disruption of the D-serine regulatory mechanism. It shows that D-serine enhances plasticity during reversal learning, ensuring fast responses to changes in the external environment. The model provides new testable predictions about the learning process, driving our understanding of the functional role of neuron-glia interaction in learning.


Sujet(s)
Astrocytes , Plasticité neuronale , Apprentissage inversé , Animaux , Astrocytes/physiologie , Astrocytes/métabolisme , Plasticité neuronale/physiologie , Souris , Apprentissage inversé/physiologie , Sérine/métabolisme , Modèles neurologiques , Récepteurs du N-méthyl-D-aspartate/métabolisme
5.
PLoS Biol ; 22(7): e3002687, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38991663

RÉSUMÉ

Reactive astrocytes are associated with neuroinflammation and cognitive decline in diverse neuropathologies; however, the underlying mechanisms are unclear. We used optogenetic and chemogenetic tools to identify the crucial roles of the hippocampal CA1 astrocytes in cognitive decline. Our results showed that repeated optogenetic stimulation of the hippocampal CA1 astrocytes induced cognitive impairment in mice and decreased synaptic long-term potentiation (LTP), which was accompanied by the appearance of inflammatory astrocytes. Mechanistic studies conducted using knockout animal models and hippocampal neuronal cultures showed that lipocalin-2 (LCN2), derived from reactive astrocytes, mediated neuroinflammation and induced cognitive impairment by decreasing the LTP through the reduction of neuronal NMDA receptors. Sustained chemogenetic stimulation of hippocampal astrocytes provided similar results. Conversely, these phenomena were attenuated by a metabolic inhibitor of astrocytes. Fiber photometry using GCaMP revealed a high level of hippocampal astrocyte activation in the neuroinflammation model. Our findings suggest that reactive astrocytes in the hippocampus are sufficient and required to induce cognitive decline through LCN2 release and synaptic modulation. This abnormal glial-neuron interaction may contribute to the pathogenesis of cognitive disturbances in neuroinflammation-associated brain conditions.


Sujet(s)
Astrocytes , Dysfonctionnement cognitif , Hippocampe , Lipocaline-2 , Potentialisation à long terme , Maladies neuro-inflammatoires , Neurones , Animaux , Astrocytes/métabolisme , Astrocytes/anatomopathologie , Dysfonctionnement cognitif/métabolisme , Dysfonctionnement cognitif/étiologie , Dysfonctionnement cognitif/anatomopathologie , Lipocaline-2/métabolisme , Lipocaline-2/génétique , Souris , Hippocampe/métabolisme , Hippocampe/anatomopathologie , Maladies neuro-inflammatoires/anatomopathologie , Maladies neuro-inflammatoires/métabolisme , Neurones/métabolisme , Neurones/anatomopathologie , Souris knockout , Mâle , Souris de lignée C57BL , Récepteurs du N-méthyl-D-aspartate/métabolisme , Optogénétique , Région CA1 de l'hippocampe/anatomopathologie , Région CA1 de l'hippocampe/métabolisme , Modèles animaux de maladie humaine
6.
PLoS Biol ; 22(7): e3002706, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38950066

RÉSUMÉ

Episodic memory is essential to navigate in a changing environment by recalling past events, creating new memories, and updating stored information from experience. Although the mechanisms for acquisition and consolidation have been profoundly studied, much less is known about memory retrieval. Hippocampal spatial representations are key for retrieval of contextually guided episodic memories. Indeed, hippocampal place cells exhibit stable location-specific activity which is thought to support contextual memory, but can also undergo remapping in response to environmental changes. It is unclear if remapping is directly related to the expression of different episodic memories. Here, using an incidental memory recognition task in rats, we showed that retrieval of a contextually guided memory is reflected by the levels of CA3 remapping, demonstrating a clear link between external cues, hippocampal remapping, and episodic memory retrieval that guides behavior. Furthermore, we describe NMDARs as key players in regulating the balance between retrieval and memory differentiation processes by controlling the reactivation of specific memory traces. While an increase in CA3 NMDAR activity boosts memory retrieval, dentate gyrus NMDAR activity enhances memory differentiation. Our results contribute to understanding how the hippocampal circuit sustains a flexible balance between memory formation and retrieval depending on the environmental cues and the internal representations of the individual. They also provide new insights into the molecular mechanisms underlying the contributions of hippocampal subregions to generate this balance.


