Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 15 de 15
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
J Mol Evol ; 92(3): 329-337, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38777906

RÉSUMÉ

The spike protein determines the host-range specificity of coronaviruses. In particular, the Receptor-Binding Motif in the spike protein from SARS-CoV-2 contains the amino acids involved in molecular recognition of the host Angiotensin Converting Enzyme 2. Therefore, to understand how SARS-CoV-2 acquired its capacity to infect humans it is necessary to reconstruct the evolution of this important motif. Early during the pandemic, it was proposed that the SARS-CoV-2 Receptor-Binding Domain was acquired via recombination with a pangolin infecting coronavirus. This proposal was challenged by an alternative explanation that suggested that the Receptor-Binding Domain from SARS-CoV-2 did not originated via recombination with a coronavirus from a pangolin. Instead, this alternative hypothesis proposed that the Receptor-Binding Motif from the bat coronavirus RaTG13, was acquired via recombination with an unidentified coronavirus. And as a consequence of this event, the Receptor-Binding Domain from the pangolin coronavirus appeared as phylogenetically closer to SARS-CoV-2. Recently, the genomes from coronaviruses from Cambodia (bat_RShST182/200) and Laos (BANAL-20-52/103/247) which are closely related to SARS-CoV-2 were reported. However, no detailed analysis of the evolution of the Receptor-Binding Motif from these coronaviruses was reported. Here we revisit the evolution of the Receptor-Binding Domain and Motif in the light of the novel coronavirus genome sequences. Specifically, we wanted to test whether the above coronaviruses from Cambodia and Laos were the source of the Receptor-Binding Domain from RaTG13. We found that the Receptor-Binding Motif from these coronaviruses is phylogenetically closer to SARS-CoV-2 than to RaTG13. Therefore, the source of the Receptor-Binding Domain from RaTG13 is still unidentified. In accordance with previous studies, our results are consistent with the hypothesis that the Receptor-Binding Motif from SARS-CoV-2 evolved by vertical inheritance from a bat-infecting population of coronaviruses.


Sujet(s)
Évolution moléculaire , Phylogenèse , SARS-CoV-2 , Glycoprotéine de spicule des coronavirus , SARS-CoV-2/génétique , SARS-CoV-2/métabolisme , Glycoprotéine de spicule des coronavirus/génétique , Glycoprotéine de spicule des coronavirus/métabolisme , Glycoprotéine de spicule des coronavirus/composition chimique , Humains , Animaux , Angiotensin-converting enzyme 2/métabolisme , Angiotensin-converting enzyme 2/génétique , Angiotensin-converting enzyme 2/composition chimique , Motifs d'acides aminés , COVID-19/virologie , Liaison aux protéines , Betacoronavirus/génétique , Chiroptera/virologie , Pangolins/virologie , Sites de fixation , Génome viral , Récepteurs viraux/métabolisme , Récepteurs viraux/génétique , Récepteurs viraux/composition chimique
2.
J Mol Biol ; 436(11): 168577, 2024 Jun 01.
Article de Anglais | MEDLINE | ID: mdl-38642883

RÉSUMÉ

The Red Queen Hypothesis (RQH), derived from Lewis Carroll's "Through the Looking-Glass", postulates that organisms must continually adapt in response to each other to maintain relative fitness. Within the context of host-pathogen interactions, the RQH implies an evolutionary arms race, wherein viruses evolve to exploit hosts and hosts evolve to resist viral invasion. This study delves into the dynamics of the RQH in the context of virus-cell interactions, specifically focusing on virus receptors and cell receptors. We observed multiple virus-host systems and noted patterns of co-evolution. As viruses evolved receptor-binding proteins to effectively engage with cell receptors, cells countered by altering their receptor genes. This ongoing mutual adaptation cycle has influenced the molecular intricacies of receptor-ligand interactions. Our data supports the RQH as a driving force behind the diversification and specialization of both viral and host cell receptors. Understanding this co-evolutionary dance offers insights into the unpredictability of emerging viral diseases and potential therapeutic interventions. Future research is crucial to dissect the nuanced molecular changes and the broader ecological consequences of this ever-evolving battle. Here, we combine phylogenetic inferences, structural modeling, and molecular dynamics analyses to describe the epidemiological characteristics of major Brazilian DENV strains that circulated from 1990 to 2022 from a combined perspective, thus providing us with a more detailed picture on the dynamics of such interactions over time.


