Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 6.469
Filtrer
1.
Life Sci Alliance ; 7(9)2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-38960623

RÉSUMÉ

In many animal species, the oocyte meiotic spindle, which is required for chromosome segregation, forms without centrosomes. In some systems, Ran-GEF on chromatin initiates spindle assembly. We found that in Caenorhabditis elegans oocytes, endogenously-tagged Ran-GEF dissociates from chromatin during spindle assembly but re-associates during meiotic anaphase. Meiotic spindle assembly occurred after auxin-induced degradation of Ran-GEF, but anaphase I was faster than controls and extrusion of the first polar body frequently failed. In search of a possible alternative pathway for spindle assembly, we found that soluble tubulin concentrates in the nuclear volume during germinal vesicle breakdown. We found that the concentration of soluble tubulin in the metaphase spindle region is enclosed by ER sheets which exclude cytoplasmic organelles including mitochondria and yolk granules. Measurement of the volume occupied by yolk granules and mitochondria indicated that volume exclusion would be sufficient to explain the concentration of tubulin in the spindle volume. We suggest that this concentration of soluble tubulin may be a redundant mechanism promoting spindle assembly near chromosomes.


Sujet(s)
Anaphase , Protéines de Caenorhabditis elegans , Caenorhabditis elegans , Ovocytes , Appareil du fuseau , Tubuline , Animaux , Caenorhabditis elegans/métabolisme , Tubuline/métabolisme , Appareil du fuseau/métabolisme , Protéines de Caenorhabditis elegans/métabolisme , Protéines de Caenorhabditis elegans/génétique , Ovocytes/métabolisme , Prométaphase , Méiose/physiologie , Protéine G ran/métabolisme , Guanosine triphosphate/métabolisme , Chromatine/métabolisme , Ségrégation des chromosomes
2.
ACS Chem Biol ; 19(6): 1387-1396, 2024 Jun 21.
Article de Anglais | MEDLINE | ID: mdl-38843873

RÉSUMÉ

Chromosome segregation is an essential cellular process that has the potential to yield numerous targets for drug development. This pathway is presently underutilized partially due to the difficulties in the development of robust reporter assays suitable for high throughput screening. In bacteria, chromosome segregation is mediated by two partially redundant systems, condensins and ParABS. Based on the synthetic lethality of the two systems, we developed an assay suitable for screening and then screened a library of fungal extracts for potential inhibitors of the ParABS pathway, as judged by their enhanced activity on condensin-deficient cells. We found such activity in extracts of Humicola sp. Fractionation of the extract led to the discovery of four new analogues of sterigmatocystin, one of which, 4-hydroxy-sterigmatocystin (4HS), displayed antibacterial activity. 4HS induced the phenotype typical for parAB mutants including defects in chromosome segregation and cell division. Specifically, bacteria exposed to 4HS produced anucleate cells and were impaired in the assembly of the FtsZ ring. Moreover, 4HS binds to purified ParB in a ParS-modulated manner and inhibits its ParS-dependent CTPase activity. The data describe a small molecule inhibitor of ParB and expand the known spectrum of activities of sterigmatocystin to include bacterial chromosome segregation.


Sujet(s)
Antibactériens , Ségrégation des chromosomes , Pseudomonas aeruginosa , Pseudomonas aeruginosa/effets des médicaments et des substances chimiques , Ségrégation des chromosomes/effets des médicaments et des substances chimiques , Antibactériens/pharmacologie , Antibactériens/composition chimique , Protéines bactériennes/métabolisme , Protéines bactériennes/antagonistes et inhibiteurs , Protéines bactériennes/génétique , Tests de sensibilité microbienne
3.
PLoS Genet ; 20(6): e1011302, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38829899