Sujet(s)
Région CA3 de l'hippocampe , Hippocampe , Récepteurs du N-méthyl-D-aspartate , Animaux , Récepteurs du N-méthyl-D-aspartate/métabolisme , Mâle , Rats , Région CA3 de l'hippocampe/physiologie , Hippocampe/physiologie , Hippocampe/métabolisme , Rappel mnésique/physiologie , Mémoire épisodique , Gyrus denté/physiologie , Gyrus denté/métabolisme , Rat Long-Evans , Signaux , Mémoire/physiologie
7.
Sci Rep ; 14(1): 15239, 2024 07 02.
Article de Anglais | MEDLINE | ID: mdl-38956130

RÉSUMÉ

Dysbindin-1, a protein encoded by the schizophrenia susceptibility gene DTNBP1, is reduced in the hippocampus of schizophrenia patients. It is expressed in various cellular populations of the brain and implicated in dopaminergic and glutamatergic transmission. To investigate the impact of reduced dysbindin-1 in excitatory cells on hippocampal-associated behaviors and synaptic transmission, we developed a conditional knockout mouse model with deletion of dysbindin-1 gene in CaMKIIα expressing cells. We found that dysbindin-1 reduction in CaMKII expressing cells resulted in impaired spatial and social memories, and attenuation of the effects of glutamate N-methyl-d-asparate receptor (NMDAR) antagonist MK801 on locomotor activity and prepulse inhibition of startle (PPI). Dysbindin-1 deficiency in CaMKII expressing cells also resulted in reduced protein levels of NMDAR subunit GluN1 and GluN2B. These changes were associated with increased expression of immature dendritic spines in basiliar dendrites and abnormalities in excitatory synaptic transmission in the ventral hippocampus. These results highlight the functional relevance of dysbindin-1 in excitatory cells and its implication in schizophrenia-related pathologies.


Sujet(s)
Dysbindine , Hippocampe , Souris knockout , Neurones , Récepteurs du N-méthyl-D-aspartate , Transmission synaptique , Animaux , Dysbindine/métabolisme , Récepteurs du N-méthyl-D-aspartate/métabolisme , Récepteurs du N-méthyl-D-aspartate/génétique , Hippocampe/métabolisme , Souris , Neurones/métabolisme , Schizophrénie/métabolisme , Schizophrénie/anatomopathologie , Schizophrénie/génétique , Calcium-Calmodulin-Dependent Protein Kinase Type 2/métabolisme , Mâle , Maléate de dizocilpine/pharmacologie , Comportement animal , Épines dendritiques/métabolisme , Protéines de tissu nerveux
8.
Mol Autism ; 15(1): 28, 2024 Jun 14.
Article de Anglais | MEDLINE | ID: mdl-38877552

RÉSUMÉ

BACKGROUND: Mutations in the X-linked gene cyclin-dependent kinase-like 5 (CDKL5) cause a severe neurological disorder characterised by early-onset epileptic seizures, autism and intellectual disability (ID). Impaired hippocampal function has been implicated in other models of monogenic forms of autism spectrum disorders and ID and is often linked to epilepsy and behavioural abnormalities. Many individuals with CDKL5 deficiency disorder (CDD) have null mutations and complete loss of CDKL5 protein, therefore in the current study we used a Cdkl5-/y rat model to elucidate the impact of CDKL5 loss on cellular excitability and synaptic function of CA1 pyramidal cells (PCs). We hypothesised abnormal pre and/or post synaptic function and plasticity would be observed in the hippocampus of Cdkl5-/y rats. METHODS: To allow cross-species comparisons of phenotypes associated with the loss of CDKL5, we generated a loss of function mutation in exon 8 of the rat Cdkl5 gene and assessed the impact of the loss of CDLK5 using a combination of extracellular and whole-cell electrophysiological recordings, biochemistry, and histology. RESULTS: Our results indicate that CA1 hippocampal long-term potentiation (LTP) is enhanced in slices prepared from juvenile, but not adult, Cdkl5-/y rats. Enhanced LTP does not result from changes in NMDA receptor function or subunit expression as these remain unaltered throughout development. Furthermore, Ca2+ permeable AMPA receptor mediated currents are unchanged in Cdkl5-/y rats. We observe reduced mEPSC frequency accompanied by increased spine density in basal dendrites of CA1 PCs, however we find no evidence supporting an increase in silent synapses when assessed using a minimal stimulation protocol in slices. Additionally, we found no change in paired-pulse ratio, consistent with normal release probability at Schaffer collateral to CA1 PC synapses. CONCLUSIONS: Our data indicate a role for CDKL5 in hippocampal synaptic function and raise the possibility that altered intracellular signalling rather than synaptic deficits contribute to the altered plasticity. LIMITATIONS: This study has focussed on the electrophysiological and anatomical properties of hippocampal CA1 PCs across early postnatal development. Studies involving other brain regions, older animals and behavioural phenotypes associated with the loss of CDKL5 are needed to understand the pathophysiology of CDD.


