Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 328
Filtrer
1.
BMC Pulm Med ; 24(1): 342, 2024 Jul 15.
Article de Anglais | MEDLINE | ID: mdl-39010027

RÉSUMÉ

BACKGROUND: Pulmonary arterial hypertension (PAH) is a progressive disease of vascular remodeling characterized by persistent pulmonary arterial pressure elevation, which can lead to right heart failure and premature death. Given the complex pathogenesis and poor prognosis of PAH, the identification and investigation of biomarkers become increasingly critical for advancing further understanding of the disease. METHODS: PAH-related datasets, GSE49114, GSE180169 and GSE154959, were downloaded from the publicly available GEO database. By performing WGCNA on the GSE49114 dataset, a total of 906 PAH-related key module genes were screened out. By carrying out differential analysis on the GSE180169 dataset, a total of 576 differentially expressed genes were identified. Additionally, the GSE154959 single-cell sequencing dataset was also subjected to differential analysis, leading to the identification of 34 DEGs within endothelial cells. By taking intersection of the above three groups of DEGs, five PAH-related hub genes were screened out, namely Plvap, Cyp4b1, Foxf1, H2-Ab1, and H2-Eb1, among which H2-Ab1 was selected for subsequent experiments. RESULTS: A SuHx mouse model was prepared using the SU5416/hypoxia method, and the successful construction of the model was evaluated through Hematoxylin-Eosin staining, hemodynamic detection, fulton index, and Western Blot (WB). The results of WB and qRT-PCR demonstrated a significant upregulation of H2-Ab1 expression in SuHx mice. Consistent with the results of bioinformatics analysis, a time-dependent increase was observed in H2-Ab1 expression in hypoxia-treated mouse pulmonary artery endothelial cells (PAECs). To investigate whether H2-Ab1 affects the development and progression of PAH, we knocked down H2-Ab1 expression in PAECs, and found that its knockdown inhibited the viability, adhesion, migration, and angiogenesis, while concurrently promoted the apoptosis of PAECs. CONCLUSION: H2-Ab1 could regulate the proliferation, apoptosis, adhesion, migration, and angiogenesis of PAECs.


Sujet(s)
Biologie informatique , Modèles animaux de maladie humaine , Hypertension artérielle pulmonaire , Remodelage vasculaire , Animaux , Souris , Remodelage vasculaire/génétique , Hypertension artérielle pulmonaire/génétique , Hypertension artérielle pulmonaire/physiopathologie , Hypertension artérielle pulmonaire/métabolisme , Hypertension artérielle pulmonaire/anatomopathologie , Mâle , Souris de lignée C57BL , Cellules endothéliales/métabolisme , Prolifération cellulaire/génétique , Artère pulmonaire/anatomopathologie , Humains , Indoles , Pyrroles
2.
J Am Heart Assoc ; 13(14): e034621, 2024 Jul 16.
Article de Anglais | MEDLINE | ID: mdl-38979789

RÉSUMÉ

BACKGROUND: The primary genetic risk factor for heritable pulmonary arterial hypertension is the presence of monoallelic mutations in the BMPR2 gene. The incomplete penetrance of BMPR2 mutations implies that additional triggers are necessary for pulmonary arterial hypertension occurrence. Pulmonary artery stenosis directly raises pulmonary artery pressure, and the redirection of blood flow to unobstructed arteries leads to endothelial dysfunction and vascular remodeling. We hypothesized that right pulmonary artery occlusion (RPAO) triggers pulmonary hypertension (PH) in rats with Bmpr2 mutations. METHODS AND RESULTS: Male and female rats with a 71 bp monoallelic deletion in exon 1 of Bmpr2 and their wild-type siblings underwent acute and chronic RPAO. They were subjected to full high-fidelity hemodynamic characterization. We also examined how chronic RPAO can mimic the pulmonary gene expression pattern associated with installed PH in unobstructed territories. RPAO induced precapillary PH in male and female rats, both acutely and chronically. Bmpr2 mutant and male rats manifested more severe PH compared with their counterparts. Although wild-type rats adapted to RPAO, Bmpr2 mutant rats experienced heightened mortality. RPAO induced a decline in cardiac contractility index, particularly pronounced in male Bmpr2 rats. Chronic RPAO resulted in elevated pulmonary IL-6 (interleukin-6) expression and decreased Gdf2 expression (corrected P value<0.05 and log2 fold change>1). In this context, male rats expressed higher pulmonary levels of endothelin-1 and IL-6 than females. CONCLUSIONS: Our novel 2-hit rat model presents a promising avenue to explore the adaptation of the right ventricle and pulmonary vasculature to PH, shedding light on pertinent sex- and gene-related effects.


Sujet(s)
Récepteurs de la protéine morphogénique osseuse de type II , Modèles animaux de maladie humaine , Hémodynamique , Mutation , Artère pulmonaire , Animaux , Récepteurs de la protéine morphogénique osseuse de type II/génétique , Récepteurs de la protéine morphogénique osseuse de type II/métabolisme , Femelle , Mâle , Artère pulmonaire/physiopathologie , Artère pulmonaire/métabolisme , Hypertension pulmonaire/physiopathologie , Hypertension pulmonaire/génétique , Hypertension pulmonaire/étiologie , Hypertension pulmonaire/métabolisme , Rats , Rat Sprague-Dawley , Remodelage vasculaire/génétique , Hypertension artérielle pulmonaire/physiopathologie , Hypertension artérielle pulmonaire/génétique , Hypertension artérielle pulmonaire/métabolisme , Hypertension artérielle pulmonaire/étiologie , Sténose de l'artère pulmonaire/génétique , Sténose de l'artère pulmonaire/physiopathologie , Sténose de l'artère pulmonaire/métabolisme , Pression artérielle , Contraction myocardique/physiologie
3.
Hypertension ; 81(8): 1785-1798, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38832511

