Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 1.979
Filtrer
1.
Science ; 385(6708): adl2992, 2024 Aug 02.
Article de Anglais | MEDLINE | ID: mdl-39088624

RÉSUMÉ

Late-onset Alzheimer's disease (LOAD) is the most common form of Alzheimer's disease (AD). However, modeling sporadic LOAD that endogenously captures hallmark neuronal pathologies such as amyloid-ß (Aß) deposition, tau tangles, and neuronal loss remains an unmet need. We demonstrate that neurons generated by microRNA (miRNA)-based direct reprogramming of fibroblasts from individuals affected by autosomal dominant AD (ADAD) and LOAD in a three-dimensional environment effectively recapitulate key neuropathological features of AD. Reprogrammed LOAD neurons exhibit Aß-dependent neurodegeneration, and treatment with ß- or γ-secretase inhibitors before (but not subsequent to) Aß deposit formation mitigated neuronal death. Moreover inhibiting age-associated retrotransposable elements in LOAD neurons reduced both Aß deposition and neurodegeneration. Our study underscores the efficacy of modeling late-onset neuropathology of LOAD through high-efficiency miRNA-based neuronal reprogramming.


Sujet(s)
Maladie d'Alzheimer , Peptides bêta-amyloïdes , Reprogrammation cellulaire , Fibroblastes , microARN , Neurones , Sphéroïdes de cellules , Humains , Maladie d'Alzheimer/anatomopathologie , Maladie d'Alzheimer/génétique , Maladie d'Alzheimer/métabolisme , Peptides bêta-amyloïdes/métabolisme , Amyloid precursor protein secretases/antagonistes et inhibiteurs , Amyloid precursor protein secretases/métabolisme , Amyloid precursor protein secretases/génétique , Reprogrammation cellulaire/génétique , Fibroblastes/métabolisme , Fibroblastes/anatomopathologie , microARN/génétique , microARN/métabolisme , Neurones/métabolisme , Neurones/anatomopathologie
2.
Sci Adv ; 10(32): eadj8862, 2024 Aug 09.
Article de Anglais | MEDLINE | ID: mdl-39110794

RÉSUMÉ

Reprogramming somatic cells into induced pluripotent stem cells (iPSCs) requires activation of the pluripotency network and resetting of the epigenome by erasing the epigenetic memory of the somatic state. In female mouse cells, a critical epigenetic reprogramming step is the reactivation of the inactive X chromosome. Despite its importance, a systematic understanding of the regulatory networks linking pluripotency and X-reactivation is missing. Here, we reveal important pathways for pluripotency acquisition and X-reactivation using a genome-wide CRISPR screen during neural precursor to iPSC reprogramming. In particular, we discover that activation of the interferon γ (IFNγ) pathway early during reprogramming accelerates pluripotency acquisition and X-reactivation. IFNγ stimulates STAT3 signaling and the pluripotency network and leads to enhanced TET-mediated DNA demethylation, which consequently boosts X-reactivation. We therefore gain a mechanistic understanding of the role of IFNγ in reprogramming and X-reactivation and provide a comprehensive resource of the molecular networks involved in these processes.


Sujet(s)
Reprogrammation cellulaire , Cellules souches pluripotentes induites , Interféron gamma , Transduction du signal , Cellules souches pluripotentes induites/métabolisme , Cellules souches pluripotentes induites/cytologie , Animaux , Interféron gamma/métabolisme , Reprogrammation cellulaire/génétique , Souris , Femelle , Chromosome X/génétique , Facteur de transcription STAT-3/métabolisme , Facteur de transcription STAT-3/génétique , Épigenèse génétique , Méthylation de l'ADN
3.
Methods Mol Biol ; 2835: 99-110, 2024.
Article de Anglais | MEDLINE | ID: mdl-39105909

RÉSUMÉ

Induced pluripotent stem cells (iPSCs) are generated through the reprogramming of somatic cells to an embryonic-like state by activating specific genes. They closely resemble embryonic stem cells (ESCs), in various aspects, including the expression of key stem cell genes, potency, and differentiation capabilities. iPSCs can be derived from various cell types such as fibroblasts, keratinocytes, and peripheral blood mononuclear cells (PBMCs). The ease of obtaining origin cells through non-invasive methods simplifies the generation of human iPSCs. Therefore, PBMCs are commonly preferred, with erythroid progenitor cells (EPCs) obtained through EPC enrichment being used as origin cells in this protocol. The EPC enrichment performed in this protocol not only reduces costs but also increases efficiency by enhancing the percentage of reprogrammable cells with progenitor characteristics. Human iPSCs are incredibly valuable for in vitro research, cell therapy, drug discovery, and tissue engineering. The outlined procedures below provide a general framework for inducing iPSCs from erythroid progenitor cells, pluripotency confirmation experiments, and cultivating them for downstream experiments.