Sujet(s)
Modèles animaux de maladie humaine , Potentialisation à long terme , Protein-Serine-Threonine Kinases , Récepteur de l'AMPA , Récepteurs du N-méthyl-D-aspartate , Spasmes infantiles , Animaux , Mâle , Rats , Région CA1 de l'hippocampe/métabolisme , Région CA1 de l'hippocampe/anatomopathologie , Région CA1 de l'hippocampe/physiopathologie , Syndromes épileptiques/génétique , Syndromes épileptiques/métabolisme , Potentiels post-synaptiques excitateurs , Maladies génétiques liées au chromosome X/génétique , Maladies génétiques liées au chromosome X/métabolisme , Maladies génétiques liées au chromosome X/physiopathologie , Hippocampe/métabolisme , Protein-Serine-Threonine Kinases/métabolisme , Protein-Serine-Threonine Kinases/génétique , Cellules pyramidales/métabolisme , Cellules pyramidales/anatomopathologie , Récepteur de l'AMPA/métabolisme , Récepteur de l'AMPA/génétique , Récepteurs du N-méthyl-D-aspartate/métabolisme , Récepteurs du N-méthyl-D-aspartate/génétique , Spasmes infantiles/génétique , Spasmes infantiles/métabolisme , Synapses/métabolisme
9.
Open Biol ; 14(6): 240063, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38864245

RÉSUMÉ

Frontotemporal lobe abnormalities are linked to neuropsychiatric disorders and cognition, but the role of cellular heterogeneity between temporal lobe (TL) and frontal lobe (FL) in the vulnerability to genetic risk factors remains to be elucidated. We integrated single-nucleus transcriptome analysis in 'fresh' human FL and TL with genetic susceptibility, gene dysregulation in neuropsychiatric disease and psychoactive drug response data. We show how intrinsic differences between TL and FL contribute to the vulnerability of specific cell types to both genetic risk factors and psychoactive drugs. Neuronal populations, specifically PVALB neurons, were most highly vulnerable to genetic risk factors for psychiatric disease. These psychiatric disease-associated genes were mostly upregulated in the TL, and dysregulated in the brain of patients with obsessive-compulsive disorder, bipolar disorder and schizophrenia. Among these genes, GRIN2A and SLC12A5, implicated in schizophrenia and bipolar disorder, were significantly upregulated in TL PVALB neurons and in psychiatric disease patients' brain. PVALB neurons from the TL were twofold more vulnerable to psychoactive drugs than to genetic risk factors, showing the influence and specificity of frontotemporal lobe differences on cell vulnerabilities. These studies provide a cell type resolved map of the impact of brain regional differences on cell type vulnerabilities in neuropsychiatric disorders.