RÉSUMÉ

BACKGROUND: The N6-methyladenosine (m6A) modification of RNA and its regulators have important roles in the pathogenesis of pulmonary hypertension (PH). Ythdf2 (YTH N6-methyladenosine RNA binding protein 2) is best known for its role in degrading m6A-modified mRNAs such as Hmox1 mRNA, which leads to alternative activation of macrophages in PH. Recent studies have also linked Ythdf2 to the proliferation of pulmonary artery smooth muscle cells (PASMCs). However, its specific roles in PASMCs and downstream targets during the development of PH remain unclear. METHODS: The expression and biological function of Ythdf2 in PASMCs were investigated in human and experimental models of PH. Smooth muscle cell-specific Ythdf2-deficient mice were used to assess the roles of Ythdf2 in PASMCs in vivo. Proteomic analysis, m6A sequencing, and RNA immunoprecipitation analysis were used to screen for potential downstream targets. RESULTS: Ythdf2 was significantly upregulated in human and rodent PH-PASMCs, and smooth muscle cell-specific Ythdf2 deficiency ameliorated PASMC proliferation, right ventricular hypertrophy, pulmonary vascular remodeling, and PH development. Higher expression of Ythdf2 promoted PASMC proliferation and PH by paradoxically stabilizing Myadm mRNA in an m6A-dependent manner. Loss of Ythdf2 decreased the expression of Myadm in PASMCs and pulmonary arteries, both in vitro and in vivo. Additionally, silencing Myadm inhibited the Ythdf2-dependent hyperproliferation of PASMCs by upregulating the cell cycle kinase inhibitor p21. CONCLUSIONS: We have identified a novel mechanism where the increased expression of Ythdf2 stimulates PH-PASMC proliferation through an m6A/Myadm/p21 pathway. Strategies targeting Ythdf2 in PASMCs might be useful additions to the therapeutic approach to PH.


Sujet(s)
Prolifération cellulaire , Hypertension pulmonaire , Muscles lisses vasculaires , Myocytes du muscle lisse , Artère pulmonaire , Protéines de liaison à l'ARN , Remodelage vasculaire , Remodelage vasculaire/physiologie , Remodelage vasculaire/génétique , Protéines de liaison à l'ARN/métabolisme , Protéines de liaison à l'ARN/génétique , Animaux , Souris , Humains , Artère pulmonaire/métabolisme , Muscles lisses vasculaires/métabolisme , Muscles lisses vasculaires/anatomopathologie , Hypertension pulmonaire/métabolisme , Hypertension pulmonaire/génétique , Myocytes du muscle lisse/métabolisme , Modèles animaux de maladie humaine , Cellules cultivées , Mâle , Stabilité de l'ARN , ARN messager/génétique , ARN messager/métabolisme
4.
Cell Mol Life Sci ; 81(1): 256, 2024 Jun 12.
Article de Anglais | MEDLINE | ID: mdl-38866991

RÉSUMÉ

Pulmonary hypertension (PH) is characterized by vascular remodeling predominantly driven by a phenotypic switching in pulmonary artery smooth muscle cells (PASMCs). However, the underlying mechanisms for this phenotypic alteration remain incompletely understood. Here, we identified that RNA methyltransferase METTL3 is significantly elevated in the lungs of hypoxic PH (HPH) mice and rats, as well as in the pulmonary arteries (PAs) of HPH rats. Targeted deletion of Mettl3 in smooth muscle cells exacerbated hemodynamic consequences of hypoxia-induced PH and accelerated pulmonary vascular remodeling in vivo. Additionally, the absence of METTL3 markedly induced phenotypic switching in PASMCs in vitro. Mechanistically, METTL3 depletion attenuated m6A modification and hindered the processing of pri-miR-143/145, leading to a downregulation of miR-143-3p and miR-145-5p. Inhibition of hnRNPA2B1, an m6A mediator involved in miRNA maturation, similarly resulted in a significant reduction of miR-143-3p and miR-145-5p. We demonstrated that miR-145-5p targets Krüppel-like factor 4 (KLF4) and miR-143-3p targets fascin actin-bundling protein 1 (FSCN1) in PASMCs. The decrease of miR-145-5p subsequently induced an upregulation of KLF4, which in turn suppressed miR-143/145 transcription, establishing a positive feedback circuit between KLF4 and miR-143/145. This regulatory circuit facilitates the persistent suppression of contractile marker genes, thereby sustaining PASMC phenotypic switch. Collectively, hypoxia-induced upregulation of METTL3, along with m6A mediated regulation of miR-143/145, might serve as a protective mechanism against phenotypic switch of PASMCs. Our results highlight a potential therapeutic strategy targeting m6A modified miR-143/145-KLF4 loop in the treatment of PH.


Sujet(s)
Adénosine , Facteur-4 de type Kruppel , Facteurs de transcription Krüppel-like , Methyltransferases , microARN , Myocytes du muscle lisse , Artère pulmonaire , Facteur-4 de type Kruppel/métabolisme , Animaux , microARN/génétique , microARN/métabolisme , Artère pulmonaire/métabolisme , Facteurs de transcription Krüppel-like/métabolisme , Facteurs de transcription Krüppel-like/génétique , Myocytes du muscle lisse/métabolisme , Souris , Adénosine/analogues et dérivés , Adénosine/métabolisme , Methyltransferases/métabolisme , Methyltransferases/génétique , Rats , Phénotype , Mâle , Hypertension pulmonaire/métabolisme , Hypertension pulmonaire/génétique , Hypertension pulmonaire/anatomopathologie , Muscles lisses vasculaires/métabolisme , Souris de lignée C57BL , Remodelage vasculaire/génétique , Rat Sprague-Dawley , Humains
5.
Cell Mol Biol (Noisy-le-grand) ; 70(6): 233-237, 2024 Jun 05.
Article de Anglais | MEDLINE | ID: mdl-38836656

RÉSUMÉ

Nur77 is a member of the NR4A subfamily of orphan nuclear receptors that is expressed and has a function within the immune system. This study aimed to investigate the role of Nur77 in hypoxic pulmonary hypertension. SPF male SD rats were exposed in hypobaric chamber simulating 5000 m high altitude for 0, 3, 7, 14, 21 or 28 days. Rat pulmonary artery smooth muscle cells (RPASMCs) were cultured under normoxic conditions (5% CO2-95% ambient air) or hypoxic conditions (5% O2 for 6 h, 12 h, 24 h, 48 h). Hypoxic rats developed pulmonary arterial remodeling and right ventricular hypertrophy with significantly increased pulmonary arterial pressure. The levels of Nur77, HIF-1α and PNCA were upregulated in pulmonary arterial smooth muscle from hypoxic rats. Silencing of either Nur77 or HIF-1α attenuated hypoxia-induced proliferation. Silencing of HIF-1α down-regulated Nur77 protein level, but Nur77 silence did not reduce HIF-1α. Nur77 was not con-immunoprecipitated with HIF-1α. This study demonstrated that Nur77 acted as a downstream regulator of HIF-1α under hypoxia, and plays a critical role in the hypoxia-induced pulmonary vascular remodeling, which is regulated by HIF-1α. Nur77 maybe a novel target of HPH therapy.