Sujet(s)
Molécules d'adhérence cellulaire , Virus de la dengue , Évolution moléculaire , Interactions hôte-pathogène , Récepteurs de surface cellulaire , Protéines de l'enveloppe virale , Enveloppe virale , Humains , Brésil , Molécules d'adhérence cellulaire/métabolisme , Molécules d'adhérence cellulaire/génétique , Molécules d'adhérence cellulaire/composition chimique , Dengue/virologie , Virus de la dengue/génétique , Virus de la dengue/métabolisme , Interactions hôte-pathogène/génétique , Lectines de type C/métabolisme , Lectines de type C/génétique , Lectines de type C/composition chimique , Simulation de dynamique moléculaire , Phylogenèse , Liaison aux protéines , Récepteurs de surface cellulaire/métabolisme , Récepteurs de surface cellulaire/génétique , Récepteurs de surface cellulaire/composition chimique , Récepteurs viraux/métabolisme , Récepteurs viraux/composition chimique , Récepteurs viraux/génétique , Enveloppe virale/métabolisme , Protéines de l'enveloppe virale/génétique , Protéines de l'enveloppe virale/métabolisme , Protéines de l'enveloppe virale/composition chimique
3.
Nature ; 598(7882): 677-681, 2021 10.
Article de Anglais | MEDLINE | ID: mdl-34646021

RÉSUMÉ

Venezuelan equine encephalitis virus (VEEV) is an enveloped RNA virus that causes encephalitis and potentially mortality in infected humans and equines1. At present, no vaccines or drugs are available that prevent or cure diseases caused by VEEV. Low-density lipoprotein receptor class A domain-containing 3 (LDLRAD3) was recently identified as a receptor for the entry of VEEV into host cells2. Here we present the cryo-electron microscopy structure of the LDLRAD3 extracellular domain 1 (LDLRAD3-D1) in complex with VEEV virus-like particles at a resolution of 3.0 Å. LDLRAD3-D1 has a cork-like structure and is inserted into clefts formed between adjacent VEEV E2-E1 heterodimers in the viral-surface trimer spikes through hydrophobic and polar contacts. Mutagenesis studies of LDLRAD3-D1 identified residues that are involved in the key interactions with VEEV. Of note, some of the LDLRAD3-D1 mutants showed a significantly increased binding affinity for VEEV, suggesting that LDLRAD3-D1 may serve as a potential scaffold for the development of inhibitors of VEEV entry. Our structures provide insights into alphavirus assembly and the binding of receptors to alphaviruses, which may guide the development of therapeutic countermeasures against alphaviruses.


Sujet(s)
Virus de l'encéphalite équine du Venezuela/composition chimique , Récepteurs aux lipoprotéines LDL/composition chimique , Récepteurs viraux/composition chimique , Cryomicroscopie électronique , Humains , Modèles moléculaires , Structure secondaire des protéines , Pénétration virale
4.
Nature ; 598(7882): 672-676, 2021 10.
Article de Anglais | MEDLINE | ID: mdl-34646020

RÉSUMÉ

LDLRAD3 is a recently defined attachment and entry receptor for Venezuelan equine encephalitis virus (VEEV)1, a New World alphavirus that causes severe neurological disease in humans. Here we present near-atomic-resolution cryo-electron microscopy reconstructions of VEEV virus-like particles alone and in a complex with the ectodomains of LDLRAD3. Domain 1 of LDLRAD3 is a low-density lipoprotein receptor type-A module that binds to VEEV by wedging into a cleft created by two adjacent E2-E1 heterodimers in one trimeric spike, and engages domains A and B of E2 and the fusion loop in E1. Atomic modelling of this interface is supported by mutagenesis and anti-VEEV antibody binding competition assays. Notably, VEEV engages LDLRAD3 in a manner that is similar to the way that arthritogenic alphaviruses bind to the structurally unrelated MXRA8 receptor, but with a much smaller interface. These studies further elucidate the structural basis of alphavirus-receptor interactions, which could inform the development of therapies to mitigate infection and disease against multiple members of this family.