RÉSUMÉ

Cryptococcus neoformans is an opportunistic, human fungal pathogen which undergoes fascinating switches in cell cycle control and ploidy when it encounters stressful environments such as the human lung. Here we carry out a mechanistic analysis of the spindle checkpoint which regulates the metaphase to anaphase transition, focusing on Mps1 kinase and the downstream checkpoint components Mad1 and Mad2. We demonstrate that Cryptococcus mad1Δ or mad2Δ strains are unable to respond to microtubule perturbations, continuing to re-bud and divide, and die as a consequence. Fluorescent tagging of Chromosome 3, using a lacO array and mNeonGreen-lacI fusion protein, demonstrates that mad mutants are unable to maintain sister-chromatid cohesion in the absence of microtubule polymers. Thus, the classic checkpoint functions of the SAC are conserved in Cryptococcus. In interphase, GFP-Mad1 is enriched at the nuclear periphery, and it is recruited to unattached kinetochores in mitosis. Purification of GFP-Mad1 followed by mass spectrometric analysis of associated proteins show that it forms a complex with Mad2 and that it interacts with other checkpoint signalling components (Bub1) and effectors (Cdc20 and APC/C sub-units) in mitosis. We also demonstrate that overexpression of Mps1 kinase is sufficient to arrest Cryptococcus cells in mitosis, and show that this arrest is dependent on both Mad1 and Mad2. We find that a C-terminal fragment of Mad1 is an effective in vitro substrate for Mps1 kinase and map several Mad1 phosphorylation sites. Some sites are highly conserved within the C-terminal Mad1 structure and we demonstrate that mutation of threonine 667 (T667A) leads to loss of checkpoint signalling and abrogation of the GAL-MPS1 arrest. Thus Mps1-dependent phosphorylation of C-terminal Mad1 residues is a critical step in Cryptococcus spindle checkpoint signalling. We conclude that CnMps1 protein kinase, Mad1 and Mad2 proteins have all conserved their important, spindle checkpoint signalling roles helping ensure high fidelity chromosome segregation.


Sujet(s)
Protéines du cycle cellulaire , Cryptococcus neoformans , Protéines Mad2 , Appareil du fuseau , Cryptococcus neoformans/génétique , Cryptococcus neoformans/métabolisme , Protéines du cycle cellulaire/métabolisme , Protéines du cycle cellulaire/génétique , Protéines Mad2/métabolisme , Protéines Mad2/génétique , Appareil du fuseau/métabolisme , Appareil du fuseau/génétique , Transduction du signal , Protéines fongiques/métabolisme , Protéines fongiques/génétique , Humains , Protein-Serine-Threonine Kinases/métabolisme , Protein-Serine-Threonine Kinases/génétique , Points de contrôle de la phase M du cycle cellulaire/génétique , Mitose/génétique , Kinétochores/métabolisme , Ségrégation des chromosomes/génétique , Microtubules/métabolisme , Microtubules/génétique , Protéines nucléaires/métabolisme , Protéines nucléaires/génétique
4.
Chem Commun (Camb) ; 60(52): 6611-6614, 2024 Jun 25.
Article de Anglais | MEDLINE | ID: mdl-38845591

RÉSUMÉ

We developed a centromere-associated protein E (CENP-E) inhibitor employing trans to cis photoisomerization with 405 nm visible light illumination and fast thermal relaxation. This photoswitching characteristic of the inhibitor enabled selective blockage or release of the motion of particular chromosomes within a single mitotic cell. Using this technique, we successfully demonstrated targeted chromosome gain and loss in daughter cells by introducing asymmetric chromosome segregation.


Sujet(s)
Protéines chromosomiques nonhistones , Lumière , Protéines chromosomiques nonhistones/métabolisme , Protéines chromosomiques nonhistones/composition chimique , Humains , Processus photochimiques , Cellules HeLa , Composés azoïques/composition chimique , Composés azoïques/pharmacologie , Structure moléculaire , Ségrégation des chromosomes/effets des médicaments et des substances chimiques
5.
Proc Natl Acad Sci U S A ; 121(25): e2323009121, 2024 Jun 18.
Article de Anglais | MEDLINE | ID: mdl-38875144

RÉSUMÉ

Error correction is central to many biological systems and is critical for protein function and cell health. During mitosis, error correction is required for the faithful inheritance of genetic material. When functioning properly, the mitotic spindle segregates an equal number of chromosomes to daughter cells with high fidelity. Over the course of spindle assembly, many initially erroneous attachments between kinetochores and microtubules are fixed through the process of error correction. Despite the importance of chromosome segregation errors in cancer and other diseases, there is a lack of methods to characterize the dynamics of error correction and how it can go wrong. Here, we present an experimental method and analysis framework to quantify chromosome segregation error correction in human tissue culture cells with live cell confocal imaging, timed premature anaphase, and automated counting of kinetochores after cell division. We find that errors decrease exponentially over time during spindle assembly. A coarse-grained model, in which errors are corrected in a chromosome-autonomous manner at a constant rate, can quantitatively explain both the measured error correction dynamics and the distribution of anaphase onset times. We further validated our model using perturbations that destabilized microtubules and changed the initial configuration of chromosomal attachments. Taken together, this work provides a quantitative framework for understanding the dynamics of mitotic error correction.