Sujet(s)
Hypertension pulmonaire , Sous-unité alpha du facteur-1 induit par l'hypoxie , Hypoxie , Membre-1 du groupe A de la sous-famille-4 de récepteurs nucléaires , Artère pulmonaire , Rat Sprague-Dawley , Remodelage vasculaire , Animaux , Membre-1 du groupe A de la sous-famille-4 de récepteurs nucléaires/métabolisme , Membre-1 du groupe A de la sous-famille-4 de récepteurs nucléaires/génétique , Remodelage vasculaire/génétique , Sous-unité alpha du facteur-1 induit par l'hypoxie/métabolisme , Sous-unité alpha du facteur-1 induit par l'hypoxie/génétique , Mâle , Hypertension pulmonaire/métabolisme , Hypertension pulmonaire/anatomopathologie , Hypertension pulmonaire/génétique , Artère pulmonaire/métabolisme , Artère pulmonaire/anatomopathologie , Hypoxie/métabolisme , Prolifération cellulaire , Myocytes du muscle lisse/métabolisme , Myocytes du muscle lisse/anatomopathologie , Rats , Hypertrophie ventriculaire droite/métabolisme , Hypertrophie ventriculaire droite/anatomopathologie , Hypertrophie ventriculaire droite/physiopathologie , Hypertrophie ventriculaire droite/génétique , Cellules cultivées
6.
Sci Rep ; 14(1): 13287, 2024 06 10.
Article de Anglais | MEDLINE | ID: mdl-38858395

RÉSUMÉ

Clinical outcomes of arteriovenous fistulae (AVF) for hemodialysis remain inadequate since biological mechanisms of AVF maturation and failure are still poorly understood. Aortocaval fistula creation (AVF group) or a sham operation (sham group) was performed in C57BL/6 mice. Venous limbs were collected on postoperative day 7 and total RNA was extracted for high throughput RNA sequencing and bioinformatic analysis. Genes in metabolic pathways were significantly downregulated in the AVF, whereas significant sex differences were not detected. Since gene expression patterns among the AVF group were heterogenous, the AVF group was divided into a 'normal' AVF (nAVF) group and an 'outliers' (OUT) group. The gene expression patterns of the nAVF and OUT groups were consistent with previously published data showing venous adaptive remodeling, whereas enrichment analyses showed significant upregulation of metabolism, inflammation and coagulation in the OUT group compared to the nAVF group, suggesting the heterogeneity during venous remodeling reflects early gene expression changes that may correlate with AVF maturation or failure. Early detection of these processes may be a translational strategy to predict fistula failure and reduce patient morbidity.


Sujet(s)
Anastomose chirurgicale artérioveineuse , Souris de lignée C57BL , Remodelage vasculaire , Animaux , Souris , Mâle , Remodelage vasculaire/génétique , Femelle , Régulation négative/génétique , Veines/métabolisme , Dialyse rénale , Fistule artérioveineuse/génétique , Fistule artérioveineuse/métabolisme , Fistule artérioveineuse/anatomopathologie , Régulation de l'expression des gènes , Analyse de profil d'expression de gènes
7.
Hypertension ; 81(7): 1524-1536, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38716674

RÉSUMÉ

BACKGROUND: Preeclampsia is a significant pregnancy disorder with an unknown cause, mainly attributed to impaired spiral arterial remodeling. METHODS: Using RNA sequencing, we identified key genes in placental tissues from healthy individuals and preeclampsia patients. Placenta and plasma samples from pregnant women were collected to detect the expression of TPBG (trophoblast glycoprotein). Pregnant rats were injected with TPBG-carrying adenovirus to detect preeclamptic features. HTR-8/SVneo cells transfected with a TPBG overexpression lentiviral vector were used in cell function experiments. The downstream molecular mechanisms of TPBG were explored using RNA sequencing and single-cell RNA sequencing data. TPBG expression was knocked down in the lipopolysaccharide-induced preeclampsia-like rat model to rescue the preeclampsia features. We also assessed TPBG's potential as an early preeclampsia predictor using clinical plasma samples. RESULTS: TPBG emerged as a crucial differentially expressed gene, expressed specifically in syncytiotrophoblasts and extravillous trophoblasts. Subsequently, we established a rat model with preeclampsia-like phenotypes by intravenously injecting TPBG-expressing adenoviruses, observing impaired spiral arterial remodeling, thus indicating a causal correlation between TPBG overexpression and preeclampsia. Studies with HTR-8/SVneo cells, chorionic villous explants, and transwell assays showed TPBG overexpression disrupts trophoblast/extravillous trophoblast migration/invasion and chemotaxis. Notably, TPBG knockdown alleviated the lipopolysaccharide-induced preeclampsia-like rat model. We enhanced preeclampsia risk prediction in early gestation by combining TPBG expression with established clinical predictors. CONCLUSIONS: These findings are the first to show that TPBG overexpression contributes to preeclampsia development by affecting uterine spiral artery remodeling. We propose TPBG levels in maternal blood as a predictor of preeclampsia risk. The proposed mechanism by which TPBG overexpression contributes to the occurrence of preeclampsia via its disruptive effect on trophoblast and extravillous trophoblast migration/invasion on uterine spiral artery remodeling, thereby increasing the risk of preeclampsia.