Sujet(s)
Lobe frontal , Troubles mentaux , Psychoanaleptiques , Lobe temporal , Humains , Psychoanaleptiques/pharmacologie , Lobe frontal/métabolisme , Lobe frontal/anatomopathologie , Lobe temporal/métabolisme , Lobe temporal/anatomopathologie , Troubles mentaux/génétique , Troubles mentaux/métabolisme , Neurones/métabolisme , Récepteurs du N-méthyl-D-aspartate/métabolisme , Récepteurs du N-méthyl-D-aspartate/génétique , Prédisposition génétique à une maladie , Analyse de profil d'expression de gènes , Transcriptome , Régulation de l'expression des gènes , Schizophrénie/génétique , Schizophrénie/métabolisme , Trouble bipolaire/génétique , Trouble bipolaire/métabolisme
10.
Front Endocrinol (Lausanne) ; 15: 1389589, 2024.
Article de Anglais | MEDLINE | ID: mdl-38887265

RÉSUMÉ

Food intake behavior is under the tight control of the central nervous system. Most studies to date focus on the contribution of neurons to this behavior. However, although previously overlooked, astrocytes have recently been implicated to play a key role in feeding control. Most of the recent literature has focused on astrocytic contribution in the hypothalamus or the dorsal vagal complex. The contribution of astrocytes located in the lateral parabrachial nucleus (lPBN) to feeding behavior control remains poorly understood. Thus, here, we first investigated whether activation of lPBN astrocytes affects feeding behavior in male and female rats using chemogenetic activation. Astrocytic activation in the lPBN led to profound anorexia in both sexes, under both ad-libitum feeding schedule and after a fasting challenge. Astrocytes have a key contribution to glutamate homeostasis and can themselves release glutamate. Moreover, lPBN glutamate signaling is a key contributor to potent anorexia, which can be induced by lPBN activation. Thus, here, we determined whether glutamate signaling is necessary for lPBN astrocyte activation-induced anorexia, and found that pharmacological N-methyl D-aspartate (NMDA) receptor blockade attenuated the food intake reduction resulting from lPBN astrocyte activation. Since astrocytes have been shown to contribute to feeding control by modulating the feeding effect of peripheral feeding signals, we further investigated whether lPBN astrocyte activation is capable of modulating the anorexic effect of the gut/brain hormone, glucagon like peptide -1, as well as the orexigenic effect of the stomach hormone - ghrelin, and found that the feeding effect of both signals is modulated by lPBN astrocytic activation. Lastly, we found that lPBN astrocyte activation-induced anorexia is affected by a diet-induced obesity challenge, in a sex-divergent manner. Collectively, current findings uncover a novel role for lPBN astrocytes in feeding behavior control.


Sujet(s)
Astrocytes , Consommation alimentaire , Noyau parabrachial , Animaux , Astrocytes/métabolisme , Astrocytes/physiologie , Mâle , Femelle , Rats , Consommation alimentaire/physiologie , Noyau parabrachial/physiologie , Anorexie/métabolisme , Comportement alimentaire/physiologie , Rat Sprague-Dawley , Acide glutamique/métabolisme , Récepteurs du N-méthyl-D-aspartate/métabolisme
11.
Philos Trans R Soc Lond B Biol Sci ; 379(1906): 20230222, 2024 Jul 29.
Article de Anglais | MEDLINE | ID: mdl-38853550

RÉSUMÉ

N-methyl-d-aspartate receptors (NMDARs) play a pivotal role in synaptic plasticity. While the functional role of post-synaptic NMDARs is well established, pre-synaptic NMDAR (pre-NMDAR) function is largely unexplored. Different pre-NMDAR subunit populations are documented at synapses, suggesting that subunit composition influences neuronal transmission. Here, we used electrophysiological recordings at Schaffer collateral-CA1 synapses partnered with Ca2+ imaging and glutamate uncaging at boutons of CA3 pyramidal neurones to reveal two populations of pre-NMDARs that contain either the GluN2A or GluN2B subunit. Activation of the GluN2B population decreases action potential-evoked Ca2+ influx via modulation of small-conductance Ca2+-activated K+ channels, while activation of the GluN2A population does the opposite. Critically, the level of functional expression of the subunits is subject to homeostatic regulation, bidirectionally affecting short-term facilitation, thus providing a capacity for a fine adjustment of information transfer. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.