Sujet(s)
Virus de l'encéphalite équine du Venezuela/composition chimique , Récepteurs aux lipoprotéines LDL/composition chimique , Récepteurs viraux/composition chimique , Séquence d'acides aminés , Animaux , Lignée cellulaire , Cryomicroscopie électronique , Humains , Souris , Modèles moléculaires , Structure secondaire des protéines , Alignement de séquences , Pénétration virale
5.
Biochem Biophys Res Commun ; 562: 89-93, 2021 07 12.
Article de Anglais | MEDLINE | ID: mdl-34049205

RÉSUMÉ

New SARS-CoV-2 variants emerged in the United Kingdom and South Africa in December 2020 in concomitant with the Brazillian variant in February 2021 (B.1.1.248 lineage) and currently sparking worldwide during the last few months. The new strain 501.V2 in South Africa bears three mutations in the spike receptor-binding domain (RBD); K417 N, E484K, and N501Y, while the Brazilian B.1.1.248 lineage has 12 mutations. In the current study, we simulate the complex ACE2-SARS-CoV-2 spike RBD system in which the RBD is in the wild-type and mutated isoforms. Additionally, the cell-surface Glucose Regulated Protein 78 (CS-GRP78) associated with the ACE2-SARS-CoV-2 spike RBD complex (ACE2-S RBD) is modeled at the presence of these mutant variants of the viral spike. The results showed that E484K and N501Y are critical in viral spike recognition through either ACE2 or CS-GRP78. The mutated variants (the UK, South African, and Brazilian) of the spike RBD tightly bind to GRP78 more than in the case of the wild-type RBD. These results point to the potent role of GRP78 with ACE2 in the attachment of the new variants, which could be a key for the design of inhibitors to block SARS-CoV-2 attachment and entry to the host cell.


Sujet(s)
Simulation numérique , Protéines du choc thermique/métabolisme , SARS-CoV-2/métabolisme , Angiotensin-converting enzyme 2/composition chimique , Angiotensin-converting enzyme 2/métabolisme , Brésil , Chaperonne BiP du réticulum endoplasmique , Protéines du choc thermique/composition chimique , Humains , Simulation de docking moléculaire , Simulation de dynamique moléculaire , Mutation , Récepteurs viraux/composition chimique , Récepteurs viraux/métabolisme , SARS-CoV-2/composition chimique , SARS-CoV-2/génétique , République d'Afrique du Sud , Glycoprotéine de spicule des coronavirus/composition chimique , Glycoprotéine de spicule des coronavirus/génétique , Glycoprotéine de spicule des coronavirus/métabolisme , Spécificité du substrat , Royaume-Uni , Pénétration virale
6.
Chembiochem ; 22(4): 724-732, 2021 02 15.
Article de Anglais | MEDLINE | ID: mdl-32986926

RÉSUMÉ

The magnified infectious power of the SARS-CoV-2 virus compared to its precursor SARS-CoV is intimately linked to an enhanced ability in the mutated virus to find available hydrogen-bond sites in the host cells. This characteristic is acquired during virus evolution because of the selective pressure exerted at the molecular level. We pinpoint the specific residue (in the virus) to residue (in the cell) contacts during the initial recognition and binding and show that the virus⋅⋅⋅cell interaction is mainly due to an extensive network of hydrogen bonds and to a large surface of noncovalent interactions. In addition to the formal quantum characterization of bonding interactions, computation of absorption spectra for the specific virus⋅⋅⋅cell interacting residues yields significant shifts of Δλmax =47 and 66 nm in the wavelength for maximum absorption in the complex with respect to the isolated host and virus, respectively.


Sujet(s)
Angiotensin-converting enzyme 2/métabolisme , COVID-19/prévention et contrôle , Récepteurs viraux/métabolisme , SARS-CoV-2/métabolisme , Glycoprotéine de spicule des coronavirus/métabolisme , Séquence d'acides aminés , Angiotensin-converting enzyme 2/composition chimique , Angiotensin-converting enzyme 2/génétique , COVID-19/épidémiologie , COVID-19/virologie , Humains , Simulation de dynamique moléculaire , Pandémies , Liaison aux protéines , Domaines protéiques , Récepteurs viraux/composition chimique , Récepteurs viraux/génétique , SARS-CoV-2/génétique , SARS-CoV-2/physiologie , Glycoprotéine de spicule des coronavirus/composition chimique , Glycoprotéine de spicule des coronavirus/génétique
7.
Virus Res ; 289: 198154, 2020 11.
Article de Anglais | MEDLINE | ID: mdl-32918944

RÉSUMÉ

Recent reports have shown that small and big felines could be infected by SARS-CoV-2, while other animals, like swines and mice, are apparently not susceptible to this infection. These findings raise the question of the role of cell factors associated with early stages of the viral infection in host selectivity. The cellular receptor for SARS-CoV-2 is the Angiotensin Converting Enzyme (ACE2). Transmembrane protease serine 2 (TMPRSS2) has been shown to prime the viral spike for its interaction with its receptor. GRP78 has also been proposed as a possible co-receptor. In this study, we used several bioinformatics approaches to bring clues in the interaction of ACE2, TMPRSS2, and GRP78 with SARS-CoV-2. We selected several mammalian hosts that could play a key role in viral spread by acting as secondary hosts (cats, dogs, pigs, mice, and ferrets) and evaluated their predicted permissiveness by in silico analysis. Results showed that ionic pairs (salt bridges, N-O pair, and long-range interactions) produced between ACE2 and the viral spike has an essential function in the host interaction. On the other hand, TMPRSS2 and GRP78 are proteins with high homology in all the evaluated hosts. Thus, these proteins do not seem to play a role in host selectivity, suggesting that other factors may play a role in the non-permissivity in some of these hosts. These proteins represent however interesting cell targets that could be explored in order to control the virus replication in humans and in the intermediary hosts.


Sujet(s)
Betacoronavirus/physiologie , Infections à coronavirus/virologie , Protéines du choc thermique/composition chimique , Mammifères/métabolisme , Peptidyl-Dipeptidase A/composition chimique , Pneumopathie virale/virologie , Récepteurs viraux/composition chimique , Serine endopeptidases/composition chimique , Glycoprotéine de spicule des coronavirus/métabolisme , Tropisme viral , Séquence d'acides aminés , Angiotensin-converting enzyme 2 , Animaux , Antiviraux/pharmacologie , Benzamidines , COVID-19 , Chats , Chiens , Chaperonne BiP du réticulum endoplasmique , Furets , Guanidines/pharmacologie , Protéines du choc thermique/métabolisme , Humains , Souris , Modèles moléculaires , Simulation de docking moléculaire , Pandémies , Peptidyl-Dipeptidase A/métabolisme , Conformation des protéines , Récepteurs viraux/métabolisme , SARS-CoV-2 , Alignement de séquences , Similitude de séquences d'acides aminés , Serine endopeptidases/métabolisme , Spécificité d'espèce , Suidae , Attachement viral , Pénétration virale
8.
ChemMedChem ; 15(18): 1682-1690, 2020 09 16.
Article de Anglais | MEDLINE | ID: mdl-32663362

RÉSUMÉ

Angiotensin converting enzyme 2 (ACE2) is the human receptor that interacts with the spike protein of coronaviruses, including the one that produced the 2020 coronavirus pandemic (COVID-19). Thus, ACE2 is a potential target for drugs that disrupt the interaction of human cells with SARS-CoV-2 to abolish infection. There is also interest in drugs that inhibit or activate ACE2, that is, for cardiovascular disorders or colitis. Compounds binding at alternative sites could allosterically affect the interaction with the spike protein. Herein, we review biochemical, chemical biology, and structural information on ACE2, including the recent cryoEM structures of full-length ACE2. We conclude that ACE2 is very dynamic and that allosteric drugs could be developed to target ACE2. At the time of the 2020 pandemic, we suggest that available ACE2 inhibitors or activators in advanced development should be tested for their ability to allosterically displace the interaction between ACE2 and the spike protein.


Sujet(s)
Inhibiteurs de l'enzyme de conversion de l'angiotensine/métabolisme , Betacoronavirus/composition chimique , Peptidyl-Dipeptidase A/métabolisme , Récepteurs viraux/métabolisme , Glycoprotéine de spicule des coronavirus/métabolisme , Régulation allostérique , Angiotensin-converting enzyme 2 , Inhibiteurs de l'enzyme de conversion de l'angiotensine/composition chimique , Domaine catalytique , Humains , Peptidyl-Dipeptidase A/composition chimique , Liaison aux protéines , Domaines protéiques , Récepteurs viraux/antagonistes et inhibiteurs , Récepteurs viraux/composition chimique , SARS-CoV-2 , Glycoprotéine de spicule des coronavirus/composition chimique
9.
Virus Res ; 285: 198021, 2020 08.
Article de Anglais | MEDLINE | ID: mdl-32416259