Sujet(s)
Mouvement cellulaire , Pré-éclampsie , Trophoblastes , Femelle , Pré-éclampsie/génétique , Pré-éclampsie/métabolisme , Grossesse , Trophoblastes/métabolisme , Animaux , Rats , Humains , Modèles animaux de maladie humaine , Artère utérine/métabolisme , Artère utérine/anatomopathologie , Rat Sprague-Dawley , Remodelage vasculaire/physiologie , Remodelage vasculaire/génétique , Placenta/métabolisme , Glycoprotéines/génétique , Glycoprotéines/métabolisme , Adulte
8.
Cell Mol Biol Lett ; 29(1): 69, 2024 May 13.
Article de Anglais | MEDLINE | ID: mdl-38741032

RÉSUMÉ

BACKGROUND: Pulmonary hypertension (PH) is a progressive disease characterized by pulmonary vascular remodeling. Increasing evidence indicates that endothelial-to-mesenchymal transition (EndMT) in pulmonary artery endothelial cells (PAECs) is a pivotal trigger initiating this remodeling. However, the regulatory mechanisms underlying EndMT in PH are still not fully understood. METHODS: Cytokine-induced hPAECs were assessed using RNA methylation quantification, qRT-PCR, and western blotting to determine the involvement of N6-methyladenosine (m6A) methylation in EndMT. Lentivirus-mediated silencing, overexpression, tube formation, and wound healing assays were utilized to investigate the function of METTL3 in EndMT. Endothelial-specific gene knockout, hemodynamic measurement, and immunostaining were performed to explore the roles of METTL3 in pulmonary vascular remodeling and PH. RNA-seq, RNA Immunoprecipitation-based qPCR, mRNA stability assay, m6A mutation, and dual-luciferase assays were employed to elucidate the mechanisms of RNA methylation in EndMT. RESULTS: The global levels of m6A and METTL3 expression were found to decrease in TNF-α- and TGF-ß1-induced EndMT in human PAECs (hPAECs). METTL3 inhibition led to reduced endothelial markers (CD31 and VE-cadherin) and increased mesenchymal markers (SM22 and N-cadherin) as well as EndMT-related transcription factors (Snail, Zeb1, Zeb2, and Slug). The endothelial-specific knockout of Mettl3 promoted EndMT and exacerbated pulmonary vascular remodeling and hypoxia-induced PH (HPH) in mice. Mechanistically, METTL3-mediated m6A modification of kruppel-like factor 2 (KLF2) plays a crucial role in the EndMT process. KLF2 overexpression increased CD31 and VE-cadherin levels while decreasing SM22, N-cadherin, and EndMT-related transcription factors, thereby mitigating EndMT in PH. Mutations in the m6A site of KLF2 mRNA compromise KLF2 expression, subsequently diminishing its protective effect against EndMT. Furthermore, KLF2 modulates SM22 expression through direct binding to its promoter. CONCLUSIONS: Our findings unveil a novel METTL3/KLF2 pathway critical for protecting hPAECs against EndMT, highlighting a promising avenue for therapeutic investigation in PH.


Sujet(s)
Adénosine , Cellules endothéliales , Transition épithélio-mésenchymateuse , Hypertension pulmonaire , Facteurs de transcription Krüppel-like , Methyltransferases , Animaux , Humains , Souris , Adénosine/analogues et dérivés , Adénosine/métabolisme , Cadhérines/métabolisme , Cadhérines/génétique , Cellules cultivées , Cellules endothéliales/métabolisme , Transition épithélio-mésenchymateuse/génétique , Hypertension pulmonaire/génétique , Hypertension pulmonaire/métabolisme , Facteurs de transcription Krüppel-like/métabolisme , Facteurs de transcription Krüppel-like/génétique , Méthylation , Methyltransferases/métabolisme , Methyltransferases/génétique , Souris de lignée C57BL , Artère pulmonaire/métabolisme , Artère pulmonaire/anatomopathologie , Remodelage vasculaire/génétique
9.
Genome Biol ; 25(1): 117, 2024 05 07.
Article de Anglais | MEDLINE | ID: mdl-38715110

RÉSUMÉ

BACKGROUND: Preeclampsia, one of the most lethal pregnancy-related diseases, is associated with the disruption of uterine spiral artery remodeling during placentation. However, the early molecular events leading to preeclampsia remain unknown. RESULTS: By analyzing placentas from preeclampsia, non-preeclampsia, and twin pregnancies with selective intrauterine growth restriction, we show that the pathogenesis of preeclampsia is attributed to immature trophoblast and maldeveloped endothelial cells. Delayed epigenetic reprogramming during early extraembryonic tissue development leads to generation of excessive immature trophoblast cells. We find reduction of de novo DNA methylation in these trophoblast cells results in selective overexpression of maternally imprinted genes, including the endoretrovirus-derived gene PEG10 (paternally expressed gene 10). PEG10 forms virus-like particles, which are transferred from the trophoblast to the closely proximate endothelial cells. In normal pregnancy, only a low amount of PEG10 is transferred to maternal cells; however, in preeclampsia, excessive PEG10 disrupts maternal vascular development by inhibiting TGF-beta signaling. CONCLUSIONS: Our study reveals the intricate epigenetic mechanisms that regulate trans-generational genetic conflict and ultimately ensure proper maternal-fetal interface formation.


Sujet(s)
Pré-éclampsie , Trophoblastes , Remodelage vasculaire , Pré-éclampsie/génétique , Grossesse , Femelle , Humains , Trophoblastes/métabolisme , Remodelage vasculaire/génétique , Placenta/métabolisme , Méthylation de l'ADN , Épigenèse génétique , Cellules endothéliales/métabolisme , Protéines de liaison à l'ADN/génétique , Protéines de liaison à l'ADN/métabolisme , Empreinte génomique , Facteur de croissance transformant bêta/métabolisme , Retard de croissance intra-utérin/génétique , Placentation/génétique , Protéines de liaison à l'ARN , Protéines régulatrices de l'apoptose
10.
Cell Biol Toxicol ; 40(1): 32, 2024 May 20.
Article de Anglais | MEDLINE | ID: mdl-38767703

RÉSUMÉ

BACKGROUND: Recent studies have emphasized the critical role of Telocytes (TCs)-derived exosomes in organ tissue injury and repair. Our previous research showed a significant increase in ITGB1 within TCs. Pulmonary Arterial Hypertension (PAH) is marked by a loss of microvessel regeneration and progressive vascular remodeling. This study aims to investigate whether exosomes derived from ITGB1-modified TCs (ITGB1-Exo) could mitigate PAH. METHODS: We analyzed differentially expressed microRNAs (DEmiRs) in TCs using Affymetrix Genechip miRNA 4.0 arrays. Exosomes isolated from TC culture supernatants were verified through transmission electron microscopy and Nanoparticle Tracking Analysis. The impact of miR-429-3p-enriched exosomes (Exo-ITGB1) on hypoxia-induced pulmonary arterial smooth muscle cells (PASMCs) was evaluated using CCK-8, transwell assay, and inflammatory factor analysis. A four-week hypoxia-induced mouse model of PAH was constructed, and H&E staining, along with Immunofluorescence staining, were employed to assess PAH progression. RESULTS: Forty-five miRNAs exhibited significant differential expression in TCs following ITGB1 knockdown. Mus-miR-429-3p, significantly upregulated in ITGB1-overexpressing TCs and in ITGB1-modified TC-derived exosomes, was selected for further investigation. Exo-ITGB1 notably inhibited the migration, proliferation, and inflammation of PASMCs by targeting Rac1. Overexpressing Rac1 partly counteracted Exo-ITGB1's effects. In vivo administration of Exo-ITGB1 effectively reduced pulmonary vascular remodeling and inflammation. CONCLUSIONS: Our findings reveal that ITGB1-modified TC-derived exosomes exert anti-inflammatory effects and reverse vascular remodeling through the miR-429-3p/Rac1 axis. This provides potential therapeutic strategies for PAH treatment.


Sujet(s)
Exosomes , Antigènes CD29 , microARN , Télocytes , Protéine G rac1 , microARN/génétique , microARN/métabolisme , Animaux , Exosomes/métabolisme , Exosomes/génétique , Protéine G rac1/métabolisme , Protéine G rac1/génétique , Antigènes CD29/métabolisme , Antigènes CD29/génétique , Souris , Télocytes/métabolisme , Mâle , Myocytes du muscle lisse/métabolisme , Myocytes du muscle lisse/anatomopathologie , Souris de lignée C57BL , Hypertension artérielle pulmonaire/métabolisme , Hypertension artérielle pulmonaire/génétique , Hypertension artérielle pulmonaire/anatomopathologie , Hypoxie/métabolisme , Hypoxie/génétique , Hypoxie/complications , Prolifération cellulaire/génétique , Mouvement cellulaire/génétique , Humains , Remodelage vasculaire/génétique , Neuropeptides
11.
Adv Biol (Weinh) ; 8(6): e2300623, 2024 06.
Article de Anglais | MEDLINE | ID: mdl-38640923

RÉSUMÉ

Recent evidence suggests that glia maturation factor ß (GMFß) is important in the pathogenesis of pulmonary arterial hpertension (PAH), but the underlying mechanism is unknown. To clarify whether GMFß can be involved in pulmonary vascular remodeling and to explore the role of the IL-6-STAT3 pathway in this process, the expression of GMFß in PAH rats is examined and the expression of downstream molecules including periostin (POSTN) and interleukin-6 (IL-6) is measured using real-time quantitative polymerase chain reaction (RT-qPCR) and western blot analysis. The location and expression of POSTN is also tested in PAH rats using immunofluorescence. It is proved that GMFß is upregulated in the lungs of PAH rats. Knockout GMFß alleviated the MCT-PAH by reducing right ventricular systolic pressure (RVSP), mean pulmonary arterial pressure (mPAP), and pulmonary vascular remodeling. Moreover, the inflammation of the pulmonary vasculature is ameliorated in PAH rats with GMFß absent. In addition, the IL-6-STAT3 signaling pathway is activated in PAH; knockout GMFß reduced POSTN and IL-6 production by inhibiting the IL-6-STAT3 signaling pathway. Taken together, these findings suggest that knockout GMFß ameliorates PAH in rats by inhibiting the IL-6-STAT3 signaling pathway.


Sujet(s)
Facteur de maturation gliale , Interleukine-6 , Remodelage vasculaire , Animaux , Remodelage vasculaire/génétique , Remodelage vasculaire/physiologie , Rats , Mâle , Interleukine-6/métabolisme , Interleukine-6/génétique , Facteur de maturation gliale/métabolisme , Facteur de maturation gliale/génétique , Hypertension artérielle pulmonaire/métabolisme , Hypertension artérielle pulmonaire/physiopathologie , Hypertension artérielle pulmonaire/génétique , Hypertension artérielle pulmonaire/anatomopathologie , Transduction du signal , Rat Sprague-Dawley , Facteur de transcription STAT-3/métabolisme , Facteur de transcription STAT-3/génétique , Molécules d'adhérence cellulaire/métabolisme , Molécules d'adhérence cellulaire/génétique , Artère pulmonaire/métabolisme , Artère pulmonaire/anatomopathologie , Artère pulmonaire/physiopathologie , Modèles animaux de maladie humaine
12.
Free Radic Biol Med ; 219: 141-152, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38636714

RÉSUMÉ

Pulmonary hypertension (PH) is a devastating disease that lacks effective treatment options and is characterized by severe pulmonary vascular remodeling. Pulmonary arterial endothelial cell (PAEC) dysfunction drives the initiation and pathogenesis of pulmonary arterial hypertension. Canonical transient receptor potential (TRPC) channels, a family of Ca2+-permeable channels, play an important role in various diseases. However, the effect and mechanism of TRPCs on PH development have not been fully elucidated. Among the TRPC family members, TRPC4 expression was markedly upregulated in PAECs from hypoxia combined with SU5416 (HySu)-induced PH mice and monocrotaline (MCT)-treated PH rats, as well as in hypoxia-exposed PAECs, suggesting that TRPC4 in PAECs may participate in the occurrence and development of PH. In this study, we aimed to investigate whether TRPC4 in PAECs has an aggravating effect on PH and elucidate the molecular mechanisms. We observed that hypoxia treatment promoted PAEC apoptosis through a caspase-12/endoplasmic reticulum stress (ERS)-dependent pathway. Knockdown of TRPC4 attenuated hypoxia-induced apoptosis and caspase-3/caspase-12 activity in PAECs. Accordingly, adeno-associated virus (AAV) serotype 6-mediated pulmonary endothelial TRPC4 silencing (AAV6-Tie-shRNA-TRPC4) or TRPC4 antagonist suppressed PH progression as evidenced by reduced right ventricular systolic pressure (RVSP), pulmonary vascular remodeling, PAEC apoptosis and reactive oxygen species (ROS) production. Mechanistically, unbiased RNA sequencing (RNA-seq) suggested that TRPC4 deficiency suppressed the expression of the proapoptotic protein sushi domain containing 2 (Susd2) in hypoxia-exposed mouse PAECs. Moreover, TRPC4 activated hypoxia-induced PAEC apoptosis by promoting Susd2 expression. Therefore, inhibiting TRPC4 ameliorated PAEC apoptosis and hypoxic PH in animals by repressing Susd2 signaling, which may serve as a therapeutic target for the management of PH.


Sujet(s)
Apoptose , Cellules endothéliales , Hypertension pulmonaire , Hypoxie , Canaux cationiques TRPC , Animaux , Souris , Rats , Cellules cultivées , Modèles animaux de maladie humaine , Stress du réticulum endoplasmique , Cellules endothéliales/métabolisme , Cellules endothéliales/anatomopathologie , Hypertension pulmonaire/métabolisme , Hypertension pulmonaire/anatomopathologie , Hypertension pulmonaire/génétique , Hypoxie/métabolisme , Indoles , Souris de lignée C57BL , Monocrotaline/toxicité , Artère pulmonaire/anatomopathologie , Artère pulmonaire/métabolisme , Pyrroles , Rat Sprague-Dawley , Transduction du signal , Canaux cationiques TRPC/métabolisme , Canaux cationiques TRPC/génétique , Remodelage vasculaire/génétique
13.
Biomolecules ; 14(4)2024 Apr 19.
Article de Anglais | MEDLINE | ID: mdl-38672515

RÉSUMÉ

Cerebrovascular disease accounts for major neurologic disabilities in patients with type 2 diabetes mellitus (DM). A potential association of mitochondrial DNA (mtDNA) and inflammation with cerebral vessel remodeling in patients with type 2 DM was evaluated. A cohort of 150 patients and 30 healthy controls were assessed concerning urinary albumin/creatinine ratio (UACR), synaptopodin, podocalyxin, kidney injury molecule-1 (KIM-1), N-acetyl-ß-(D)-glucosaminidase (NAG), interleukins IL-17A, IL-18, IL-10, tumor necrosis factor-alpha (TNFα), intercellular adhesion molecule-1 (ICAM-1). MtDNA-CN and nuclear DNA (nDNA) were quantified in peripheral blood and urine by qRT-PCR. Cytochrome b (CYTB) gene, subunit 2 of NADH dehydrogenase (ND2), and beta 2 microglobulin nuclear gene (B2M) were assessed by TaqMan assays. mtDNA-CN was defined as the ratio of the number of mtDNA/nDNA copies, through analysis of the CYTB/B2M and ND2/B2M ratio; cerebral Doppler ultrasound: intima-media thickness (IMT)-the common carotid arteries (CCAs), the pulsatility index (PI) and resistivity index (RI)- the internal carotid arteries (ICAs) and middle cerebral arteries (MCAs), the breath-holding index (BHI). The results showed direct correlations of CCAs-IMT, PI-ICAs, PI-MCAs, RI-ICAs, RI-MCAs with urinary mtDNA, IL-17A, IL-18, TNFα, ICAM-1, UACR, synaptopodin, podocalyxin, KIM-1, NAG, and indirect correlations with serum mtDNA, IL-10. BHI correlated directly with serum IL-10, and serum mtDNA, and negatively with serum IL-17A, serum ICAM-1, and NAG. In neurologically asymptomatic patients with type 2 DM cerebrovascular remodeling and impaired cerebrovascular reactivity may be associated with mtDNA variations and inflammation from the early stages of diabetic kidney disease.


Sujet(s)
ADN mitochondrial , Diabète de type 2 , Néphropathies diabétiques , Inflammation , Humains , ADN mitochondrial/génétique , Mâle , Femelle , Diabète de type 2/complications , Diabète de type 2/génétique , Adulte d'âge moyen , Inflammation/génétique , Néphropathies diabétiques/génétique , Néphropathies diabétiques/anatomopathologie , Sujet âgé , Remodelage vasculaire/génétique , Études cas-témoins
14.
Int J Mol Sci ; 25(8)2024 Apr 19.
Article de Anglais | MEDLINE | ID: mdl-38674087

RÉSUMÉ

Vascular diseases, including peripheral arterial disease (PAD), pulmonary arterial hypertension, and atherosclerosis, significantly impact global health due to their intricate relationship with vascular remodeling. This process, characterized by structural alterations in resistance vessels, is a hallmark of heightened vascular resistance seen in these disorders. The influence of environmental estrogenic endocrine disruptors (EEDs) on the vasculature suggests a potential exacerbation of these alterations. Our study employs an integrative approach, combining data mining with bioinformatics, to unravel the interactions between EEDs and vascular remodeling genes in the context of PAD. We explore the molecular dynamics by which EED exposure may alter vascular function in PAD patients. The investigation highlights the profound effect of EEDs on pivotal genes such as ID3, LY6E, FOS, PTP4A1, NAMPT, GADD45A, PDGF-BB, and NFKB, all of which play significant roles in PAD pathophysiology. The insights gained from our study enhance the understanding of genomic alterations induced by EEDs in vascular remodeling processes. Such knowledge is invaluable for developing strategies to prevent and manage vascular diseases, potentially mitigating the impact of harmful environmental pollutants like EEDs on conditions such as PAD.


Sujet(s)
Biologie informatique , Perturbateurs endocriniens , Réseaux de régulation génique , Maladie artérielle périphérique , Remodelage vasculaire , Humains , Maladie artérielle périphérique/génétique , Biologie informatique/méthodes , Remodelage vasculaire/génétique , Remodelage vasculaire/effets des médicaments et des substances chimiques , Oestrogènes/métabolisme
15.
Int J Mol Sci ; 25(8)2024 Apr 15.
Article de Anglais | MEDLINE | ID: mdl-38673941

RÉSUMÉ

Abdominal aortic aneurysm (AAA) is a serious vascular disease which is associated with vascular remodeling. CD38 is a main NAD+-consuming enzyme in mammals, and our previous results showed that CD38 plays the important roles in many cardiovascular diseases. However, the role of CD38 in AAA has not been explored. Here, we report that smooth-muscle-cell-specific deletion of CD38 (CD38SKO) significantly reduced the morbidity of AngII-induced AAA in CD38SKOApoe-/- mice, which was accompanied with a increases in the aortic diameter, medial thickness, collagen deposition, and elastin degradation of aortas. In addition, CD38SKO significantly suppressed the AngII-induced decreases in α-SMA, SM22α, and MYH11 expression; the increase in Vimentin expression in VSMCs; and the increase in VCAM-1 expression in smooth muscle cells and macrophage infiltration. Furthermore, we demonstrated that the role of CD38SKO in attenuating AAA was associated with the activation of sirtuin signaling pathways. Therefore, we concluded that CD38 plays a pivotal role in AngII-induced AAA through promoting vascular remodeling, suggesting that CD38 may serve as a potential therapeutic target for the prevention of AAA.


Sujet(s)
Antigènes CD38 , Angiotensine-II , Anévrysme de l'aorte abdominale , Souris knockout , Myocytes du muscle lisse , Remodelage vasculaire , Animaux , Mâle , Souris , Antigènes CD38/métabolisme , Antigènes CD38/génétique , Anévrysme de l'aorte abdominale/induit chimiquement , Anévrysme de l'aorte abdominale/génétique , Anévrysme de l'aorte abdominale/anatomopathologie , Modèles animaux de maladie humaine , Glycoprotéines membranaires/métabolisme , Glycoprotéines membranaires/génétique , Souris de lignée C57BL , Muscles lisses vasculaires/métabolisme , Muscles lisses vasculaires/anatomopathologie , Myocytes du muscle lisse/métabolisme , Myocytes du muscle lisse/anatomopathologie , Chaînes lourdes de myosine/métabolisme , Chaînes lourdes de myosine/génétique , Transduction du signal , Remodelage vasculaire/génétique
16.
JCI Insight ; 9(10)2024 Apr 23.
Article de Anglais | MEDLINE | ID: mdl-38652537

RÉSUMÉ

NKX2-5 is a member of the homeobox-containing transcription factors critical in regulating tissue differentiation in development. Here, we report a role for NKX2-5 in vascular smooth muscle cell phenotypic modulation in vitro and in vascular remodeling in vivo. NKX2-5 is upregulated in scleroderma patients with pulmonary arterial hypertension. Suppression of NKX2-5 expression in smooth muscle cells halted vascular smooth muscle proliferation and migration, enhanced contractility, and blocked the expression of extracellular matrix genes. Conversely, overexpression of NKX2-5 suppressed the expression of contractile genes (ACTA2, TAGLN, CNN1) and enhanced the expression of matrix genes (COL1) in vascular smooth muscle cells. In vivo, conditional deletion of NKX2-5 attenuated blood vessel remodeling and halted the progression to hypertension in a mouse chronic hypoxia model. This study revealed that signals related to injury such as serum and low confluence, which induce NKX2-5 expression in cultured cells, is potentiated by TGF-ß and further enhanced by hypoxia. The effect of TGF-ß was sensitive to ERK5 and PI3K inhibition. Our data suggest a pivotal role for NKX2-5 in the phenotypic modulation of smooth muscle cells during pathological vascular remodeling and provide proof of concept for therapeutic targeting of NKX2-5 in vasculopathies.


Sujet(s)
Protéine homéotique Nkx-2.5 , Muscles lisses vasculaires , Remodelage vasculaire , Animaux , Souris , Protéine homéotique Nkx-2.5/génétique , Protéine homéotique Nkx-2.5/métabolisme , Humains , Remodelage vasculaire/génétique , Muscles lisses vasculaires/métabolisme , Muscles lisses vasculaires/anatomopathologie , Mâle , Sclérodermie systémique/anatomopathologie , Sclérodermie systémique/complications , Sclérodermie systémique/métabolisme , Sclérodermie systémique/génétique , Myocytes du muscle lisse/métabolisme , Myocytes du muscle lisse/anatomopathologie , Hypertension artérielle pulmonaire/métabolisme , Hypertension artérielle pulmonaire/génétique , Hypertension artérielle pulmonaire/anatomopathologie , Hypertension artérielle pulmonaire/étiologie , Femelle , Facteur de croissance transformant bêta/métabolisme , Modèles animaux de maladie humaine , Prolifération cellulaire/génétique , Adulte d'âge moyen , Hypertension pulmonaire/métabolisme , Hypertension pulmonaire/génétique , Hypertension pulmonaire/étiologie , Hypertension pulmonaire/anatomopathologie
17.
Cells ; 13(3)2024 Jan 28.
Article de Anglais | MEDLINE | ID: mdl-38334636

RÉSUMÉ

Pulmonary Hypertension (PH) is a terminal disease characterized by severe pulmonary vascular remodeling. Unfortunately, targeted therapy to prevent disease progression is limited. Here, the vascular cell populations that contribute to the molecular and morphological changes of PH in conjunction with current animal models for studying vascular remodeling in PH will be examined. The status quo of epigenetic targeting for treating vascular remodeling in different PH subtypes will be dissected, while parallel epigenetic threads between pulmonary hypertension and pathogenic cancer provide insight into future therapeutic PH opportunities.


Sujet(s)
Hypertension pulmonaire , Animaux , Hypertension pulmonaire/anatomopathologie , Remodelage vasculaire/génétique , Poumon/anatomopathologie , Modèles animaux , Épigenèse génétique
18.
Am J Pathol ; 194(4): 525-538, 2024 Apr.
Article de Anglais | MEDLINE | ID: mdl-37820925

RÉSUMÉ

Control of vascular smooth muscle cell (SMC) gene expression is an essential process for establishing and maintaining lineage identity, contractility, and plasticity. Most mechanisms (epigenetic, transcriptional, and post-transcriptional) implicated in gene regulation occur in the nucleus. Still, intranuclear pathways are directly impacted by modifications in the extracellular environment in conditions of adaptive or maladaptive remodeling. Integration of extracellular, cellular, and genomic information into the nucleus through epigenetic and transcriptional control of genome organization plays a major role in regulating SMC functions and phenotypic transitions during vascular remodeling and diseases. This review aims to provide a comprehensive update on nuclear mechanisms, their interactions, and their integration in controlling SMC homeostasis and dysfunction. It summarizes and discusses the main nuclear mechanisms preponderant in SMCs in the context of vascular disease, such as atherosclerosis, with an emphasis on studies employing in vivo cell-specific loss-of-function and single-cell omics approaches.


Sujet(s)
Muscles lisses vasculaires , Remodelage vasculaire , Humains , Phénotype , Remodelage vasculaire/génétique , Muscles lisses vasculaires/métabolisme , Plasticité cellulaire/génétique , Régulation de l'expression des gènes , Myocytes du muscle lisse/métabolisme
19.
FASEB J ; 38(1): e23369, 2024 01.
Article de Anglais | MEDLINE | ID: mdl-38100642

RÉSUMÉ

The human cardiovascular system has evolved to accommodate the gravity of Earth. Microgravity during spaceflight has been shown to induce vascular remodeling, leading to a decline in vascular function. The underlying mechanisms are not yet fully understood. Our previous study demonstrated that miR-214 plays a critical role in angiotensin II-induced vascular remodeling by reducing the levels of Smad7 and increasing the phosphorylation of Smad3. However, its role in vascular remodeling evoked by microgravity is not yet known. This study aimed to determine the contribution of miR-214 to the regulation of microgravity-induced vascular remodeling. The results of our study revealed that miR-214 expression was increased in the forebody arteries of both mice and monkeys after simulated microgravity treatment. In vitro, rotation-simulated microgravity-induced VSMC migration, hypertrophy, fibrosis, and inflammation were repressed by miR-214 knockout (KO) in VSMCs. Additionally, miR-214 KO increased the level of Smad7 and decreased the phosphorylation of Smad3, leading to a decrease in downstream gene expression. Furthermore, miR-214 cKO protected against simulated microgravity induced the decline in aorta function and the increase in stiffness. Histological analysis showed that miR-214 cKO inhibited the increases in vascular medial thickness that occurred after simulated microgravity treatment. Altogether, these results demonstrate that miR-214 has potential as a therapeutic target for the treatment of vascular remodeling caused by simulated microgravity.


Sujet(s)
microARN , Impesanteur , Humains , Souris , Animaux , Muscles lisses vasculaires/métabolisme , microARN/métabolisme , Remodelage vasculaire/génétique , Aorte/métabolisme , Myocytes du muscle lisse/métabolisme
20.
J Clin Invest ; 134(4)2023 Dec 20.
Article de Anglais | MEDLINE | ID: mdl-38127441

RÉSUMÉ

Lymphangioleiomyomatosis (LAM) is a progressive cystic lung disease caused by tuberous sclerosis complex 1/2 (TSC1/2) gene mutations in pulmonary mesenchymal cells, resulting in activation of the mechanistic target of rapamycin complex 1 (mTORC1). A subset of patients with LAM develop pulmonary vascular remodeling and pulmonary hypertension. Little, however, is known regarding how LAM cells communicate with endothelial cells (ECs) to trigger vascular remodeling. In end-stage LAM lung explants, we identified EC dysfunction characterized by increased EC proliferation and migration, defective angiogenesis, and dysmorphic endothelial tube network formation. To model LAM disease, we used an mTORC1 gain-of-function mouse model with a Tsc2 KO (Tsc2KO) specific to lung mesenchyme (Tbx4LME-Cre Tsc2fl/fl), similar to the mesenchyme-specific genetic alterations seen in human disease. As early as 8 weeks of age, ECs from mice exhibited marked transcriptomic changes despite an absence of morphological changes to the distal lung microvasculature. In contrast, 1-year-old Tbx4LME-Cre Tsc2fl/fl mice spontaneously developed pulmonary vascular remodeling with increased medial thickness. Single-cell RNA-Seq of 1-year-old mouse lung cells identified paracrine ligands originating from Tsc2KO mesenchyme, which can signal through receptors in arterial ECs. These ECs had transcriptionally altered genes including those in pathways associated with blood vessel remodeling. The proposed pathophysiologic mesenchymal ligand-EC receptor crosstalk highlights the importance of an altered mesenchymal cell/EC axis in LAM and other hyperactive mTORC1-driven diseases. Since ECs in patients with LAM and in Tbx4LME-Cre Tsc2fl/fl mice did not harbor TSC2 mutations, our study demonstrates that constitutively active mTORC1 lung mesenchymal cells orchestrated dysfunctional EC responses that contributed to pulmonary vascular remodeling.


Sujet(s)
Lymphangioléiomyomatose , Protéine-2 du complexe de la sclérose tubéreuse , Complexe de la sclérose tubéreuse , Protéines suppresseurs de tumeurs , Animaux , Humains , Nourrisson , Souris , Cellules endothéliales/métabolisme , Poumon/métabolisme , Lymphangioléiomyomatose/génétique , Lymphangioléiomyomatose/métabolisme , Complexe-1 cible mécanistique de la rapamycine/génétique , Complexe-1 cible mécanistique de la rapamycine/métabolisme , Mésoderme/métabolisme , Protéines suppresseurs de tumeurs/génétique , Protéines suppresseurs de tumeurs/métabolisme , Remodelage vasculaire/génétique , Protéines à domaine boîte-T/génétique , Protéines à domaine boîte-T/métabolisme , Protéine-2 du complexe de la sclérose tubéreuse/génétique , Protéine-2 du complexe de la sclérose tubéreuse/métabolisme , Techniques in vitro
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...