Sujet(s)
Potentiels d'action , Calcium , Récepteurs du N-méthyl-D-aspartate , Canaux potassiques calcium-dépendants de petite conductance , Récepteurs du N-méthyl-D-aspartate/métabolisme , Animaux , Canaux potassiques calcium-dépendants de petite conductance/métabolisme , Potentiels d'action/physiologie , Calcium/métabolisme , Rats , Synapses/physiologie , Synapses/métabolisme , Plasticité neuronale/physiologie , Cellules pyramidales/physiologie , Cellules pyramidales/métabolisme
12.
Philos Trans R Soc Lond B Biol Sci ; 379(1906): 20230240, 2024 Jul 29.
Article de Anglais | MEDLINE | ID: mdl-38853555

RÉSUMÉ

Synaptic plasticity is a key cellular model for learning, memory and chronic pain. Most previous studies were carried out in rats and mice, and less is known about synaptic plasticity in non-human primates. In the present study, we used integrative experimental approaches to study long-term potentiation (LTP) in the anterior cingulate cortex (ACC) of adult tree shrews. We found that glutamate is the major excitatory transmitter and α-amino-3-hydroxy-5-methyl-4-isoxazole-propionicacid (AMPA) receptors mediate postsynaptic responses. LTP in tree shrews was greater than that in adult mice and lasted for at least 5 h. N-methyl-d-aspartic acid (NMDA) receptors, Ca2+ influx and adenylyl cyclase 1 (AC1) contributed to tree shrew LTP. Our results suggest that LTP is a major form of synaptic plasticity in the ACC of primate-like animals. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.


Sujet(s)
Gyrus du cingulum , Potentialisation à long terme , Récepteur de l'AMPA , Récepteurs du N-méthyl-D-aspartate , Tupaiidae , Animaux , Potentialisation à long terme/physiologie , Gyrus du cingulum/physiologie , Tupaiidae/physiologie , Souris , Récepteurs du N-méthyl-D-aspartate/métabolisme , Récepteur de l'AMPA/métabolisme , Adenylate Cyclase/métabolisme , Acide glutamique/métabolisme , Mâle
13.
Philos Trans R Soc Lond B Biol Sci ; 379(1906): 20230484, 2024 Jul 29.
Article de Anglais | MEDLINE | ID: mdl-38853552

RÉSUMÉ

Fragile X syndrome (FXS) is characterized by impairments in executive function including different types of learning and memory. Long-term potentiation (LTP), thought to underlie the formation of memories, has been studied in the Fmr1 mouse model of FXS. However, there have been many discrepancies in the literature with inconsistent use of littermate and non-littermate Fmr1 knockout (KO) and wild-type (WT) control mice. Here, the influence of the breeding strategy (cage effect) on short-term potentiation (STP), LTP, contextual fear conditioning (CFC), expression of N-methyl-d-aspartate receptor (NMDAR) subunits and the modulation of NMDARs, were examined. The largest deficits in STP, LTP and CFC were found in KO mice compared with non-littermate WT. However, the expression of NMDAR subunits was unchanged in this comparison. Rather, NMDAR subunit (GluN1, 2A, 2B) expression was sensitive to the cage effect, with decreased expression in both WT and KO littermates compared with non-littermates. Interestingly, an NMDAR-positive allosteric modulator, UBP714, was only effective in potentiating the induction of LTP in non-littermate KO mice and not the littermate KO mice. These results suggest that commonly studied phenotypes in Fmr1 KOs are sensitive to the cage effect and therefore the breeding strategy may contribute to discrepancies in the literature.This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.


Sujet(s)
Modèles animaux de maladie humaine , Protéine du syndrome X fragile , Syndrome du chromosome X fragile , Souris knockout , Plasticité neuronale , Récepteurs du N-méthyl-D-aspartate , Animaux , Syndrome du chromosome X fragile/physiopathologie , Syndrome du chromosome X fragile/génétique , Souris , Protéine du syndrome X fragile/génétique , Protéine du syndrome X fragile/métabolisme , Récepteurs du N-méthyl-D-aspartate/métabolisme , Récepteurs du N-méthyl-D-aspartate/génétique , Potentialisation à long terme , Mâle , Souris de lignée C57BL , Hébergement animal , Peur
14.
Philos Trans R Soc Lond B Biol Sci ; 379(1906): 20230236, 2024 Jul 29.
Article de Anglais | MEDLINE | ID: mdl-38853562