Sujet(s)
Techniques de culture cellulaire , Différenciation cellulaire , Précurseurs érythroïdes , Cellules souches pluripotentes induites , Humains , Cellules souches pluripotentes induites/cytologie , Cellules souches pluripotentes induites/métabolisme , Précurseurs érythroïdes/cytologie , Précurseurs érythroïdes/métabolisme , Techniques de culture cellulaire/méthodes , Reprogrammation cellulaire/génétique , Cellules cultivées , Agranulocytes/cytologie , Agranulocytes/métabolisme , Fibroblastes/cytologie , Fibroblastes/métabolisme
4.
Proc Natl Acad Sci U S A ; 121(34): e2401540121, 2024 Aug 20.
Article de Anglais | MEDLINE | ID: mdl-39150785

RÉSUMÉ

Recent advances in single-cell sequencing technology have revolutionized our ability to acquire whole transcriptome data. However, uncovering the underlying transcriptional drivers and nonequilibrium driving forces of cell function directly from these data remains challenging. We address this by learning cell state vector fields from discrete single-cell RNA velocity to quantify the single-cell global nonequilibrium driving forces as landscape and flux. From single-cell data, we quantified the Waddington landscape, showing that optimal paths for differentiation and reprogramming deviate from the naively expected landscape gradient paths and may not pass through landscape saddles at finite fluctuations, challenging conventional transition state estimation of kinetic rate for cell fate decisions due to the presence of the flux. A key insight from our study is that stem/progenitor cells necessitate greater energy dissipation for rapid cell cycles and self-renewal, maintaining pluripotency. We predict optimal developmental pathways and elucidate the nucleation mechanism of cell fate decisions, with transition states as nucleation sites and pioneer genes as nucleation seeds. The concept of loop flux quantifies the contributions of each cycle flux to cell state transitions, facilitating the understanding of cell dynamics and thermodynamic cost, and providing insights into optimizing biological functions. We also infer cell-cell interactions and cell-type-specific gene regulatory networks, encompassing feedback mechanisms and interaction intensities, predicting genetic perturbation effects on cell fate decisions from single-cell omics data. Essentially, our methodology validates the landscape and flux theory, along with its associated quantifications, offering a framework for exploring the physical principles underlying cellular differentiation and reprogramming and broader biological processes through high-throughput single-cell sequencing experiments.


Sujet(s)
Différenciation cellulaire , Reprogrammation cellulaire , Analyse sur cellule unique , Transcriptome , Analyse sur cellule unique/méthodes , Reprogrammation cellulaire/génétique , Animaux , Humains , Analyse de profil d'expression de gènes/méthodes
5.
Sci Adv ; 10(32): eado2849, 2024 Aug 09.
Article de Anglais | MEDLINE | ID: mdl-39110788

RÉSUMÉ

Acute kidney injury (AKI) causes epithelial damage followed by subsequent repair. While successful repair restores kidney function, this process is often incomplete and can lead to chronic kidney disease (CKD) in a process called failed repair. To better understand the epigenetic reprogramming driving this AKI-to-CKD transition, we generated a single-nucleus multiomic atlas for the full mouse AKI time course, consisting of ~280,000 single-nucleus transcriptomes and epigenomes. We reveal cell-specific dynamic alterations in gene regulatory landscapes reflecting, especially, activation of proinflammatory pathways. We further generated single-nucleus multiomic data from four human AKI samples including validation by genome-wide identification of nuclear factor κB binding sites. A regularized regression analysis identifies key regulators involved in both successful and failed repair cell fate, identifying the transcription factor CREB5 as a regulator of both successful and failed tubular repair that also drives proximal tubular cell proliferation after injury. Our interspecies multiomic approach provides a foundation to comprehensively understand cell states in AKI.


Sujet(s)
Atteinte rénale aigüe , Épigenèse génétique , Atteinte rénale aigüe/génétique , Atteinte rénale aigüe/métabolisme , Atteinte rénale aigüe/anatomopathologie , Animaux , Souris , Humains , Transcriptome , Facteur de transcription NF-kappa B/métabolisme , Facteur de transcription NF-kappa B/génétique , Modèles animaux de maladie humaine , Reprogrammation cellulaire/génétique , Prolifération cellulaire/génétique , Insuffisance rénale chronique/génétique , Insuffisance rénale chronique/anatomopathologie , Insuffisance rénale chronique/métabolisme
6.
Eur J Med Res ; 29(1): 390, 2024 Jul 27.
Article de Anglais | MEDLINE | ID: mdl-39068473