Sujet(s)
Ségrégation des chromosomes , Kinétochores , Microtubules , Mitose , Appareil du fuseau , Humains , Kinétochores/métabolisme , Appareil du fuseau/métabolisme , Microtubules/métabolisme , Anaphase , Modèles biologiques , Cellules HeLa
6.
Yi Chuan ; 46(6): 502-508, 2024 Jun 20.
Article de Anglais | MEDLINE | ID: mdl-38886153

RÉSUMÉ

Ssu72 is a component of the yeast cleavage/polyadenylation factor (CPF) complex, which catalyzes the dephosphorylation of the C-terminal domain (CTD) of RNA polymerase II at S5-P and S7-P. It has been shown that Ssu72 phosphatase is involved in regulating chromosome cohesion during mitosis. To further clarify whether Ssu72 phosphatase affects chromosome separation during meiotic division in Schizosaccharomyces pombe, we utilized green fluorescent protein (GFP) to label centromeres and red fluorescent protein to label microtubule protein Atb2. The entire meiotic chromosome separation process of ssu72∆ cells was observed in real-time under fluorescence microscope. It was found that two spindles of ssu72∆ cells crossed during the metaphase and anaphase of the second meiotic division, and this spindle crossing led to a new type of spore defect distribution pattern. The results of this study can provide important reference significance for studying the roles of phosphatase Ssu72 in higher organisms.


Sujet(s)
Méiose , Protéines de Schizosaccharomyces pombe , Schizosaccharomyces , Appareil du fuseau , Schizosaccharomyces/génétique , Schizosaccharomyces/enzymologie , Appareil du fuseau/génétique , Appareil du fuseau/métabolisme , Protéines de Schizosaccharomyces pombe/génétique , Protéines de Schizosaccharomyces pombe/métabolisme , Ségrégation des chromosomes
7.
Nature ; 631(8019): 134-141, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38867047

RÉSUMÉ

Mosaic loss of the X chromosome (mLOX) is the most common clonal somatic alteration in leukocytes of female individuals1,2, but little is known about its genetic determinants or phenotypic consequences. Here, to address this, we used data from 883,574 female participants across 8 biobanks; 12% of participants exhibited detectable mLOX in approximately 2% of leukocytes. Female participants with mLOX had an increased risk of myeloid and lymphoid leukaemias. Genetic analyses identified 56 common variants associated with mLOX, implicating genes with roles in chromosomal missegregation, cancer predisposition and autoimmune diseases. Exome-sequence analyses identified rare missense variants in FBXO10 that confer a twofold increased risk of mLOX. Only a small fraction of associations was shared with mosaic Y chromosome loss, suggesting that distinct biological processes drive formation and clonal expansion of sex chromosome missegregation. Allelic shift analyses identified X chromosome alleles that are preferentially retained in mLOX, demonstrating variation at many loci under cellular selection. A polygenic score including 44 allelic shift loci correctly inferred the retained X chromosomes in 80.7% of mLOX cases in the top decile. Our results support a model in which germline variants predispose female individuals to acquiring mLOX, with the allelic content of the X chromosome possibly shaping the magnitude of clonal expansion.


Sujet(s)
Aneuploïdie , Chromosomes X humains , Clones cellulaires , Leucocytes , Mosaïcisme , Adulte , Femelle , Humains , Mâle , Adulte d'âge moyen , Allèles , Maladies auto-immunes/génétique , Biobanques , Ségrégation des chromosomes/génétique , Chromosomes X humains/génétique , Chromosomes Y humains/génétique , Clones cellulaires/métabolisme , Clones cellulaires/anatomopathologie , Exome/génétique , Protéines F-box/génétique , Prédisposition génétique à une maladie/génétique , Mutation germinale , Leucémies/génétique , Leucocytes/métabolisme , Modèles génétiques , Hérédité multifactorielle/génétique , Mutation faux-sens/génétique
8.
PLoS Genet ; 20(6): e1011162, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38885280

RÉSUMÉ

Very little is known about the process of meiosis in the apicomplexan parasite Cryptosporidium despite the essentiality of sex in its life cycle. Most cell lines only support asexual growth of Cryptosporidium parvum (C. parvum), but stem cell derived intestinal epithelial cells grown under air-liquid interface (ALI) conditions support the sexual cycle. To examine chromosomal dynamics during meiosis in C. parvum, we generated two transgenic lines of parasites that were fluorescently tagged with mCherry or GFP on chromosomes 1 or 5, respectively. Infection of ALI cultures or Ifngr1-/- mice with mCherry and GFP parasites resulted in cross-fertilization and the formation of "yellow" oocysts, which contain 4 haploid sporozoites that are the product of meiosis. Recombinant oocysts from the F1 generation were purified and used to infect HCT-8 cultures, and phenotypes of the progeny were observed by microscopy. All possible phenotypes predicted by independent segregation were represented equally (~25%) in the population, indicating that C. parvum chromosomes exhibit a Mendelian inheritance pattern. The most common pattern observed from the outgrowth of single oocysts included all possible parental and recombinant phenotypes derived from a single meiotic event, suggesting a high rate of crossover. To estimate the frequency of crossover, additional loci on chromosomes 1 and 5 were tagged and used to monitor intrachromosomal crosses in Ifngr1-/- mice. Both chromosomes showed a high frequency of crossover compared to other apicomplexans with map distances (i.e., 1% recombination) of 3-12 kb. Overall, a high recombination rate may explain many unique characteristics observed in Cryptosporidium spp. such as high rates of speciation, wide variation in host range, and rapid evolution of host-specific virulence factors.


Sujet(s)
Cryptosporidiose , Cryptosporidium parvum , Méiose , Oocystes , Recombinaison génétique , Animaux , Cryptosporidium parvum/génétique , Souris , Cryptosporidiose/parasitologie , Cryptosporidiose/génétique , Méiose/génétique , Humains , Récepteur interféron/génétique , , Ségrégation des chromosomes/génétique , Sporozoïtes/génétique , Souris knockout , Phénotype
9.
Nucleic Acids Res ; 52(12): 7321-7336, 2024 Jul 08.
Article de Anglais | MEDLINE | ID: mdl-38842933

RÉSUMÉ

The ParABS system, composed of ParA (an ATPase), ParB (a DNA binding protein), and parS (a centromere-like DNA), regulates bacterial chromosome partition. The ParB-parS partition complex interacts with the nucleoid-bound ParA to form the nucleoid-adaptor complex (NAC). In Helicobacter pylori, ParA and ParB homologs are encoded as HpSoj and HpSpo0J (HpParA and HpParB), respectively. We determined the crystal structures of the ATP hydrolysis deficient mutant, HpParAD41A, and the HpParAD41A-DNA complex. We assayed the CTPase activity of HpParB and identified two potential DNA binding modes of HpParB regulated by CTP, one is the specific DNA binding by the DNA binding domain and the other is the non-specific DNA binding through the C-terminal domain under the regulation of CTP. We observed an interaction between HpParAD41A and the N-terminus fragment of HpParB (residue 1-10, HpParBN10) and determined the crystal structure of the ternary complex, HpParAD41A-DNA-HpParBN10 complex which mimics the NAC formation. HpParBN10 binds near the HpParAD41A dimer interface and is clamped by flexible loops, L23 and L34, through a specific cation-π interaction between Arg9 of HpParBN10 and Phe52 of HpParAD41A. We propose a molecular mechanism model of the ParABS system providing insight into chromosome partition in bacteria.


Sujet(s)
Protéines bactériennes , Chromosomes de bactérie , Protéines de liaison à l'ADN , Helicobacter pylori , Protéines bactériennes/métabolisme , Protéines bactériennes/composition chimique , Protéines bactériennes/génétique , Helicobacter pylori/génétique , Helicobacter pylori/métabolisme , Protéines de liaison à l'ADN/métabolisme , Protéines de liaison à l'ADN/composition chimique , Protéines de liaison à l'ADN/génétique , Chromosomes de bactérie/métabolisme , Chromosomes de bactérie/composition chimique , Chromosomes de bactérie/génétique , Modèles moléculaires , Cristallographie aux rayons X , Liaison aux protéines , ADN bactérien/métabolisme , ADN bactérien/composition chimique , ADN bactérien/génétique , Adenosine triphosphatases/métabolisme , Adenosine triphosphatases/composition chimique , Adenosine triphosphatases/génétique , Ségrégation des chromosomes , Adénosine triphosphate/métabolisme , Sites de fixation
10.
Yeast ; 41(7): 423-436, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38850080

RÉSUMÉ

Meiotic crossovers play a vital role in proper chromosome segregation and evolution of most sexually reproducing organisms. Meiotic recombination can be visually observed in Saccharomyces cerevisiae tetrads using linked spore-autonomous fluorescent markers placed at defined intervals within the genome, which allows for analysis of meiotic segregation without the need for tetrad dissection. To automate the analysis, we developed a deep learning-based image recognition and classification pipeline for high-throughput tetrad detection and meiotic crossover classification. As a proof of concept, we analyzed a large image data set from wild-type and selected gene knock-out mutants to quantify crossover frequency, interference, chromosome missegregation, and gene conversion events. The deep learning-based method has the potential to accelerate the discovery of new genes involved in meiotic recombination in S. cerevisiae such as the underlying factors controlling crossover frequency and interference.


Sujet(s)
Crossing-over , Apprentissage profond , Méiose , Saccharomyces cerevisiae , Saccharomyces cerevisiae/génétique , Saccharomyces cerevisiae/classification , Méiose/génétique , Ségrégation des chromosomes , Tests de criblage à haut débit/méthodes , Traitement d'image par ordinateur/méthodes
11.
PLoS Genet ; 20(6): e1011329, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38913752

RÉSUMÉ

Precise regulation of chromosome dynamics in the germline is essential for reproductive success across species. Yet, the mechanisms underlying meiotic chromosomal events such as homolog pairing and chromosome segregation are not fully understood in many species. Here, we employ Oligopaint DNA FISH to investigate mechanisms of meiotic homolog pairing and chromosome segregation in the holocentric pantry moth, Plodia interpunctella, and compare our findings to new and previous studies in the silkworm moth, Bombyx mori, which diverged from P. interpunctella over 100 million years ago. We find that pairing in both Bombyx and Plodia spermatogenesis is initiated at gene-rich chromosome ends. Additionally, both species form rod shaped cruciform-like bivalents at metaphase I. However, unlike the telomere-oriented chromosome segregation mechanism observed in Bombyx, Plodia can orient bivalents in multiple different ways at metaphase I. Surprisingly, in both species we find that kinetochores consistently assemble at non-telomeric loci toward the center of chromosomes regardless of where chromosome centers are located in the bivalent. Additionally, sister kinetochores do not seem to be paired in these species. Instead, four distinct kinetochores are easily observed at metaphase I. Despite this, we find clear end-on microtubule attachments and not lateral microtubule attachments co-orienting these separated kinetochores. These findings challenge the classical view of segregation where paired, poleward-facing kinetochores are required for accurate homolog separation in meiosis I. Our studies here highlight the importance of exploring fundamental processes in non-model systems, as employing novel organisms can lead to the discovery of novel biology.


Sujet(s)
Bombyx , Ségrégation des chromosomes , Méiose , Papillons de nuit , Spermatogenèse , Animaux , Ségrégation des chromosomes/génétique , Papillons de nuit/génétique , Papillons de nuit/physiologie , Mâle , Spermatogenèse/génétique , Méiose/génétique , Bombyx/génétique , Bombyx/physiologie , Kinétochores/métabolisme , Microtubules/métabolisme , Microtubules/génétique , Appariement des chromosomes/génétique , Chromosomes d'insecte/génétique , Hybridation fluorescente in situ , Métaphase , Télomère/génétique , Télomère/métabolisme , Cinétique
12.
Open Biol ; 14(6): 240025, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38862021