RÉSUMÉ

Alternative splicing of Grin1 exon 5 regulates induction of long-term potentiation (LTP) at Schaffer collateral-CA1 synapses: LTP in mice lacking the GluN1 exon 5-encoded N1 cassette (GluN1a mice) is significantly increased compared with that in mice compulsorily expressing this exon (GluN1b mice). The mechanism underlying this difference is unknown. Here, we report that blocking the non-receptor tyrosine kinase Src prevents induction of LTP in GluN1a mice but not in GluN1b. We find that activating Src enhances pharmacologically isolated synaptic N-methyl-d-aspartate receptor (NMDAR) currents in GluN1a mice but not in GluN1b. Moreover, we observe that Src activation increases the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor component of Schaffer collateral-evoked excitatory post-synaptic potentials in GluN1a mice, but this increase is prevented by blocking NMDARs. We conclude that at these synapses, NMDARs in GluN1a mice are subject to upregulation by Src that mediates induction of LTP, whereas NMDARs in GluN1b mice are not regulated by Src, leading to Src-resistance of LTP. Thus, we have uncovered that a key regulatory mechanism for synaptic potentiation is gated by differential splicing of exon 5 of Grin1. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.


Sujet(s)
Épissage alternatif , Exons , Potentialisation à long terme , Protéines de tissu nerveux , Récepteurs du N-méthyl-D-aspartate , src-Family kinases , Animaux , Récepteurs du N-méthyl-D-aspartate/génétique , Récepteurs du N-méthyl-D-aspartate/métabolisme , Souris , src-Family kinases/métabolisme , src-Family kinases/génétique , Protéines de tissu nerveux/génétique , Protéines de tissu nerveux/métabolisme , Mâle , Synapses/physiologie , Synapses/métabolisme , Souris de lignée C57BL
15.
Philos Trans R Soc Lond B Biol Sci ; 379(1906): 20230445, 2024 Jul 29.
Article de Anglais | MEDLINE | ID: mdl-38853548

RÉSUMÉ

Short- and long-term forms of N-methyl-d-aspartate receptor (NMDAR)-dependent potentiation (most commonly termed short-term potentiation (STP) and long-term potentiation (LTP)) are co-induced in hippocampal slices by theta-burst stimulation, which mimics naturally occurring patterns of neuronal activity. While NMDAR-dependent LTP (NMDAR-LTP) is said to be the cellular correlate of long-term memory storage, NMDAR-dependent STP (NMDAR-STP) is thought to underlie the encoding of shorter-lasting memories. The mechanisms of NMDAR-LTP have been researched much more extensively than those of NMDAR-STP, which is characterized by its extreme stimulation dependence. Thus, in the absence of low-frequency test stimulation, which is used to test the magnitude of potentiation, NMDAR-STP does not decline until the stimulation is resumed. NMDAR-STP represents, therefore, an inverse variant of Hebbian synaptic plasticity, illustrating that inactive synapses can retain their strength unchanged until they become active again. The mechanisms, by which NMDAR-STP is stored in synapses without a decrement, are unknown and we report here that activation of metabotropic glutamate receptors may be critical in maintaining the potentiated state of synaptic transmission. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.


Sujet(s)
Potentialisation à long terme , Récepteurs métabotropes au glutamate , Récepteurs du N-méthyl-D-aspartate , Animaux , Rats , Hippocampe/physiologie , Hippocampe/métabolisme , Potentialisation à long terme/physiologie , Plasticité neuronale/physiologie , Récepteurs métabotropes au glutamate/métabolisme , Récepteurs du N-méthyl-D-aspartate/métabolisme
16.
Philos Trans R Soc Lond B Biol Sci ; 379(1906): 20230225, 2024 Jul 29.
Article de Anglais | MEDLINE | ID: mdl-38853549

RÉSUMÉ

Substantial clinical evidence has unravelled the superior antidepressant efficacy of ketamine: in comparison to traditional antidepressants targeting the monoamine systems, ketamine, as an N-methyl-d-aspartate receptor (NMDAR) antagonist, acts much faster and more potently. Surrounding the antidepressant mechanisms of ketamine, there is ample evidence supporting an NMDAR-antagonism-based hypothesis. However, alternative arguments also exist, mostly derived from the controversial clinical results of other NMDAR inhibitors. In this article, we first summarize the historical development of the NMDAR-centred hypothesis of rapid antidepressants. We then classify different NMDAR inhibitors based on their mechanisms of inhibition and evaluate preclinical as well as clinical evidence of their antidepressant effects. Finally, we critically analyse controversies and arguments surrounding ketamine's NMDAR-dependent and NMDAR-independent antidepressant action. A better understanding of ketamine's molecular targets and antidepressant mechanisms should shed light on the future development of better treatment for depression. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.