RÉSUMÉ

BACKGROUND: The limited regenerative capacity of damaged neurons in adult mammals severely restricts neural repair. Although stem cell transplantation is promising, its clinical application remains challenging. Direct reprogramming, which utilizes cell plasticity to regenerate neurons, is an emerging alternative approach. METHODS: We utilized primary postnatal cortical astrocytes for reprogramming induced neurons (iNs) through the viral-mediated overexpression of the transcription factors Ngn2 and Pax6 (NP). Fluorescence-activated cell sorting (FACS) was used to enrich successfully transfected cells, followed by single-cell RNA sequencing (scRNA-seq) using the 10 × Genomics platform for comprehensive transcriptomic analysis. RESULTS: The scRNA-seq revealed that NP overexpression led to the differentiation of astrocytes into iNs, with percentages of 36% and 39.3% on days 4 and 7 posttransduction, respectively. CytoTRACE predicted the developmental sequence, identifying astrocytes as the reprogramming starting point. Trajectory analysis depicted the dynamic changes in gene expression during the astrocyte-to-iN transition. CONCLUSIONS: This study elucidates the molecular dynamics underlying astrocyte reprogramming into iNs, revealing key genes and pathways involved in this process. Our research contributes novel insights into the molecular mechanisms of NP-mediated reprogramming, suggesting avenues for optimizing the efficiency of the reprogramming process.


Sujet(s)
Astrocytes , Facteurs de transcription à motif basique hélice-boucle-hélice , Reprogrammation cellulaire , Protéines de tissu nerveux , Facteur de transcription PAX6 , Analyse sur cellule unique , Astrocytes/métabolisme , Animaux , Reprogrammation cellulaire/génétique , Facteur de transcription PAX6/génétique , Facteur de transcription PAX6/métabolisme , Facteurs de transcription à motif basique hélice-boucle-hélice/génétique , Facteurs de transcription à motif basique hélice-boucle-hélice/métabolisme , Protéines de tissu nerveux/génétique , Protéines de tissu nerveux/métabolisme , Analyse sur cellule unique/méthodes , Souris , Différenciation cellulaire/génétique , Lignage cellulaire/génétique , Neurones/métabolisme , Cellules cultivées
7.
Nature ; 631(8022): 876-883, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38987605

RÉSUMÉ

Advancements in precision oncology over the past decades have led to new therapeutic interventions, but the efficacy of such treatments is generally limited by an adaptive process that fosters drug resistance1. In addition to genetic mutations2, recent research has identified a role for non-genetic plasticity in transient drug tolerance3 and the acquisition of stable resistance4,5. However, the dynamics of cell-state transitions that occur in the adaptation to cancer therapies remain unknown and require a systems-level longitudinal framework. Here we demonstrate that resistance develops through trajectories of cell-state transitions accompanied by a progressive increase in cell fitness, which we denote as the 'resistance continuum'. This cellular adaptation involves a stepwise assembly of gene expression programmes and epigenetically reinforced cell states underpinned by phenotypic plasticity, adaptation to stress and metabolic reprogramming. Our results support the notion that epithelial-to-mesenchymal transition or stemness programmes-often considered a proxy for phenotypic plasticity-enable adaptation, rather than a full resistance mechanism. Through systematic genetic perturbations, we identify the acquisition of metabolic dependencies, exposing vulnerabilities that can potentially be exploited therapeutically. The concept of the resistance continuum highlights the dynamic nature of cellular adaptation and calls for complementary therapies directed at the mechanisms underlying adaptive cell-state transitions.


Sujet(s)
Adaptation physiologique , Plasticité cellulaire , Résistance aux médicaments antinéoplasiques , Tumeurs , Femelle , Humains , Souris , Adaptation physiologique/effets des médicaments et des substances chimiques , Adaptation physiologique/génétique , Lignée cellulaire tumorale , Plasticité cellulaire/effets des médicaments et des substances chimiques , Plasticité cellulaire/génétique , Reprogrammation cellulaire/effets des médicaments et des substances chimiques , Reprogrammation cellulaire/génétique , Résistance aux médicaments antinéoplasiques/génétique , Résistance aux médicaments antinéoplasiques/effets des médicaments et des substances chimiques , Épigenèse génétique , Transition épithélio-mésenchymateuse/génétique , Régulation de l'expression des gènes tumoraux/génétique , Tumeurs/traitement médicamenteux , Tumeurs/génétique , Tumeurs/anatomopathologie , Phénotype
8.
Development ; 151(14)2024 Jul 15.
Article de Anglais | MEDLINE | ID: mdl-38984586

RÉSUMÉ

In the injured zebrafish retina, Müller glial cells (MG) reprogram to adopt retinal stem cell properties and regenerate damaged neurons. The strongest zebrafish reprogramming factors might be good candidates for stimulating a similar regenerative response by mammalian MG. Myc proteins are potent reprogramming factors that can stimulate cellular plasticity in differentiated cells; however, their role in MG reprogramming and retina regeneration remains poorly explored. Here, we report that retinal injury stimulates mycb and mych expression and that, although both Mycb and Mych stimulate MG reprogramming and proliferation, only Mych enhances retinal neuron apoptosis. RNA-sequencing analysis of wild-type, mychmut and mycbmut fish revealed that Mycb and Mych regulate ∼40% and ∼16%, respectively, of the genes contributing to the regeneration-associated transcriptome of MG. Of these genes, those that are induced are biased towards regulation of ribosome biogenesis, protein synthesis, DNA synthesis, and cell division, which are the top cellular processes affected by retinal injury, suggesting that Mycb and Mych are potent MG reprogramming factors. Consistent with this, forced expression of either of these proteins is sufficient to stimulate MG proliferation in the uninjured retina.


Sujet(s)
Prolifération cellulaire , Reprogrammation cellulaire , Cellules épendymogliales , Rétine , Protéines de poisson-zèbre , Danio zébré , Animaux , Apoptose/génétique , Reprogrammation cellulaire/génétique , Cellules épendymogliales/métabolisme , Cellules épendymogliales/cytologie , Rétine/métabolisme , Rétine/cytologie , Neurones rétiniens/métabolisme , Transcriptome/génétique , Protéines de poisson-zèbre/métabolisme , Protéines de poisson-zèbre/génétique
9.
Cells ; 13(14)2024 Jul 20.
Article de Anglais | MEDLINE | ID: mdl-39056804

RÉSUMÉ

Neuronal reprogramming is a promising approach for making major advancement in regenerative medicine. Distinct from the approach of induced pluripotent stem cells, neuronal reprogramming converts non-neuronal cells to neurons without going through a primitive stem cell stage. In vivo neuronal reprogramming brings this approach to a higher level by changing the cell fate of glial cells to neurons in neural tissue through overexpressing reprogramming factors. Despite the ongoing debate over the validation and interpretation of newly generated neurons, in vivo neuronal reprogramming is still a feasible approach and has the potential to become clinical treatment with further optimization and refinement. Here, we discuss the major neuronal reprogramming factors (mostly pro-neurogenic transcription factors during development), especially the significance of their expression levels during neurogenesis and the reprogramming process focusing on NeuroD1. In the developing central nervous system, these pro-neurogenic transcription factors usually elicit distinct spatiotemporal expression patterns that are critical to their function in generating mature neurons. We argue that these dynamic expression patterns may be similarly needed in the process of reprogramming adult cells into neurons and further into mature neurons with subtype identities. We also summarize the existing approaches and propose new ones that control gene expression levels for a successful reprogramming outcome.


Sujet(s)
Reprogrammation cellulaire , Neurones , Reprogrammation cellulaire/génétique , Humains , Neurones/métabolisme , Neurones/cytologie , Animaux , Neurogenèse/génétique , Facteurs de transcription/métabolisme , Facteurs de transcription/génétique , Cellules souches pluripotentes induites/métabolisme , Cellules souches pluripotentes induites/cytologie
10.
Cell Rep Methods ; 4(7): 100819, 2024 Jul 15.
Article de Anglais | MEDLINE | ID: mdl-38986613

RÉSUMÉ

Cell reprogramming, which guides the conversion between cell states, is a promising technology for tissue repair and regeneration, with the ultimate goal of accelerating recovery from diseases or injuries. To accomplish this, regulators must be identified and manipulated to control cell fate. We propose Fatecode, a computational method that predicts cell fate regulators based only on single-cell RNA sequencing (scRNA-seq) data. Fatecode learns a latent representation of the scRNA-seq data using a deep learning-based classification-supervised autoencoder and then performs in silico perturbation experiments on the latent representation to predict genes that, when perturbed, would alter the original cell type distribution to increase or decrease the population size of a cell type of interest. We assessed Fatecode's performance using simulations from a mechanistic gene-regulatory network model and scRNA-seq data mapping blood and brain development of different organisms. Our results suggest that Fatecode can detect known cell fate regulators from single-cell transcriptomics datasets.


Sujet(s)
Analyse sur cellule unique , Analyse sur cellule unique/méthodes , Humains , Animaux , Réseaux de régulation génique , Biologie informatique/méthodes , Différenciation cellulaire/génétique , Analyse de séquence d'ARN/méthodes , Transcriptome , Apprentissage profond , Lignage cellulaire/génétique , Souris , Reprogrammation cellulaire/génétique , RNA-Seq/méthodes
11.
PeerJ ; 12: e17657, 2024.
Article de Anglais | MEDLINE | ID: mdl-39011384

RÉSUMÉ

Background: Our previous studies have successfully reported the reprogramming of fibroblasts into induced mammary epithelial cells (iMECs). However, the regulatory relationships and functional roles of MicroRNAs (miRNAs) in the progression of fibroblasts achieving the cell fate of iMECs are insufficiently understood. Methods: First, we performed pre-and post-induction miRNAs sequencing analysis by using high-throughput sequencing. Following that, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment studies were used to determine the primary roles of the significantly distinct miRNAs and targeted genes. Finally, the effect of miR-222-3p on iMECs fate reprogramming in vitro by transfecting. Results: As a result goat ear fibroblasts (GEFs) reprogramming into iMECs activates a regulatory program, involving 79 differentially expressed miRNAs. Besides, the programming process involved changes in multiple signaling pathways such as adherens junction, TGF-ß signaling pathway, GnRH secretion and the prolactin signaling pathway, etc. Furthermore, it was discovered that the expression of miR-222-3p downregulation by miR-222-3p inhibitor significantly increase the reprogramming efficiency and promoted lipid accumulation of iMECs.


Sujet(s)
Reprogrammation cellulaire , Cellules épithéliales , Fibroblastes , Capra , microARN , microARN/génétique , microARN/métabolisme , Animaux , Fibroblastes/métabolisme , Cellules épithéliales/métabolisme , Femelle , Reprogrammation cellulaire/génétique , Glandes mammaires animales/cytologie , Glandes mammaires animales/métabolisme , Transduction du signal , Cellules cultivées , Régulation négative
12.
Nat Cell Biol ; 26(8): 1309-1321, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38969762

RÉSUMÉ

Transcription factors (TFs) control specificity and activity of gene transcription, but whether a relationship between these two features exists is unclear. Here we provide evidence for an evolutionary trade-off between the activity and specificity in human TFs encoded as submaximal dispersion of aromatic residues in their intrinsically disordered protein regions. We identified approximately 500 human TFs that encode short periodic blocks of aromatic residues in their intrinsically disordered regions, resembling imperfect prion-like sequences. Mutation of periodic aromatic residues reduced transcriptional activity, whereas increasing the aromatic dispersion of multiple human TFs enhanced transcriptional activity and reprogramming efficiency, promoted liquid-liquid phase separation in vitro and more promiscuous DNA binding in cells. Together with recent work on enhancer elements, these results suggest an important evolutionary role of suboptimal features in transcriptional control. We propose that rational engineering of amino acid features that alter phase separation may be a strategy to optimize TF-dependent processes, including cellular reprogramming.


Sujet(s)
Facteurs de transcription , Humains , Facteurs de transcription/métabolisme , Facteurs de transcription/génétique , Protéines intrinsèquement désordonnées/métabolisme , Protéines intrinsèquement désordonnées/génétique , Protéines intrinsèquement désordonnées/composition chimique , Mutation , Liaison aux protéines , Transcription génétique , ADN/métabolisme , ADN/génétique , Cellules HEK293 , Reprogrammation cellulaire/génétique , Régulation de l'expression des gènes
13.
Nat Commun ; 15(1): 6200, 2024 Jul 23.
Article de Anglais | MEDLINE | ID: mdl-39043686

RÉSUMÉ

Cell fate is likely regulated by a common machinery, while components of this machine remain to be identified. Here we report the design and testing of engineered cell fate controller NanogBiD, fusing BiD or BRG1 interacting domain of SS18 with Nanog. NanogBiD promotes mouse somatic cell reprogramming efficiently in contrast to the ineffective native protein under multiple testing conditions. Mechanistic studies further reveal that it facilitates cell fate transition by recruiting the intended Brg/Brahma-associated factor (BAF) complex to modulate chromatin accessibility and reorganize cell state specific enhancers known to be occupied by canonical Nanog, resulting in precocious activation of multiple genes including Sall4, miR-302, Dppa5a and Sox15 towards pluripotency. Although we have yet to test our approach in other species, our findings suggest that engineered chromatin regulators may provide much needed tools to engineer cell fate in the cells as drugs era.


Sujet(s)
Protéine homéotique Nanog , Facteurs de transcription , Animaux , Souris , Facteurs de transcription/métabolisme , Facteurs de transcription/génétique , Protéine homéotique Nanog/métabolisme , Protéine homéotique Nanog/génétique , Reprogrammation cellulaire/génétique , Chromatine/métabolisme , Chromatine/génétique , Helicase/métabolisme , Helicase/génétique , Différenciation cellulaire , Ingénierie cellulaire/méthodes , Protéines nucléaires/métabolisme , Protéines nucléaires/génétique
14.
Cells ; 13(12)2024 Jun 08.
Article de Anglais | MEDLINE | ID: mdl-38920635

RÉSUMÉ

Prostate cancer (PCa) remains a leading cause of mortality among American men, with metastatic and recurrent disease posing significant therapeutic challenges due to a limited comprehension of the underlying biological processes governing disease initiation, dormancy, and progression. The conventional use of PCa cell lines has proven inadequate in elucidating the intricate molecular mechanisms driving PCa carcinogenesis, hindering the development of effective treatments. To address this gap, patient-derived primary cell cultures have been developed and play a pivotal role in unraveling the pathophysiological intricacies unique to PCa in each individual, offering valuable insights for translational research. This review explores the applications of the conditional reprogramming (CR) cell culture approach, showcasing its capability to rapidly and effectively cultivate patient-derived normal and tumor cells. The CR strategy facilitates the acquisition of stem cell properties by primary cells, precisely recapitulating the human pathophysiology of PCa. This nuanced understanding enables the identification of novel therapeutics. Specifically, our discussion encompasses the utility of CR cells in elucidating PCa initiation and progression, unraveling the molecular pathogenesis of metastatic PCa, addressing health disparities, and advancing personalized medicine. Coupled with the tumor organoid approach and patient-derived xenografts (PDXs), CR cells present a promising avenue for comprehending cancer biology, exploring new treatment modalities, and advancing precision medicine in the context of PCa. These approaches have been used for two NCI initiatives (PDMR: patient-derived model repositories; HCMI: human cancer models initiatives).


Sujet(s)
Reprogrammation cellulaire , Tumeurs de la prostate , Humains , Tumeurs de la prostate/anatomopathologie , Mâle , Reprogrammation cellulaire/génétique , Animaux
15.
Nat Commun ; 15(1): 4946, 2024 Jun 11.
Article de Anglais | MEDLINE | ID: mdl-38862540

RÉSUMÉ

Genomic aberrations are a critical impediment for the safe medical use of iPSCs and their origin and developmental mechanisms remain unknown. Here we find through WGS analysis of human and mouse iPSC lines that genomic mutations are de novo events and that, in addition to unmodified cytosine base prone to deamination, the DNA methylation sequence CpG represents a significant mutation-prone site. CGI and TSS regions show increased mutations in iPSCs and elevated mutations are observed in retrotransposons, especially in the AluY subfamily. Furthermore, increased cytosine to thymine mutations are observed in differentially methylated regions. These results indicate that in addition to deamination of cytosine, demethylation of methylated cytosine, which plays a central role in genome reprogramming, may act mutagenically during iPSC generation.


Sujet(s)
Ilots CpG , Cytosine , Méthylation de l'ADN , Cellules souches pluripotentes induites , Mutation ponctuelle , Cellules souches pluripotentes induites/métabolisme , Cytosine/métabolisme , Animaux , Humains , Souris , Reprogrammation cellulaire/génétique , Rétroéléments/génétique , Lignée cellulaire
16.
Nat Commun ; 15(1): 4914, 2024 Jun 08.
Article de Anglais | MEDLINE | ID: mdl-38851846

RÉSUMÉ

FOXA family proteins act as pioneer factors by remodeling compact chromatin structures. FOXA1 is crucial for the chromatin binding of the androgen receptor (AR) in both normal prostate epithelial cells and the luminal subtype of prostate cancer (PCa). Recent studies have highlighted the emergence of FOXA2 as an adaptive response to AR signaling inhibition treatments. However, the role of the FOXA1 to FOXA2 transition in regulating cancer lineage plasticity remains unclear. Our study demonstrates that FOXA2 binds to distinct classes of developmental enhancers in multiple AR-independent PCa subtypes, with its binding depending on LSD1. Moreover, we reveal that FOXA2 collaborates with JUN at chromatin and promotes transcriptional reprogramming of AP-1 in lineage-plastic cancer cells, thereby facilitating cell state transitions to multiple lineages. Overall, our findings underscore the pivotal role of FOXA2 as a pan-plasticity driver that rewires AP-1 to induce the differential transcriptional reprogramming necessary for cancer cell lineage plasticity.


Sujet(s)
Lignage cellulaire , Régulation de l'expression des gènes tumoraux , Facteur nucléaire hépatocytaire HNF-3 bêta , Tumeurs de la prostate , Facteur de transcription AP-1 , Mâle , Humains , Facteur nucléaire hépatocytaire HNF-3 bêta/métabolisme , Facteur nucléaire hépatocytaire HNF-3 bêta/génétique , Tumeurs de la prostate/génétique , Tumeurs de la prostate/métabolisme , Tumeurs de la prostate/anatomopathologie , Facteur de transcription AP-1/métabolisme , Facteur de transcription AP-1/génétique , Lignée cellulaire tumorale , Lignage cellulaire/génétique , Histone Demethylases/métabolisme , Histone Demethylases/génétique , Facteur nucléaire hépatocytaire HNF-3 alpha/métabolisme , Facteur nucléaire hépatocytaire HNF-3 alpha/génétique , Récepteurs aux androgènes/métabolisme , Récepteurs aux androgènes/génétique , Animaux , Chromatine/métabolisme , Chromatine/génétique , Plasticité cellulaire/génétique , Reprogrammation cellulaire/génétique , Souris , Protéines proto-oncogènes c-jun/métabolisme , Protéines proto-oncogènes c-jun/génétique , Éléments activateurs (génétique)/génétique , Transcription génétique
17.
BMC Cancer ; 24(1): 698, 2024 Jun 07.
Article de Anglais | MEDLINE | ID: mdl-38849760

RÉSUMÉ

BACKGROUND: Tumor-associated macrophages (TAMs) constitute a substantial part of human hepatocellular carcinoma (HCC). The present study was devised to explore TAM diversity and their roles in HCC progression. METHODS: Through the integration of multiple 10 × single-cell transcriptomic data derived from HCC samples and the use of consensus nonnegative matrix factorization (an unsupervised clustering algorithm), TAM molecular subtypes and expression programs were evaluated in detail. The roles played by these TAM subtypes in HCC were further probed through pseudotime, enrichment, and intercellular communication analyses. Lastly, vitro experiments were performed to validate the relationship between CD63, which is an inflammatory TAM expression program marker, and tumor cell lines. RESULTS: We found that the inflammatory expression program in TAMs had a more obvious interaction with HCC cells, and CD63, as a marker gene of the inflammatory expression program, was associated with poor prognosis of HCC patients. Both bulk RNA-seq and vitro experiments confirmed that higher TAM CD63 expression was associated with the growth of HCC cells as well as their epithelial-mesenchymal transition, metastasis, invasion, and the reprogramming of lipid metabolism. CONCLUSIONS: These analyses revealed that the TAM inflammatory expression program in HCC is closely associated with malignant tumor cells, with the hub gene CD63 thus representing an ideal target for therapeutic intervention in this cancer type.


Sujet(s)
Carcinome hépatocellulaire , Évolution de la maladie , Transition épithélio-mésenchymateuse , Tumeurs du foie , Antigène CD63 , Macrophages associés aux tumeurs , Carcinome hépatocellulaire/anatomopathologie , Carcinome hépatocellulaire/génétique , Carcinome hépatocellulaire/métabolisme , Humains , Tumeurs du foie/anatomopathologie , Tumeurs du foie/génétique , Tumeurs du foie/métabolisme , Transition épithélio-mésenchymateuse/génétique , Macrophages associés aux tumeurs/métabolisme , Macrophages associés aux tumeurs/immunologie , Macrophages associés aux tumeurs/anatomopathologie , Antigène CD63/métabolisme , Antigène CD63/génétique , Métabolisme lipidique/génétique , Lignée cellulaire tumorale , Régulation de l'expression des gènes tumoraux , Pronostic , Reprogrammation cellulaire/génétique
18.
Proc Natl Acad Sci U S A ; 121(26): e2320835121, 2024 Jun 25.
Article de Anglais | MEDLINE | ID: mdl-38900797

RÉSUMÉ

Upper aerodigestive squamous cell carcinoma (UASCC) is a common and aggressive malignancy with few effective therapeutic options. Here, we investigate amino acid metabolism in this cancer, surprisingly noting that UASCC exhibits the highest methionine level across all human cancers, driven by its transporter LAT1. We show that LAT1 is also expressed at the highest level in UASCC, transcriptionally activated by UASCC-specific promoter and enhancers, which are directly coregulated by SCC master regulators TP63/KLF5/SREBF1. Unexpectedly, unbiased bioinformatic screen identifies EZH2 as the most significant target downstream of the LAT1-methionine pathway, directly linking methionine metabolism to epigenomic reprogramming. Importantly, this cascade is indispensable for the survival and proliferation of UASCC patient-derived tumor organoids. In addition, LAT1 expression is closely associated with cellular sensitivity to inhibition of the LAT1-methionine-EZH2 axis. Notably, this unique LAT1-methionine-EZH2 cascade can be targeted effectively by either pharmacological approaches or dietary intervention in vivo. In summary, this work maps a unique mechanistic cross talk between epigenomic reprogramming with methionine metabolism, establishes its biological significance in the biology of UASCC, and identifies a unique tumor-specific vulnerability which can be exploited both pharmacologically and dietarily.


Sujet(s)
Carcinome épidermoïde , Régulation de l'expression des gènes tumoraux , Transporteur-1 d'acides aminés neutres à longue chaîne , Méthionine , Méthionine/métabolisme , Humains , Transporteur-1 d'acides aminés neutres à longue chaîne/métabolisme , Transporteur-1 d'acides aminés neutres à longue chaîne/génétique , Carcinome épidermoïde/génétique , Carcinome épidermoïde/métabolisme , Carcinome épidermoïde/anatomopathologie , Protéine-2 homologue de l'activateur de Zeste/métabolisme , Protéine-2 homologue de l'activateur de Zeste/génétique , Lignée cellulaire tumorale , Épigenèse génétique , Épigénomique/méthodes , Tumeurs de la tête et du cou/génétique , Tumeurs de la tête et du cou/métabolisme , Tumeurs de la tête et du cou/anatomopathologie , Souris , Carcinome épidermoïde de la tête et du cou/génétique , Carcinome épidermoïde de la tête et du cou/métabolisme , Carcinome épidermoïde de la tête et du cou/anatomopathologie , Animaux , Prolifération cellulaire , Facteurs de transcription Krüppel-like/métabolisme , Facteurs de transcription Krüppel-like/génétique , Reprogrammation cellulaire/génétique
19.
Signal Transduct Target Ther ; 9(1): 151, 2024 Jun 24.
Article de Anglais | MEDLINE | ID: mdl-38910148