RÉSUMÉ

Faithful transmission of genetic material is crucial for the survival of all organisms. In many eukaryotes, a feedback control mechanism called the spindle checkpoint ensures chromosome segregation fidelity by delaying cell cycle progression until all chromosomes achieve proper attachment to the mitotic spindle. Kinetochores are the macromolecular complexes that act as the interface between chromosomes and spindle microtubules. While most eukaryotes have canonical kinetochore proteins that are widely conserved, kinetoplastids such as Trypanosoma brucei have a seemingly unique set of kinetochore proteins including KKT1-25. It remains poorly understood how kinetoplastids regulate cell cycle progression or ensure chromosome segregation fidelity. Here, we report a crystal structure of the C-terminal domain of KKT14 from Apiculatamorpha spiralis and uncover that it is a pseudokinase. Its structure is most similar to the kinase domain of a spindle checkpoint protein Bub1. In addition, KKT14 has a putative ABBA motif that is present in Bub1 and its paralogue BubR1. We also find that the N-terminal part of KKT14 interacts with KKT15, whose WD40 repeat beta-propeller is phylogenetically closely related to a direct interactor of Bub1/BubR1 called Bub3. Our findings indicate that KKT14-KKT15 are divergent orthologues of Bub1/BubR1-Bub3, which promote accurate chromosome segregation in trypanosomes.


Sujet(s)
Kinétochores , Protéines de protozoaire , Kinétochores/métabolisme , Kinétochores/composition chimique , Protéines de protozoaire/métabolisme , Protéines de protozoaire/composition chimique , Protéines de protozoaire/génétique , Trypanosoma brucei brucei/métabolisme , Trypanosoma brucei brucei/génétique , Protein-Serine-Threonine Kinases/métabolisme , Protein-Serine-Threonine Kinases/composition chimique , Protein-Serine-Threonine Kinases/génétique , Modèles moléculaires , Séquence d'acides aminés , Phylogenèse , Liaison aux protéines , Cristallographie aux rayons X , Ségrégation des chromosomes , Protéines du cycle cellulaire/métabolisme , Protéines du cycle cellulaire/composition chimique , Protéines du cycle cellulaire/génétique
13.
Nat Commun ; 15(1): 4956, 2024 Jun 10.
Article de Anglais | MEDLINE | ID: mdl-38858376

RÉSUMÉ

A crucial step in life processes is the transfer of accurate and correct genetic material to offspring. During the construction of autonomous artificial cells, a very important step is the inheritance of genetic information in divided artificial cells. The ParMRC system, as one of the most representative systems for DNA segregation in bacteria, can be purified and reconstituted into GUVs to form artificial cells. In this study, we demonstrate that the eGFP gene is segregated into two poles by a ParM filament with ParR as the intermediate linker to bind ParM and parC-eGFP DNA in artificial cells. After the ParM filament splits, the cells are externally induced to divide into two daughter cells that contain parC-eGFP DNA by osmotic pressure and laser irradiation. Using a PURE system, we translate eGFP DNA into enhanced green fluorescent proteins in daughter cells, and bacterial plasmid segregation and inheritance are successfully mimicked in artificial cells. Our results could lead to the construction of more sophisticated artificial cells that can reproduce with genetic information.


Sujet(s)
Cellules artificielles , Protéines à fluorescence verte , Plasmides , Plasmides/génétique , Plasmides/métabolisme , Protéines à fluorescence verte/métabolisme , Protéines à fluorescence verte/génétique , Cellules artificielles/métabolisme , Escherichia coli/génétique , Escherichia coli/métabolisme , ADN bactérien/génétique , ADN bactérien/métabolisme , Protéines bactériennes/génétique , Protéines bactériennes/métabolisme , Ségrégation des chromosomes , Protéines Escherichia coli/génétique , Protéines Escherichia coli/métabolisme
16.
J Cell Biol ; 223(9)2024 Sep 02.
Article de Anglais | MEDLINE | ID: mdl-38869473

RÉSUMÉ

At each cell division, nanometer-scale motors and microtubules give rise to the micron-scale spindle. Many mitotic motors step helically around microtubules in vitro, and most are predicted to twist the spindle in a left-handed direction. However, the human spindle exhibits only slight global twist, raising the question of how these molecular torques are balanced. Here, we find that anaphase spindles in the epithelial cell line MCF10A have a high baseline twist, and we identify factors that both increase and decrease this twist. The midzone motors KIF4A and MKLP1 are together required for left-handed twist at anaphase, and we show that KIF4A generates left-handed torque in vitro. The actin cytoskeleton also contributes to left-handed twist, but dynein and its cortical recruitment factor LGN counteract it. Together, our work demonstrates that force generators regulate twist in opposite directions from both within and outside the spindle, preventing strong spindle twist during chromosome segregation.


Sujet(s)
Anaphase , Kinésine , Microtubules , Appareil du fuseau , Humains , Appareil du fuseau/métabolisme , Kinésine/métabolisme , Kinésine/génétique , Microtubules/métabolisme , Dynéines/métabolisme , Dynéines/génétique , Moment de torsion , Ségrégation des chromosomes , Cytosquelette d'actine/métabolisme , Protéines associées aux microtubules/métabolisme , Protéines associées aux microtubules/génétique
17.
Nat Commun ; 15(1): 4729, 2024 Jun 03.
Article de Anglais | MEDLINE | ID: mdl-38830897

RÉSUMÉ

Cohesin mediates sister chromatid cohesion to enable chromosome segregation and DNA damage repair. To perform these functions, cohesin needs to be protected from WAPL, which otherwise releases cohesin from DNA. It has been proposed that cohesin is protected from WAPL by SORORIN. However, in vivo evidence for this antagonism is missing and SORORIN is only known to exist in vertebrates and insects. It is therefore unknown how important and widespread SORORIN's functions are. Here we report the identification of SORORIN orthologs in Schizosaccharomyces pombe (Sor1) and Arabidopsis thaliana (AtSORORIN). sor1Δ mutants display cohesion defects, which are partially alleviated by wpl1Δ. Atsororin mutant plants display dwarfism, tissue specific cohesion defects and chromosome mis-segregation. Furthermore, Atsororin mutant plants are sterile and separate sister chromatids prematurely at anaphase I. The somatic, but not the meiotic deficiencies can be alleviated by loss of WAPL. These results provide in vivo evidence for SORORIN antagonizing WAPL, reveal that SORORIN is present in organisms beyond the animal kingdom and indicate that it has acquired tissue specific functions in plants.


Sujet(s)
Protéines d'Arabidopsis , Arabidopsis , Protéines du cycle cellulaire , Protéines chromosomiques nonhistones , Protéines de Schizosaccharomyces pombe , Schizosaccharomyces , Arabidopsis/génétique , Arabidopsis/métabolisme , Protéines du cycle cellulaire/métabolisme , Protéines du cycle cellulaire/génétique , Protéines de Schizosaccharomyces pombe/métabolisme , Protéines de Schizosaccharomyces pombe/génétique , Protéines d'Arabidopsis/génétique , Protéines d'Arabidopsis/métabolisme , Protéines chromosomiques nonhistones/métabolisme , Protéines chromosomiques nonhistones/génétique , Schizosaccharomyces/génétique , Schizosaccharomyces/métabolisme , , Ségrégation des chromosomes , Mutation , Chromatides/métabolisme , Chromatides/génétique , Évolution moléculaire , Méiose/génétique
18.
Environ Microbiol Rep ; 16(3): e13269, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38822640

RÉSUMÉ

Recombinational repair is an important mechanism that allows DNA replication to overcome damaged templates, so the DNA is duplicated timely and correctly. The RecFOR pathway is one of the common ways to load RecA, while the RuvABC complex operates in the resolution of DNA intermediates. We have generated deletions of recO, recR and ruvB genes in Thermus thermophilus, while a recF null mutant could not be obtained. The recO deletion was in all cases accompanied by spontaneous loss of function mutations in addA or addB genes, which encode a helicase-exonuclease also key for recombination. The mutants were moderately affected in viability and chromosome segregation. When we generated these mutations in a Δppol/addAB strain, we observed that the transformation efficiency was maintained at the typical level of Δppol/addAB, which is 100-fold higher than that of the wild type. Most mutants showed increased filamentation phenotypes, especially ruvB, which also had DNA repair defects. These results suggest that in T. thermophilus (i) the components of the RecFOR pathway have differential roles, (ii) there is an epistatic relationship of the AddAB complex over the RecFOR pathway and (iii) that neither of the two pathways or their combination is strictly required for viability although they are necessary for normal DNA repair and chromosome segregation.


Sujet(s)
Protéines bactériennes , Helicase , Thermus thermophilus , Thermus thermophilus/génétique , Thermus thermophilus/métabolisme , Protéines bactériennes/génétique , Protéines bactériennes/métabolisme , Helicase/génétique , Helicase/métabolisme , Réparation de l'ADN/génétique , Délétion de gène , Protéines de liaison à l'ADN/génétique , Protéines de liaison à l'ADN/métabolisme , Ségrégation des chromosomes/génétique , ADN bactérien/génétique , Mutation
19.
Reproduction ; 168(2)2024 Aug 01.
Article de Anglais | MEDLINE | ID: mdl-38718822

RÉSUMÉ

In brief: Chromosome missegregation and declining energy metabolism are considered to be unrelated features of oocyte ageing that contribute to poor reproductive outcomes. Given the bioenergetic cost of chromosome segregation, we propose here that altered energy metabolism during ageing may be an underlying cause of age-related chromosome missegregation and aneuploidy. Abstract: Advanced reproductive age in women is a major cause of infertility, miscarriage and congenital abnormalities. This is principally caused by a decrease in oocyte quality and developmental competence with age. Oocyte ageing is characterised by an increase in chromosome missegregation and aneuploidy. However, the underlying mechanisms of age-related aneuploidy have not been fully elucidated and are still under active investigation. In addition to chromosome missegregation, oocyte ageing is also accompanied by metabolic dysfunction. In this review, we integrate old and new perspectives on oocyte ageing, chromosome segregation and metabolism in mammalian oocytes and make direct links between these processes. We consider age-related alterations to chromosome segregation machinery, including the loss of cohesion, microtubule stability and the integrity of the spindle assembly checkpoint. We focus on how metabolic dysfunction in the ageing oocyte disrupts chromosome segregation machinery to contribute to and exacerbate age-related aneuploidy. More specifically, we discuss how mitochondrial function, ATP production and the generation of free radicals are altered during ageing. We also explore recent developments in oocyte metabolic ageing, including altered redox reactions (NAD+ metabolism) and the interactions between oocytes and their somatic nurse cells. Throughout the review, we integrate the mechanisms by which changes in oocyte metabolism influence age-related chromosome missegregation.


Sujet(s)
Vieillissement , Aneuploïdie , Ségrégation des chromosomes , Ovocytes , Ovocytes/métabolisme , Ovocytes/physiologie , Humains , Animaux , Vieillissement/métabolisme , Vieillissement/physiologie , Femelle , Métabolisme énergétique , Reproduction , Mammifères/métabolisme , Mitochondries/métabolisme
20.
Mol Cell Biol ; 44(6): 209-225, 2024.
Article de Anglais | MEDLINE | ID: mdl-38779933

RÉSUMÉ

Proper chromosome segregation is required to ensure chromosomal stability. The centromere (CEN) is a unique chromatin domain defined by CENP-A and is responsible for recruiting the kinetochore (KT) during mitosis, ultimately regulating microtubule spindle attachment and mitotic checkpoint function. Upregulation of many CEN/KT genes is commonly observed in cancer. Here, we show that although FOXM1 occupies promoters of many CEN/KT genes with MYBL2, FOXM1 overexpression alone is insufficient to drive the FOXM1-correlated transcriptional program. CENP-F is canonically an outer kinetochore component; however, it functions with FOXM1 to coregulate G2/M transcription and proper chromosome segregation. Loss of CENP-F results in altered chromatin accessibility at G2/M genes and reduced FOXM1-MBB complex formation. We show that coordinated CENP-FFOXM1 transcriptional regulation is a cancer-specific function. We observe a small subset of CEN/KT genes including CENP-C, that are not regulated by FOXM1. Upregulation of CENP-C in the context of CENP-A overexpression leads to increased chromosome missegregation and cell death suggesting that escape of CENP-C from FOXM1 regulation is a cancer survival mechanism. Together, we show that FOXM1 and CENP-F coordinately regulate G2/M genes, and this coordination is specific to a subset of genes to allow for maintenance of chromosome instability levels and subsequent cell survival.


Sujet(s)
Centromère , Protéines chromosomiques nonhistones , Ségrégation des chromosomes , Protéine M1 à motif en tête de fourche , Kinétochores , Protéine M1 à motif en tête de fourche/métabolisme , Protéine M1 à motif en tête de fourche/génétique , Humains , Kinétochores/métabolisme , Protéines chromosomiques nonhistones/métabolisme , Protéines chromosomiques nonhistones/génétique , Centromère/métabolisme , Ségrégation des chromosomes/génétique , Lignée cellulaire tumorale , Mitose/génétique , Protéine A du centromère/métabolisme , Protéine A du centromère/génétique , Transcription génétique , Régulation de l'expression des gènes , Régulation de l'expression des gènes tumoraux , Chromatine/métabolisme , Chromatine/génétique , Régions promotrices (génétique)/génétique , Protéines des microfilaments
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...