Sujet(s)
Antidépresseurs , Kétamine , Récepteurs du N-méthyl-D-aspartate , Kétamine/pharmacologie , Récepteurs du N-méthyl-D-aspartate/métabolisme , Récepteurs du N-méthyl-D-aspartate/antagonistes et inhibiteurs , Antidépresseurs/pharmacologie , Antidépresseurs/usage thérapeutique , Humains , Animaux , Dépression/traitement médicamenteux
17.
Philos Trans R Soc Lond B Biol Sci ; 379(1906): 20230239, 2024 Jul 29.
Article de Anglais | MEDLINE | ID: mdl-38853568

RÉSUMÉ

N-methyl-d-aspartate receptor (NMDAR)-dependent short- and long-term types of potentiation (STP and LTP, respectively) are frequently studied in the CA1 area of dorsal hippocampal slices (DHS). Far less is known about the NMDAR dependence of STP and LTP in ventral hippocampal slices (VHS), where both types of potentiation are smaller in magnitude than in the DHS. Here, we first briefly review our knowledge about the NMDAR dependence of STP and LTP and some other forms of synaptic plasticity. We then show in new experiments that the decay of NMDAR-STP in VHS, similar to dorsal hippocampal NMDAR-STP, is not time- but activity-dependent. We also demonstrate that the induction of submaximal levels of NMDAR-STP and NMDAR-LTP in VHS differs from the induction of saturated levels of plasticity in terms of their sensitivity to subunit-preferring NMDAR antagonists. These data suggest that activation of distinct NMDAR subtypes in a population of neurons results in an incremental increase in the induction of different phases of potentiation with changing sensitivity to pharmacological agents. Differences in pharmacological sensitivity, which arise due to differences in the levels of agonist-evoked biological response, might explain the disparity of the results concerning NMDAR subunit involvement in the induction of NMDAR-dependent plasticity.This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.


Sujet(s)
Région CA1 de l'hippocampe , Potentialisation à long terme , Récepteurs du N-méthyl-D-aspartate , Récepteurs du N-méthyl-D-aspartate/métabolisme , Animaux , Potentialisation à long terme/physiologie , Région CA1 de l'hippocampe/physiologie , Plasticité neuronale/physiologie , Rats , Hippocampe/physiologie
18.
Biomed Pharmacother ; 176: 116821, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38823278

RÉSUMÉ

Therapeutic options for Alzheimer's disease are limited. Dual compounds targeting two pathways concurrently may enable enhanced effect. The study focuses on tacrine derivatives inhibiting acetylcholinesterase (AChE) and simultaneously N-methyl-D-aspartate (NMDA) receptors. Compounds with balanced inhibitory potencies for the target proteins (K1578 and K1599) or increased potency for AChE (K1592 and K1594) were studied to identify the most promising pro-cognitive compound. Their effects were studied in cholinergic (scopolamine-induced) and glutamatergic (MK-801-induced) rat models of cognitive deficits in the Morris water maze. Moreover, the impacts on locomotion in the open field and AChE activity in relevant brain structures were investigated. The effect of the most promising compound on NMDA receptors was explored by in vitro electrophysiology. The cholinergic antagonist scopolamine induced a deficit in memory acquisition, however, it was unaffected by the compounds, and a deficit in reversal learning that was alleviated by K1578 and K1599. K1578 and K1599 significantly inhibited AChE in the striatum, potentially explaining the behavioral observations. The glutamatergic antagonist dizocilpine (MK-801) induced a deficit in memory acquisition, which was alleviated by K1599. K1599 also mitigated the MK-801-induced hyperlocomotion in the open field. In vitro patch-clamp corroborated the K1599-associated NMDA receptor inhibitory effect. K1599 emerged as the most promising compound, demonstrating pro-cognitive efficacy in both models, consistent with intended dual effect. We conclude that tacrine has the potential for development of derivatives with dual in vivo effects. Our findings contributed to the elucidation of the structural and functional properties of tacrine derivatives associated with optimal in vivo pro-cognitive efficacy.


Sujet(s)
Anticholinestérasiques , Cognition , Maléate de dizocilpine , Apprentissage du labyrinthe , Rat Wistar , Récepteurs du N-méthyl-D-aspartate , Tacrine , Animaux , Tacrine/pharmacologie , Anticholinestérasiques/pharmacologie , Récepteurs du N-méthyl-D-aspartate/antagonistes et inhibiteurs , Récepteurs du N-méthyl-D-aspartate/métabolisme , Mâle , Rats , Maléate de dizocilpine/pharmacologie , Apprentissage du labyrinthe/effets des médicaments et des substances chimiques , Cognition/effets des médicaments et des substances chimiques , Acetylcholinesterase/métabolisme , Scopolamine , Antagonistes des acides aminés excitateurs/pharmacologie , Mémoire/effets des médicaments et des substances chimiques
19.
Article de Russe | MEDLINE | ID: mdl-38884426

RÉSUMÉ

Depression is a leading cause of disability and reduced work capacity worldwide. The monoamine theory of the pathogenesis of depression has remained dominant for many decades, however, drugs developed on its basis have limited efficacy. Exploring alternative mechanisms underlying this pathology could illuminate new avenues for pharmacological intervention. Targeting glutamatergic pathways in the CNS, particularly through modulation of NMDA and AMPA receptors, demonstrates promising results. This review presents some existing drugs with glutamatergic activity and novel developments based on it to enhance the efficacy of pharmacotherapy for depressive disorders.


Sujet(s)
Trouble dépressif , Récepteur de l'AMPA , Récepteurs du N-méthyl-D-aspartate , Humains , Récepteurs du N-méthyl-D-aspartate/métabolisme , Récepteur de l'AMPA/métabolisme , Trouble dépressif/traitement médicamenteux , Trouble dépressif/métabolisme , Antidépresseurs/usage thérapeutique , Animaux
20.
Redox Biol ; 74: 103236, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38875958

RÉSUMÉ

The pathogenesis of epilepsy remains unclear; however, a prevailing hypothesis suggests that the primary underlying cause is an imbalance between neuronal excitability and inhibition. Glucose-6-phosphate dehydrogenase (G6PD) is a key enzyme in the pentose phosphate pathway, which is primarily involved in deoxynucleic acid synthesis and antioxidant defense mechanisms and exhibits increased expression during the chronic phase of epilepsy, predominantly colocalizing with neurons. G6PD overexpression significantly reduces the frequency and duration of spontaneous recurrent seizures. Furthermore, G6PD overexpression enhances signal transducer and activator of transcription 1 (STAT1) expression, thus influencing N-methyl-d-aspartic acid receptors expression, and subsequently affecting seizure activity. Importantly, the regulation of STAT1 by G6PD appears to be mediated primarily through reactive oxygen species signaling pathways. Collectively, our findings highlight the pivotal role of G6PD in modulating epileptogenesis, and suggest its potential as a therapeutic target for epilepsy.


Sujet(s)
Glucose 6-phosphate dehydrogenase , Espèces réactives de l'oxygène , Récepteurs du N-méthyl-D-aspartate , Facteur de transcription STAT-1 , Crises épileptiques , Glucose 6-phosphate dehydrogenase/métabolisme , Glucose 6-phosphate dehydrogenase/antagonistes et inhibiteurs , Glucose 6-phosphate dehydrogenase/génétique , Espèces réactives de l'oxygène/métabolisme , Animaux , Récepteurs du N-méthyl-D-aspartate/métabolisme , Récepteurs du N-méthyl-D-aspartate/génétique , Crises épileptiques/métabolisme , Crises épileptiques/traitement médicamenteux , Facteur de transcription STAT-1/métabolisme , Épilepsie/métabolisme , Épilepsie/traitement médicamenteux , Épilepsie/génétique , Transduction du signal/effets des médicaments et des substances chimiques , Souris , Humains , Neurones/métabolisme , Mâle , Rats , Modèles animaux de maladie humaine
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...