RÉSUMÉ

Pancreatic cancer is one of the deadly malignancies with a significant mortality rate and there are currently few therapeutic options for it. The tumor microenvironment (TME) in pancreatic cancer, distinguished by fibrosis and the existence of cancer-associated fibroblasts (CAFs), exerts a pivotal influence on both tumor advancement and resistance to therapy. Recent advancements in the field of engineered extracellular vesicles (EVs) offer novel avenues for targeted therapy in pancreatic cancer. This study aimed to develop engineered EVs for the targeted reprogramming of CAFs and modulating the TME in pancreatic cancer. EVs obtained from bone marrow mesenchymal stem cells (BMSCs) were loaded with miR-138-5p and the anti-fibrotic agent pirfenidone (PFD) and subjected to surface modification with integrin α5-targeting peptides (named IEVs-PFD/138) to reprogram CAFs and suppress their pro-tumorigenic effects. Integrin α5-targeting peptide modification enhanced the CAF-targeting ability of EVs. miR-138-5p directly inhibited the formation of the FERMT2-TGFBR1 complex, inhibiting TGF-ß signaling pathway activation. In addition, miR-138-5p inhibited proline-mediated collagen synthesis by directly targeting the FERMT2-PYCR1 complex. The combination of miR-138-5p and PFD in EVs synergistically promoted CAF reprogramming and suppressed the pro-cancer effects of CAFs. Preclinical experiments using the orthotopic stroma-rich and patient-derived xenograft mouse models yielded promising results. In particular, IEVs-PFD/138 effectively reprogrammed CAFs and remodeled TME, which resulted in decreased tumor pressure, enhanced gemcitabine perfusion, tumor hypoxia amelioration, and greater sensitivity of cancer cells to chemotherapy. Thus, the strategy developed in this study can improve chemotherapy outcomes. Utilizing IEVs-PFD/138 as a targeted therapeutic agent to modulate CAFs and the TME represents a promising therapeutic approach for pancreatic cancer.


Sujet(s)
Fibroblastes associés au cancer , Vésicules extracellulaires , microARN , Tumeurs du pancréas , Microenvironnement tumoral , Tumeurs du pancréas/génétique , Tumeurs du pancréas/traitement médicamenteux , Tumeurs du pancréas/anatomopathologie , Tumeurs du pancréas/thérapie , Tumeurs du pancréas/métabolisme , Vésicules extracellulaires/génétique , Vésicules extracellulaires/métabolisme , Humains , Fibroblastes associés au cancer/métabolisme , Fibroblastes associés au cancer/effets des médicaments et des substances chimiques , Fibroblastes associés au cancer/anatomopathologie , Souris , microARN/génétique , Animaux , Microenvironnement tumoral/effets des médicaments et des substances chimiques , Microenvironnement tumoral/génétique , Reprogrammation cellulaire/génétique , Reprogrammation cellulaire/effets des médicaments et des substances chimiques , Lignée cellulaire tumorale , Cellules souches mésenchymateuses/métabolisme , Protéines tumorales/génétique , Protéines tumorales/métabolisme ,
20.
Cells ; 13(11)2024 May 30.
Article de Anglais | MEDLINE | ID: mdl-38891074

RÉSUMÉ

Glioblastoma (GBM) is the most common yet uniformly fatal adult brain cancer. Intra-tumoral molecular and cellular heterogeneities are major contributory factors to therapeutic refractoriness and futility in GBM. Molecular heterogeneity is represented through molecular subtype clusters whereby the proneural (PN) subtype is associated with significantly increased long-term survival compared to the highly resistant mesenchymal (MES) subtype. Furthermore, it is universally recognized that a small subset of GBM cells known as GBM stem cells (GSCs) serve as reservoirs for tumor recurrence and progression. The clonal evolution of GSC molecular subtypes in response to therapy drives intra-tumoral heterogeneity and remains a critical determinant of GBM outcomes. In particular, the intra-tumoral MES reprogramming of GSCs using current GBM therapies has emerged as a leading hypothesis for therapeutic refractoriness. Preventing the intra-tumoral divergent evolution of GBM toward the MES subtype via new treatments would dramatically improve long-term survival for GBM patients and have a significant impact on GBM outcomes. In this review, we examine the challenges of the role of MES reprogramming in the malignant clonal evolution of glioblastoma and provide future perspectives for addressing the unmet therapeutic need to overcome resistance in GBM.


Sujet(s)
Tumeurs du cerveau , Reprogrammation cellulaire , Évolution clonale , Glioblastome , Humains , Glioblastome/anatomopathologie , Glioblastome/génétique , Évolution clonale/génétique , Tumeurs du cerveau/anatomopathologie , Tumeurs du cerveau/génétique , Reprogrammation cellulaire/génétique , Cellules souches tumorales/anatomopathologie , Cellules souches tumorales/métabolisme , Animaux , Cellules souches mésenchymateuses/métabolisme , Cellules souches mésenchymateuses/anatomopathologie
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE