Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 4 de 4
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Arch Pharm Res ; 41(10): 1009-1018, 2018 Oct.
Article de Anglais | MEDLINE | ID: mdl-30117083

RÉSUMÉ

Abnormal accumulation of the free-form all-trans-retinal (atRAL), a major intermediate of human visual cycle, is considered to be a key cause of retinal pigment epithelial (RPE) dysfunction in the pathogenesis of retinal degenerative diseases such as age-related macular degeneration (AMD). Paeoniflorin (PF), a monoterpene glucoside isolated from Paeonia lactiflora Pall., has been used in clinical treatment of retinal degenerative diseases in China for several years; however, the underlying mechanism remains unclear. The aim of this study is to investigate the protective effect of PF against atRAL toxicity in human ARPE-19 cells and its molecular mechanism. The results of our study showed that the pre-treatment of PF dose-dependently attenuated atRAL-induced cell injury by the reduction of Nox1/ROS-associated oxidative stress, mitochondrial dysfunction and GRP78-PERK-eIF2α-ATF4-CHOP-regulated endoplasmic reticulum (ER) stress in ARPE-19 cells. Additionally, our data showed that PF mainly exerted its activity via triggering calcium-calmodulin dependent protein kinase II (CaMKII)-mediated activation of AMP-activated protein kinase (AMPK). AMPK inhibition significantly reversed the protective effect of PF against atRAL toxicity in ARPE-19 cells. Overall, our findings provided the novel mechanism of PF protecting human RPE cells, which may prevent the progression of retinal degenerative diseases.


Sujet(s)
AMP-Activated Protein Kinases/métabolisme , Calcium-Calmodulin-Dependent Protein Kinase Type 2/métabolisme , Calcium/métabolisme , Stress du réticulum endoplasmique/effets des médicaments et des substances chimiques , Glucosides/pharmacologie , Mitochondries/effets des médicaments et des substances chimiques , Monoterpènes/pharmacologie , Stress oxydatif/effets des médicaments et des substances chimiques , Épithélium pigmentaire de la rétine/cytologie , Apoptose/effets des médicaments et des substances chimiques , Survie cellulaire/effets des médicaments et des substances chimiques , Cellules cultivées , Chaperonne BiP du réticulum endoplasmique , Activation enzymatique/effets des médicaments et des substances chimiques , Humains , Mitochondries/métabolisme , Mitochondries/anatomopathologie , Espèces réactives de l'oxygène/analyse , Espèces réactives de l'oxygène/métabolisme , Épithélium pigmentaire de la rétine/effets des médicaments et des substances chimiques , Rétinal/analogues et dérivés , Rétinal/antagonistes et inhibiteurs , Rétinal/pharmacologie
2.
Nat Rev Neurosci ; 7(11): 860-72, 2006 Nov.
Article de Anglais | MEDLINE | ID: mdl-17033682

RÉSUMÉ

The central retina mediates high acuity vision, and its progressive dysfunction due to macular degeneration is the leading cause of visual disability among adults in industrialized societies. Here, we summarize recent progress in understanding the pathophysiology of macular degeneration and the implications of this new knowledge for treatment and prevention. The past decade has witnessed remarkable advances in this field, including the development of new, non-invasive retinal imaging technologies, the development of animal models for macular disease, and the isolation of many of the genes responsible for both early- and late-onset macular diseases. These advances have set the stage for the development of effective mechanism-based therapies.


Sujet(s)
Dégénérescence maculaire/physiopathologie , Rétine/physiopathologie , Artère centrale de la rétine/physiopathologie , Vieillissement/métabolisme , Vieillissement/anatomopathologie , Animaux , Prédisposition génétique à une maladie/génétique , Humains , Thérapie laser , Dégénérescence maculaire/génétique , Dégénérescence maculaire/thérapie , Protéines de tissu nerveux/génétique , Protéines de tissu nerveux/métabolisme , Cellules photoréceptrices de vertébré/métabolisme , Cellules photoréceptrices de vertébré/anatomopathologie , Épithélium pigmentaire de l'oeil/métabolisme , Épithélium pigmentaire de l'oeil/anatomopathologie , Épithélium pigmentaire de l'oeil/physiopathologie , Rétine/métabolisme , Rétine/anatomopathologie , Artère centrale de la rétine/anatomopathologie , Rétinal/antagonistes et inhibiteurs , Rétinal/métabolisme
3.
Biochemistry ; 44(18): 7035-47, 2005 May 10.
Article de Anglais | MEDLINE | ID: mdl-15865448

RÉSUMÉ

Retinol dehydrogenase 12 (RDH12) is a novel member of the short-chain dehydrogenase/reductase superfamily of proteins that was recently linked to Leber's congenital amaurosis 3 (LCA). We report the first biochemical characterization of purified human RDH12 and analysis of its expression in human tissues. RDH12 exhibits approximately 2000-fold lower K(m) values for NADP(+) and NADPH than for NAD(+) and NADH and recognizes both retinoids and lipid peroxidation products (C(9) aldehydes) as substrates. The k(cat) values of RDH12 for retinaldehydes and C(9) aldehydes are similar, but the K(m) values are, in general, lower for retinoids. The enzyme exhibits the highest catalytic efficiency for all-trans-retinal (k(cat)/K(m) approximately 900 min(-)(1) microM(-)(1)), followed by 11-cis-retinal (450 min(-)(1) mM(-)(1)) and 9-cis-retinal (100 min(-)(1) mM(-)(1)). Analysis of RDH12 activity toward retinoids in the presence of cellular retinol-binding protein (CRBP) type I or cellular retinaldehyde-binding protein (CRALBP) suggests that RDH12 utilizes the unbound forms of all-trans- and 11-cis-retinoids. As a result, the widely expressed CRBPI, which binds all-trans-retinol with much higher affinity than all-trans-retinaldehyde, restricts the oxidation of all-trans-retinol by RDH12, but has little effect on the reduction of all-trans-retinaldehyde, and CRALBP inhibits the reduction of 11-cis-retinal stronger than the oxidation of 11-cis-retinol, in accord with its higher affinity for 11-cis-retinal. Together, the tissue distribution of RDH12 and its catalytic properties suggest that, in most tissues, RDH12 primarily contributes to the reduction of all-trans-retinaldehyde; however, at saturating concentrations of peroxidic aldehydes in the cells undergoing oxidative stress, for example, photoreceptors, RDH12 might also play a role in detoxification of lipid peroxidation products.


Sujet(s)
Alcohol oxidoreductases/isolement et purification , Protéines de transport/composition chimique , Rétine/enzymologie , Rétinal/composition chimique , Rétinoïdes/composition chimique , Protéines de liaison au rétinol/composition chimique , Alcohol oxidoreductases/biosynthèse , Alcohol oxidoreductases/génétique , Alcohol oxidoreductases/métabolisme , Aldéhydes/composition chimique , Protéines de transport/métabolisme , Catalyse , Histidine/génétique , Humains , Cinétique , Mutagenèse par insertion , Spécificité d'organe/génétique , Oxydoréduction , Cellules photoréceptrices de vertébré/métabolisme , Liaison aux protéines , Rétine/métabolisme , Rétinal/antagonistes et inhibiteurs , Rétinal/métabolisme , Rétinoïdes/métabolisme , Protéines de liaison au rétinol/métabolisme , Protéines de liaison cellulaire au rétinol
4.
J Biol Chem ; 274(33): 23535-40, 1999 Aug 13.
Article de Anglais | MEDLINE | ID: mdl-10438533

RÉSUMÉ

Factors regulating retinal biosynthesis in halobacteria are not clearly understood. In halobacteria, events leading to the biosynthesis of bacteriorhodopsin have been proposed to participate in stringent regulation of retinal biosynthesis. The present study describes a novel approach of in vivo introductions of mRNA and membrane proteins via liposome fusion to test their role in cellular metabolism. Both the bacterioopsin-encoding mRNA and the liposome-encapsulated bacterioopsin (apoprotein) are independently introduced in spheroplasts of the purple membrane-negative strain Halobacterium salinarium that initially contain neither bacterioopsin nor retinal. Isoprenoid analyses of these cells indicate that the expression/presence of bacterioopsin triggers retinal biosynthesis from lycopene, and its subsequent binding to opsin generates bacteriorhodopsin. When bacteriorhodopsin and excess retinal were independently introduced into spheroplasts of purple membrane-negative cells, the introduction of bacteriorhodopsin resulted in an accumulation of lycopene, indicating an inhibition of retinal biosynthesis. These results provide direct evidence that the formation of bacterioopsin acts as a trigger for lycopene conversion to beta-carotene in retinal biosynthesis. The trigger for this event does not lie with either transcription or translation of the bop gene. It is clearly associated with the folded and the membrane-integrated state of bacterioopsin. On the other hand, the trigger signaling inhibition of retinal biosynthesis does not lie with the presence of excess retinal but with the correctly folded, retinal-bound form, bacteriorhodopsin.


Sujet(s)
Bactériorhodopsines/biosynthèse , Bactériorhodopsines/métabolisme , Halobacterium salinarum/métabolisme , Rétinal/biosynthèse , Séquence d'acides aminés , Bactériorhodopsines/génétique , Séquence nucléotidique , Caroténoïdes/métabolisme , Lycopène , Données de séquences moléculaires , ARN messager/génétique , Rétinal/antagonistes et inhibiteurs
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...