RÉSUMÉ

A new betacoronavirus named SARS-CoV-2 has emerged as a new threat to global health and economy. A promising target for both diagnosis and therapeutics treatments of the new disease named COVID-19 is the coronavirus (CoV) spike (S) glycoprotein. By constant-pH Monte Carlo simulations and the PROCEEDpKa method, we have mapped the electrostatic epitopes for four monoclonal antibodies and the angiotensin-converting enzyme 2 (ACE2) on both SARS-CoV-1 and the new SARS-CoV-2 S receptor binding domain (RBD) proteins. We also calculated free energy of interactions and shown that the S RBD proteins from both SARS viruses binds to ACE2 with similar affinities. However, the affinity between the S RBD protein from the new SARS-CoV-2 and ACE2 is higher than for any studied antibody previously found complexed with SARS-CoV-1. Based on physical chemical analysis and free energies estimates, we can shed some light on the involved molecular recognition processes, their clinical aspects, the implications for drug developments, and suggest structural modifications on the CR3022 antibody that would improve its binding affinities for SARS-CoV-2 and contribute to address the ongoing international health crisis.


Sujet(s)
Betacoronavirus/composition chimique , Peptidyl-Dipeptidase A/métabolisme , Récepteurs viraux/métabolisme , Virus du SRAS/composition chimique , Glycoprotéine de spicule des coronavirus/métabolisme , Angiotensin-converting enzyme 2 , Anticorps monoclonaux/immunologie , Anticorps monoclonaux/métabolisme , Anticorps antiviraux/immunologie , Anticorps antiviraux/métabolisme , Betacoronavirus/immunologie , Simulation numérique , Cartographie épitopique , Humains , Modèles moléculaires , Méthode de Monte Carlo , Peptidyl-Dipeptidase A/composition chimique , Liaison aux protéines , Conformation des protéines , Motifs et domaines d'intéraction protéique , Cartographie d'interactions entre protéines , Récepteurs viraux/composition chimique , Virus du SRAS/immunologie , SARS-CoV-2 , Glycoprotéine de spicule des coronavirus/composition chimique , Glycoprotéine de spicule des coronavirus/immunologie , Thermodynamique
10.
J Virol ; 86(7): 4024-8, 2012 Apr.
Article de Anglais | MEDLINE | ID: mdl-22278244

RÉSUMÉ

Five New World (NW) arenaviruses cause human hemorrhagic fevers. Four of these arenaviruses are known to enter cells by binding human transferrin receptor 1 (hTfR1). Here we show that the fifth arenavirus, Chapare virus, similarly uses hTfR1. We also identify an anti-hTfR1 antibody, ch128.1, which efficiently inhibits entry mediated by the glycoproteins of all five viruses, as well as replication of infectious Junín virus. Our data indicate that all NW hemorrhagic fever arenaviruses utilize a common hTfR1 apical-domain epitope and suggest that therapeutic agents targeting this epitope, including ch128.1 itself, can be broadly effective in treating South American hemorrhagic fevers.


Sujet(s)
Anticorps/immunologie , Antigènes CD/composition chimique , Antigènes CD/immunologie , Arénavirus du Nouveau Monde/physiologie , Régulation négative , Fièvres hémorragiques virales/virologie , Récepteurs à la transferrine/composition chimique , Récepteurs à la transferrine/immunologie , Pénétration virale , Séquence d'acides aminés , Animaux , Antigènes CD/génétique , Lignée cellulaire , Fièvres hémorragiques virales/génétique , Fièvres hémorragiques virales/immunologie , Humains , Données de séquences moléculaires , Structure tertiaire des protéines , Récepteurs à la transferrine/génétique , Récepteurs viraux/composition chimique , Récepteurs viraux/génétique , Récepteurs viraux/immunologie , Alignement de séquences
11.
Virus Res ; 147(2): 231-41, 2010 Feb.
Article de Anglais | MEDLINE | ID: mdl-19932141

RÉSUMÉ

In this work we evaluated the ability of rotavirus strains with different receptor requirements to infect the apical and basolateral surfaces of polarized MDCKII cells. We used neuraminidase (NA)-sensitive (RRV and TFR-1) and neuraminidase-resistant (Wa and UK) viruses that differ in their use of integrins. Regardless of their receptor requirements, all virus strains tested were found to efficiently infect cells from both membrane surface domains, with preference for the basolateral domain, since: (i) disruption of tight junctions of polarized cell monolayers by calcium chelation led to a reversible increase of rotavirus infectivity, (ii) the viruses infected preferentially the cells located at the borders of microcolonies of polarized cells, and (iii) in cells grown on a permeable support all four virus strains were able to start the infection by either plasma membrane domain. Preferential infection (5-11-fold more efficiently) of the basolateral surface correlated with the neuraminidase resistance of the virus strains, but not with their requirement for integrins, which in MDCKII cells seem to be used by all four viruses. The infection of both cell surface domains by RRV was found to depend on the presence of terminal sialic acids, since its infectivity was reduced by neuraminidase treatment of the cells and it was also blocked by incubation of the virus with glycophorin A. The efficient infection through the basolateral membrane surface of polarized cells might be relevant for the pathogenesis of rotavirus, especially given the recent reports of antigenemia and extraintestinal spread of the virus in children and animal models.


Sujet(s)
Récepteurs viraux/physiologie , Rotavirus/physiologie , Pénétration virale , Animaux , Lignée cellulaire , Chiens , Intégrines/métabolisme , Sialidase/métabolisme , Récepteurs viraux/composition chimique , Acides sialiques/métabolisme
12.
Biochemistry (Mosc) ; 74(12): 1328-36, 2009 Dec.
Article de Anglais | MEDLINE | ID: mdl-19961413

RÉSUMÉ

Polyclonal and monoclonal antibodies (MABs) to human laminin-binding protein (LBP) can efficiently block the penetration of some alpha- and flaviviruses into the cell. A panel of 13 types of MABs to human recombinant LBP was used for more detailed study of the mechanism of this process. Competitive analysis has shown that MABs to LBP can be divided into six different competition groups. MABs 4F6 and 8E4 classified under competition groups 3 and 4 can inhibit the replication of Venezuelan equine encephalitis virus (VEEV), which is indicative of their interaction with the receptor domain of LBP providing for binding with virions. According to enzyme immunoassay and immunoblotting data, polyclonal anti-idiotypic antibodies to MABs 4F6 and 8E4 modeling paratopes of the LBP receptor domain can specifically interact with VEEV E2 protein and tick-borne encephalitis virus (TBEV) E protein. Mapping of binding sites of MABs 4F6 and 8E4 with LBP by constructing short deletion fragments of the human LBP molecule has shown that MAB 8E4 interacts with the fragment of amino acid residues 187-210, and MAB 4F6 interacts with the fragment of residues 263-278 of LBP protein, which is represented by two TEDWS peptides separated by four amino acid residues. This suggested that the LBP receptor domain interacting with VEEV E2 and TBEV E viral proteins is located at the C-terminal fragment of the LBP molecule. A model of the spatial structure of the LBP receptor domain distally limited by four linear loops (two of which are represented by experimentally mapped regions of amino acid residues 187-210 and 263-278) as well as the central beta-folded region turning into the alpha-helical site including residues 200-216 of the LBP molecule and providing for the interaction with the laminin-1 molecule has been proposed.


Sujet(s)
Virus de l'encéphalite équine du Venezuela/métabolisme , Virus de l'encéphalite à tiques (sous-groupe)/métabolisme , Récepteur laminine/métabolisme , Récepteurs viraux/métabolisme , Séquence d'acides aminés , Animaux , Anticorps/immunologie , Anticorps/métabolisme , Anticorps anti-idiotypiques/métabolisme , Anticorps monoclonaux/immunologie , Anticorps monoclonaux/métabolisme , Sites de fixation , Chlorocebus aethiops , Cristallographie aux rayons X , Humains , Données de séquences moléculaires , Structure secondaire des protéines , Récepteur laminine/composition chimique , Récepteur laminine/génétique , Récepteurs viraux/composition chimique , Récepteurs viraux/génétique , Protéines recombinantes/composition chimique , Protéines recombinantes/génétique , Protéines recombinantes/métabolisme , Cellules Vero , Réplication virale/effets des médicaments et des substances chimiques
13.
J Virol ; 79(8): 4557-67, 2005 Apr.
Article de Anglais | MEDLINE | ID: mdl-15795242

RÉSUMÉ

Dengue virus requires the presence of an unidentified cellular receptor on the surface of the host cell. By using a recently published affinity chromatography approach, an 84-kDa molecule, identified as heat shock protein 90 (HSP90) by matrix-assisted laser desorption ionization-time of flight mass spectrometry, was isolated from neuroblastoma and U937 cells. Based on the ability of HSP90 (84 kDa) to interact with HSP70 (74 kDa) on the surface of monocytes during lipopolysaccharide (LPS) signaling and evidence that LPS inhibits dengue virus infection, the presence of HSP70 was demonstrated in affinity chromatography eluates and by pull-down experiments. Infection inhibition assays support the conclusion that HSP90 and HSP70 participate in dengue virus entry as a receptor complex in human cell lines as well as in monocytes/macrophages. Additionally, our results indicate that both HSPs are associated with membrane microdomains (lipid rafts) in response to dengue virus infection. Moreover, methyl-beta-cyclodextrin, a raft-disrupting drug, inhibits dengue virus infection, supporting the idea that cholesterol-rich membrane fractions are important in dengue virus entry.


Sujet(s)
Virus de la dengue/physiologie , Protéines du choc thermique HSP70/analyse , Protéines du choc thermique HSP90/analyse , Récepteurs viraux/composition chimique , Lignée cellulaire tumorale , Cellules cultivées , Humains , Macrophages/virologie , Monocytes/virologie , Neuroblastome , Récepteurs viraux/isolement et purification , Cellules U937 , Réplication virale
14.
J Virol Methods ; 116(1): 95-102, 2004 Mar 01.
Article de Anglais | MEDLINE | ID: mdl-14715312

RÉSUMÉ

Nucleotide sequences coding for the full-length envelope (E) glycoprotein gene of dengue virus type 4 was amplified using an RT-PCR method from infected C6/36 cells and cloned into pPROEx-Hta expression vector. The expression of the recombinant E protein in Escherichia coli was confirmed by Western blot using a polyclonal anti-dengue polyclonal antibody. The His-tagged fusion protein was obtained from the bacterial cellular extracts in almost pure form by immobilized metal affinity chromatography and the recombinant protein retained its ability to bind to 40 and 45 kDa proteins, previously described as putative receptors for dengue virus in C6/36 cells. To purify the 40 and 45 kDa molecules, a total protein extract from C6/36 cells was passed through an affinity chromatography column using immobilized recombinant E protein. After washing with isotonic buffer, elution was accomplished using a high salt buffer. The two proteins obtained, with molecular weights of 40 and 45 kDa, were recognized by dengue 4 virus, in virus overlay protein binding assay. This procedure allows further characterization of molecules that could be involved in dengue binding and entry.


Sujet(s)
Chromatographie d'affinité/méthodes , Virus de la dengue/physiologie , Récepteurs viraux/composition chimique , Récepteurs viraux/isolement et purification , Protéines de l'enveloppe virale/métabolisme , Aedes , Animaux , Technique de Western , Lignée cellulaire , Clonage moléculaire , Virus de la dengue/croissance et développement , Escherichia coli , Gènes viraux , Ligands , Masse moléculaire , ARN viral/composition chimique , ARN viral/isolement et purification , Protéines de fusion recombinantes/métabolisme , RT-PCR , Protéines de l'enveloppe virale/génétique
15.
FEMS Microbiol Lett ; 168(2): 251-8, 1998 Nov 15.
Article de Anglais | MEDLINE | ID: mdl-9835036

RÉSUMÉ

Dengue viruses are arthropod-borne, single-stranded RNA viruses. Aëdes aegypti and Aëdes albopictus are the principal vectors. In order to understand the molecular basis of dengue virus infections we explored the biochemical identity of dengue-2 (DEN-2) virus receptors in the Aëdes albopictus-derived cell line C6/36. We show here that DEN-2 interacts with two major polypeptides of 80 and 67 kDa. Polyclonal anti-C6/36 membrane antibodies block DEN-2 binding to intact C6/36 monolayers as well as to membrane extracts. Our results strongly suggest that the identified polypeptides are part of the DEN-2 receptors.


Sujet(s)
Aedes/virologie , Virus de la dengue/métabolisme , Récepteurs viraux/isolement et purification , Aedes/composition chimique , Animaux , Anticorps/immunologie , Sites de fixation , Lignée cellulaire , Membrane cellulaire/composition chimique , Virus de la dengue/croissance et développement , Virus de la dengue/isolement et purification , Peptides/immunologie , Récepteurs viraux/composition chimique , Récepteurs viraux/immunologie , Récepteurs viraux/métabolisme
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE