Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 4.906
Filtrer
1.
Exp Cell Res ; 440(1): 114125, 2024 Jul 01.
Article de Anglais | MEDLINE | ID: mdl-38880324

RÉSUMÉ

Bladder cancer(BC) is one of the most prevalent cancers in the urinary tract, with high recurrence and fatality rates. Research indicates that go-ichi-ni-san complex subunit 1 (GINS1) crucially influences cancer progression by regulating DNA replication through cell cycle modulation. Thus, suppressing the active proliferation of cells in tumor tissues may require silencing GINS1. However, the consequences of GINS1 in bladder cancer aren't to be determined. In this paper, we examine the role and mechanism of GINS1 in the development of bladder cancer. GINS1 expression levels and prognostic relevance in bladder cancer were validated using Western blotting, immunohistochemistry, and Kaplan-Meier survival analysis. The influence of GINS1 on bladder cancer was investigated using a variety of approaches, including cell transfection, cell counts, transwell migrations, colony formation, and flow cytometry. Immunohistochemistry studies demonstrate that GINS1 expression is increased in bladder cancer tissues. GINS1 silencing resulted in an arrest of the cell cycle at the phase of G0/G1, which inhibited BC cell growth both in vitro and in vivo. GINS1 knockdown also hindered the AKT/mTOR pathway. Furthermore, increased GINS1 expression affects the cell cycle and stimulates the AKT/mTOR pathway, allowing BC to develop more quickly. Consequently, GINS1 occurs as a latent therapeutic target, particularly for individuals with BC.


Sujet(s)
Prolifération cellulaire , Protéines chromosomiques nonhistones , Protéines proto-oncogènes c-akt , Transduction du signal , Sérine-thréonine kinases TOR , Tumeurs de la vessie urinaire , Tumeurs de la vessie urinaire/anatomopathologie , Tumeurs de la vessie urinaire/génétique , Tumeurs de la vessie urinaire/métabolisme , Humains , Protéines proto-oncogènes c-akt/métabolisme , Protéines proto-oncogènes c-akt/génétique , Sérine-thréonine kinases TOR/métabolisme , Sérine-thréonine kinases TOR/génétique , Protéines chromosomiques nonhistones/métabolisme , Protéines chromosomiques nonhistones/génétique , Prolifération cellulaire/génétique , Animaux , Lignée cellulaire tumorale , Protéines proto-oncogènes c-myc/métabolisme , Protéines proto-oncogènes c-myc/génétique , Régulation de l'expression des gènes tumoraux , Souris , Évolution de la maladie , Souris nude , Mâle , Femelle , Pronostic , Souris de lignée BALB C , Protéines de liaison à l'ADN
2.
J Cell Biol ; 223(8)2024 Aug 05.
Article de Anglais | MEDLINE | ID: mdl-38913026

RÉSUMÉ

The double-stranded RNA-binding protein Staufen1 (STAU1) regulates a variety of physiological and pathological events via mediating RNA metabolism. STAU1 overabundance was observed in tissues from mouse models and fibroblasts from patients with neurodegenerative diseases, accompanied by enhanced mTOR signaling and impaired autophagic flux, while the underlying mechanism remains elusive. Here, we find that endogenous STAU1 forms dynamic cytoplasmic condensate in normal and tumor cell lines, as well as in mouse Huntington's disease knockin striatal cells. STAU1 condensate recruits target mRNA MTOR at its 5'UTR and promotes its translation both in vitro and in vivo, and thus enhanced formation of STAU1 condensate leads to mTOR hyperactivation and autophagy-lysosome dysfunction. Interference of STAU1 condensate normalizes mTOR levels, ameliorates autophagy-lysosome function, and reduces aggregation of pathological proteins in cellular models of neurodegenerative diseases. These findings highlight the importance of balanced phase separation in physiological processes, suggesting that modulating STAU1 condensate may be a strategy to mitigate the progression of neurodegenerative diseases with STAU1 overabundance.


Sujet(s)
Autophagie , Biosynthèse des protéines , Protéines de liaison à l'ARN , Sérine-thréonine kinases TOR , Protéines de liaison à l'ARN/métabolisme , Protéines de liaison à l'ARN/génétique , Sérine-thréonine kinases TOR/métabolisme , Sérine-thréonine kinases TOR/génétique , Animaux , Humains , Autophagie/génétique , Souris , Protéines du cytosquelette/métabolisme , Protéines du cytosquelette/génétique , Maladies neurodégénératives/métabolisme , Maladies neurodégénératives/anatomopathologie , Maladies neurodégénératives/génétique , Lysosomes/métabolisme , Lysosomes/génétique , Transduction du signal , Maladie de Huntington/métabolisme , Maladie de Huntington/anatomopathologie , Maladie de Huntington/génétique
3.
Anticancer Res ; 44(7): 2877-2886, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38925846

RÉSUMÉ

BACKGROUND/AIM: Clinical diagnostic value of circ-ARHGER28 in breast cancer (BC), and the biological functions of circ-ARHGER28 on the proliferation and apoptosis of MCF-7 cells were investigated. MATERIALS AND METHODS: Human circRNA microarray was performed to analyze the expression of circRNAs in BC patients. RT-qPCR combined with bioinformatics analysis was applied to verify the candidate circRNAs in BC tissues and peripheral blood samples. Circ-ARHGER28 was chosen as the candidate gene for further research. The clinical diagnostic value and biological functions of circ-ARHGER28 were analyzed. The overexpression and negative control vector of circ-ARHGER28 were constructed and transfected to MCF-7 cells. The CCK 8 assay and clone formation experiments were applied to detect the cell proliferative and migratory abilities. Flow cytometry was used to analyze cell apoptosis and cell cycle distribution. RT-qPCR and Western blot were performed to detect apoptosis and expression of PI3K/AKT/mTOR-associated genes and proteins. RESULTS: Overexpression of circ-ARHGER28 inhibited the proliferation, colony formation and migration of MCF-7 cells, while increasing the population of the cells in the G2/M phase and the apoptotic rate. Apoptosis associated genes and proteins were significantly increased, whereas gene and protein expression of PI3K, AKT and mTOR were decreased in the cells. CONCLUSION: Circular RNA ARHGER28 exhibits promising diagnostic value for BC. Circ-ARHGER28 inhibited MCF-7 cell proliferation and increased the apoptotic rate. The function of circ-ARHGER28 was associated with the PI3K/AKT/mTOR signaling pathway. Circ-ARHGER28 could be an ideal biomarker for BC diagnosis and a novel target for BC therapy.


Sujet(s)
Apoptose , Tumeurs du sein , Prolifération cellulaire , ARN circulaire , Humains , Tumeurs du sein/génétique , Tumeurs du sein/anatomopathologie , Tumeurs du sein/métabolisme , Tumeurs du sein/diagnostic , Prolifération cellulaire/génétique , Femelle , Apoptose/génétique , ARN circulaire/génétique , Cellules MCF-7 , Protéines proto-oncogènes c-akt/métabolisme , Régulation de l'expression des gènes tumoraux , Sérine-thréonine kinases TOR/métabolisme , Sérine-thréonine kinases TOR/génétique , Marqueurs biologiques tumoraux/génétique , Marqueurs biologiques tumoraux/métabolisme , Transduction du signal/génétique , Phosphatidylinositol 3-kinases/métabolisme , Phosphatidylinositol 3-kinases/génétique , Mouvement cellulaire/génétique , Adulte d'âge moyen
4.
Sci Rep ; 14(1): 13227, 2024 06 09.
Article de Anglais | MEDLINE | ID: mdl-38851782

RÉSUMÉ

There are hundreds of genes typically overexpressed in breast cancer cells and it's often assumed that their overexpression contributes to cancer progression. However, the precise proportion of these overexpressed genes contributing to tumorigenicity remains unclear. To address this gap, we undertook a comprehensive screening of a diverse set of seventy-two genes overexpressed in breast cancer. This systematic screening evaluated their potential for inducing malignant transformation and, concurrently, assessed their impact on breast cancer cell proliferation and viability. Select genes including ALDH3B1, CEACAM5, IL8, PYGO2, and WWTR1, exhibited pronounced activity in promoting tumor formation and establishing gene dependencies critical for tumorigenicity. Subsequent investigations revealed that CEACAM5 overexpression triggered the activation of signaling pathways involving ß-catenin, Cdk4, and mTOR. Additionally, it conferred a growth advantage independent of exogenous insulin in defined medium and facilitated spheroid expansion by inducing multiple layers of epithelial cells while preserving a hollow lumen. Furthermore, the silencing of CEACAM5 expression synergized with tamoxifen-induced growth inhibition in breast cancer cells. These findings underscore the potential of screening overexpressed genes for both oncogenic drivers and tumor dependencies to expand the repertoire of therapeutic targets for breast cancer treatment.


Sujet(s)
Tumeurs du sein , Prolifération cellulaire , Régulation de l'expression des gènes tumoraux , Humains , Tumeurs du sein/génétique , Tumeurs du sein/anatomopathologie , Tumeurs du sein/métabolisme , Femelle , Prolifération cellulaire/génétique , Lignée cellulaire tumorale , Transduction du signal , Oncogènes , bêta-Caténine/métabolisme , bêta-Caténine/génétique , Tamoxifène/pharmacologie , Animaux , Molécules d'adhérence cellulaire/génétique , Molécules d'adhérence cellulaire/métabolisme , Sérine-thréonine kinases TOR/métabolisme , Sérine-thréonine kinases TOR/génétique , Kinase-4 cycline-dépendante/génétique , Kinase-4 cycline-dépendante/métabolisme , Transformation cellulaire néoplasique/génétique
5.
J Agric Food Chem ; 72(25): 14349-14363, 2024 Jun 26.
Article de Anglais | MEDLINE | ID: mdl-38869217

RÉSUMÉ

Deoxynivalenol (DON) is a common agricultural mycotoxin that is chemically stable and not easily removed from cereal foods. When organisms consume food made from contaminated crops, it can be hazardous to their health. Numerous studies in recent years have found that hesperidin (HDN) has hepatoprotective effects on a wide range of toxins. However, few scholars have explored the potential of HDN in attenuating DON-induced liver injury. In this study, we established a low-dose DON exposure model and intervened with three doses of HDN, acting on male C57 BL/6 mice and AML12 cells, which served as in vivo and in vitro models, respectively, to investigate the protective mechanism of HDN against DON exposure-induced liver injury. The results suggested that DON disrupted hepatic autophagic fluxes, thereby impairing liver structure and function, and HDN significantly attenuated these changes. Further studies revealed that HDN alleviated DON-induced excessive autophagy through the mTOR pathway and DON-induced lysosomal dysfunction through the AKT/GSK3ß/TFEB pathway. Overall, our study suggested that HDN could ameliorate DON-induced autophagy flux disorders via the mTOR pathway and the AKT/GSK3ß/TFEB pathway, thereby reducing liver injury.


Sujet(s)
Autophagie , Facteurs de transcription à motifs basiques hélice-boucle-hélice et à glissière à leucines , Glycogen synthase kinase 3 beta , Hespéridine , Foie , Souris de lignée C57BL , Protéines proto-oncogènes c-akt , Sérine-thréonine kinases TOR , Trichothécènes , Animaux , Sérine-thréonine kinases TOR/métabolisme , Sérine-thréonine kinases TOR/génétique , Trichothécènes/toxicité , Mâle , Glycogen synthase kinase 3 beta/métabolisme , Glycogen synthase kinase 3 beta/génétique , Souris , Protéines proto-oncogènes c-akt/métabolisme , Protéines proto-oncogènes c-akt/génétique , Foie/effets des médicaments et des substances chimiques , Foie/métabolisme , Facteurs de transcription à motifs basiques hélice-boucle-hélice et à glissière à leucines/métabolisme , Facteurs de transcription à motifs basiques hélice-boucle-hélice et à glissière à leucines/génétique , Hespéridine/pharmacologie , Autophagie/effets des médicaments et des substances chimiques , Transduction du signal/effets des médicaments et des substances chimiques , Humains , Lésions hépatiques dues aux substances/métabolisme , Lésions hépatiques dues aux substances/traitement médicamenteux , Lésions hépatiques dues aux substances/prévention et contrôle , Lignée cellulaire
6.
Mol Cell ; 84(11): 2011-2013, 2024 Jun 06.
Article de Anglais | MEDLINE | ID: mdl-38848689

RÉSUMÉ

In this issue of Molecular Cell, Yi et al.1 demonstrate that reduced mTORC1 activity induces the CTLH E3 ligase-dependent degradation of HMGCS1, an enzyme in the mevalonate pathway, thus revealing a unique connection between mTORC1 signaling and the degradation of a specific metabolic enzyme via the ubiquitin-proteasome system.


Sujet(s)
Complexe-1 cible mécanistique de la rapamycine , Proteasome endopeptidase complex , Transduction du signal , Complexe-1 cible mécanistique de la rapamycine/métabolisme , Complexe-1 cible mécanistique de la rapamycine/génétique , Humains , Proteasome endopeptidase complex/métabolisme , Ubiquitin-protein ligases/métabolisme , Ubiquitin-protein ligases/génétique , Protéolyse , Sérine-thréonine kinases TOR/métabolisme , Sérine-thréonine kinases TOR/génétique , Complexes multiprotéiques/métabolisme , Complexes multiprotéiques/génétique , Animaux , Acide mévalonique/métabolisme , Ubiquitine/métabolisme
7.
Cancer Lett ; 595: 217006, 2024 Jul 28.
Article de Anglais | MEDLINE | ID: mdl-38823763

RÉSUMÉ

Driver genomic mutations in tumors define specific molecular subtypes that display distinct malignancy competence, therapeutic resistance and clinical outcome. Although TP53 mutation has been identified as the most common mutation in hepatocellular carcinoma (HCC), current understanding on the biological traits and therapeutic strategies of this subtype has been largely unknown. Here, we reveal that fatty acid ß oxidation (FAO) is remarkable repressed in TP53 mutant HCC and which links to poor prognosis in HCC patients. We further demonstrate that carnitine palmitoyltransferase 1 (CPT1A), the rate-limiting enzyme of FAO, is universally downregulated in liver tumor tissues, and which correlates with poor prognosis in HCC and promotes HCC progression in the de novo liver tumor and xenograft tumor models. Mechanically, hepatic Cpt1a loss disrupts lipid metabolism and acetyl-CoA production. Such reduction in acetyl-CoA reduced histone acetylation and epigenetically reprograms branched-chain amino acids (BCAA) catabolism, and leads to the accumulation of cellular BCAAs and hyperactivation of mTOR signaling. Importantly, we reveal that genetic ablation of CPT1A renders TP53 mutant liver cancer mTOR-addicted and sensitivity to mTOR inhibitor AZD-8055 treatment. Consistently, Cpt1a loss in HCC directs tumor cell therapeutic response to AZD-8055. CONCLUSION: Our results show genetic evidence for CPT1A as a metabolic tumor suppressor in HCC and provide a therapeutic approach for TP53 mutant HCC patients.


Sujet(s)
Carcinome hépatocellulaire , Carnitine O-palmitoyltransferase , Tumeurs du foie , Mutation , Protéine p53 suppresseur de tumeur , Humains , Carnitine O-palmitoyltransferase/génétique , Carnitine O-palmitoyltransferase/métabolisme , Carnitine O-palmitoyltransferase/antagonistes et inhibiteurs , Protéine p53 suppresseur de tumeur/génétique , Protéine p53 suppresseur de tumeur/métabolisme , Tumeurs du foie/génétique , Tumeurs du foie/traitement médicamenteux , Tumeurs du foie/anatomopathologie , Tumeurs du foie/métabolisme , Animaux , Souris , Carcinome hépatocellulaire/génétique , Carcinome hépatocellulaire/anatomopathologie , Carcinome hépatocellulaire/traitement médicamenteux , Carcinome hépatocellulaire/métabolisme , Acides aminés à chaine ramifiée/métabolisme , Lignée cellulaire tumorale , Sérine-thréonine kinases TOR/métabolisme , Sérine-thréonine kinases TOR/génétique , Tests d'activité antitumorale sur modèle de xénogreffe , Métabolisme lipidique/génétique , Transduction du signal , Acétyl coenzyme A/métabolisme , Régulation de l'expression des gènes tumoraux , Mâle
8.
Toxicol Lett ; 397: 141-150, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38759937

RÉSUMÉ

Autophagy has been implicated in the developmental toxicity of multiple organs in offspring caused by adverse environmental conditions during pregnancy. We have previously found that prenatal caffeine exposure (PCE) can cause fetal overexposure to maternal glucocorticoids, leading to chondrodysplasia. However, whether autophagy is involved and what role it plays has not been reported. In this study, a PCE rat model was established by gavage of caffeine (120 mg/kg.d) on gestational day 9-20. The results showed that reduced cartilage matrix synthesis in male fetal rats in the PCE group was accompanied by increased autophagy compared to the control group. Furthermore, the expression of mTOR, miR-421-3p, and glucocorticoid receptor (GR) in male fetal rat cartilage of PCE group was increased. At the cellular level, we confirmed that corticosterone inhibited matrix synthesis in fetal chondrocytes while increasing autophagic flux. However, administration of autophagy enhancer (rapamycin) or inhibitor (bafilomycin A1 or 3-methyladenine) partially increased or further decreased aggrecan expression respectively. At the same time, we found that corticosterone could increase the expression of miR-421-3p through GR and target to inhibit the expression of mTOR, thereby enhancing autophagy. In conclusion, PCE can cause chondrodysplasia and autophagy enhancement in male fetal rats. Intrauterine high corticosterone activates GR/miR-421-3p signaling and down-regulates mTOR signaling in fetal chondrocytes, resulting in enhanced autophagy, which can partially compensate for corticosterone-induced fetal chondrodysplasia. This study confirmed the compensatory protective effect of autophagy on the developmental toxicity of fetal cartilage induced by PCE and its epigenetic mechanism, providing novel insights for exploring the early intervention and therapeutic target of fetal-originated osteoarthritis.


Sujet(s)
Autophagie , Caféine , microARN , Rat Sprague-Dawley , Transduction du signal , Sérine-thréonine kinases TOR , Animaux , Mâle , Sérine-thréonine kinases TOR/métabolisme , Sérine-thréonine kinases TOR/génétique , Grossesse , Autophagie/effets des médicaments et des substances chimiques , microARN/métabolisme , microARN/génétique , Femelle , Caféine/toxicité , Rats , Transduction du signal/effets des médicaments et des substances chimiques , Chondrocytes/effets des médicaments et des substances chimiques , Chondrocytes/métabolisme , Effets différés de l'exposition prénatale à des facteurs de risque/induit chimiquement
9.
Biochim Biophys Acta Mol Basis Dis ; 1870(6): 167232, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38759814

RÉSUMÉ

Focal malformations of cortical development (FMCDs) are brain disorders mainly caused by hyperactive mTOR signaling due to both inactivating and activating mutations of genes in the PI3K-AKT-mTOR pathway. Among them, mosaic and somatic activating mutations of the mTOR pathway activators are more frequently linked to severe form of FMCDs. A human stem cell-based FMCDs model to study these activating mutations is still lacking. Herein, we genetically engineer human embryonic stem cell lines carrying these activating mutations to generate cortical organoids. Mosaic and somatic expression of AKT3 activating mutations in cortical organoids mimicking the disease presentation with overproliferation and the formation of dysmorphic neurons. In parallel comparison of various AKT3 activating mutations reveals that stronger mutation is associated with more severe neuronal migratory and overgrowth defects. Together, we have established a feasible human stem cell-based model for FMCDs that could help to better understand pathogenic mechanism and develop novel therapeutic strategy.


Sujet(s)
Malformations corticales , Organoïdes , Protéines proto-oncogènes c-akt , Humains , Organoïdes/métabolisme , Organoïdes/anatomopathologie , Protéines proto-oncogènes c-akt/métabolisme , Protéines proto-oncogènes c-akt/génétique , Malformations corticales/génétique , Malformations corticales/anatomopathologie , Malformations corticales/métabolisme , Cellules souches embryonnaires humaines/métabolisme , Transduction du signal/génétique , Cortex cérébral/anatomopathologie , Cortex cérébral/métabolisme , Sérine-thréonine kinases TOR/métabolisme , Sérine-thréonine kinases TOR/génétique , Mutation , Neurones/métabolisme , Neurones/anatomopathologie , Lignée cellulaire
10.
Biochem Pharmacol ; 225: 116256, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38729448

RÉSUMÉ

Endocrine treatment, particularly tamoxifen, has shown significant improvement in the prognosis of patients with estrogen receptor-positive (ER-positive) breast cancer. However, the clinical utility of this treatment is often hindered by the development of endocrine resistance. Therefore, a comprehensive understanding of the underlying mechanisms driving ER-positive breast cancer carcinogenesis and endocrine resistance is crucial to overcome this clinical challenge. In this study, we investigated the expression of MICAL-L2 in ER-positive breast cancer and its impact on patient prognosis. We observed a significant upregulation of MICAL-L2 expression in ER-positive breast cancer, which correlated with a poorer prognosis in these patients. Furthermore, we found that estrogen-ERß signaling promoted the expression of MICAL-L2. Functionally, our study demonstrated that MICAL-L2 not only played an oncogenic role in ER-positive breast cancer tumorigenesis but also influenced the sensitivity of ER-positive breast cancer cells to tamoxifen. Mechanistically, as an estrogen-responsive gene, MICAL-L2 facilitated the activation of the AKT/mTOR signaling pathway in ER-positive breast cancer cells. Collectively, our findings suggest that MICAL-L2 could serve as a potential prognostic marker for ER-positive breast cancer and represent a promising molecular target for improving endocrine treatment and developing therapeutic approaches for this subtype of breast cancer.


Sujet(s)
Antinéoplasiques hormonaux , Tumeurs du sein , Protéines proto-oncogènes c-akt , Transduction du signal , Sérine-thréonine kinases TOR , Tamoxifène , Tamoxifène/pharmacologie , Tamoxifène/usage thérapeutique , Humains , Sérine-thréonine kinases TOR/métabolisme , Sérine-thréonine kinases TOR/génétique , Tumeurs du sein/traitement médicamenteux , Tumeurs du sein/métabolisme , Tumeurs du sein/anatomopathologie , Tumeurs du sein/génétique , Femelle , Protéines proto-oncogènes c-akt/métabolisme , Protéines proto-oncogènes c-akt/génétique , Antinéoplasiques hormonaux/pharmacologie , Antinéoplasiques hormonaux/usage thérapeutique , Transduction du signal/effets des médicaments et des substances chimiques , Transduction du signal/physiologie , Animaux , Oestrogènes/pharmacologie , Oestrogènes/métabolisme , Souris nude , Souris , Récepteurs des oestrogènes/métabolisme , Récepteurs des oestrogènes/génétique , Cellules MCF-7 , Résistance aux médicaments antinéoplasiques/effets des médicaments et des substances chimiques , Résistance aux médicaments antinéoplasiques/physiologie , Évolution de la maladie , Lignée cellulaire tumorale , Souris de lignée BALB C
11.
PLoS One ; 19(5): e0289187, 2024.
Article de Anglais | MEDLINE | ID: mdl-38809881

RÉSUMÉ

Recently, a low-level somatic mutation in the NRAS gene (c.182 A > G, Q61R) was identified in various specimens from patients with kaposiform lymphangiomatosis. However, it is unknown how these low-frequency mutated cells can affect the characterization and surrounding environment of their lesions. To understand the pathogenesis and association of these gene abnormalities, we established NRASQ61R mutated lymphatic endothelial cells transfected with lentivirus vector and undertook morphological and functional characterization, protein expression profiling, and metabolome analysis. NRASQ61R human dermal lymphatic endothelial cells showed poor tube formation, a low proliferation rate, and high migration ability, with an increase in the ratio of mutated cells. An analysis of signaling pathways showed inactivation of the PIK3/AKT/mTOR pathway and hyperactivation of the RAS/MAPK/ERK pathway, which was improved by MAPK kinase (MEK) inhibitor treatment. This study shows the theoretical circumstances induced in vitro by NRASQ61R-mutated cells in the affected lesions of kaposiform lymphangiomatosis patients.


Sujet(s)
Cellules endothéliales , dGTPases , Protéines membranaires , Mutation , Humains , Cellules endothéliales/métabolisme , Cellules endothéliales/anatomopathologie , dGTPases/génétique , dGTPases/métabolisme , Protéines membranaires/génétique , Protéines membranaires/métabolisme , Prolifération cellulaire/génétique , Transduction du signal/génétique , Mouvement cellulaire/génétique , Sérine-thréonine kinases TOR/métabolisme , Sérine-thréonine kinases TOR/génétique , Protéines proto-oncogènes c-akt/métabolisme , Protéines proto-oncogènes c-akt/génétique
12.
Cancer Genet ; 284-285: 48-57, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38729078

RÉSUMÉ

Although lncRNAs are recognized to contribute to the development of oral squamous-cell carcinoma (OSCC), their exact function in invasion and cell migration is not clear. In this research, we explored the molecular and cellular mechanisms of FOXD2-AS1 in OSCC. Prognostic and bioinformatics analyses were used to test for the differential expression of FOXD2-AS1-PLOD1. Following FOXD2-AS1 suppression or overexpression, changes in cell viability were measured using the CCK-8 test; changes in cell migration and invasion abilities were measured using the migration and the Transwell assay. The expression of associated genes and proteins was found using Western blot and RT-qPCR. Analysis of luciferase reporter genes was done to look for regulatory connections between various molecules. The FOXD2-AS1-PLOD1 pair, which was highly expressed in OSCC, was analyzed and experimentally verified to be closely related to the prognosis of OSCC, and a nomogram model and correction curve were constructed. The inhibition of FOXD2-AS1 resulted in the reduction of cell activity, migration, invasion ability and changes in genes related to invasion and migration. In vivo validation showed that inhibition of FOXD2-AS1 expression slowed tumor growth, and related proteins changed accordingly. The experiments verified that FOXD2-AS1 negatively regulated miR-185-5 p and that miR-185-5 p negatively regulated PLOD1. In addition, it was found that the expression of PLOD1, p-Akt and p-mTOR proteins in OSCC cells was reduced by the inhibition of FOXD2-AS1, and FOXD2-AS1 and PLOD1 were closely related to the Akt/mTOR pathway. Increased expression of FOXD2-AS1 promotes OSCC growth, invasion and migration, which is important in part by targeting miR-185-5 p/PLOD1/Akt/mTOR pathway activity.


Sujet(s)
Mouvement cellulaire , Prolifération cellulaire , microARN , Tumeurs de la bouche , Invasion tumorale , Protéines proto-oncogènes c-akt , ARN long non codant , Sérine-thréonine kinases TOR , Humains , microARN/génétique , ARN long non codant/génétique , Sérine-thréonine kinases TOR/métabolisme , Sérine-thréonine kinases TOR/génétique , Protéines proto-oncogènes c-akt/métabolisme , Protéines proto-oncogènes c-akt/génétique , Mouvement cellulaire/génétique , Tumeurs de la bouche/génétique , Tumeurs de la bouche/anatomopathologie , Tumeurs de la bouche/métabolisme , Prolifération cellulaire/génétique , Souris , Animaux , Procollagen-lysine, 2-oxoglutarate 5-dioxygenase/génétique , Procollagen-lysine, 2-oxoglutarate 5-dioxygenase/métabolisme , Lignée cellulaire tumorale , Transduction du signal/génétique , Régulation de l'expression des gènes tumoraux , Femelle , Carcinome épidermoïde de la tête et du cou/génétique , Carcinome épidermoïde de la tête et du cou/anatomopathologie , Carcinome épidermoïde de la tête et du cou/métabolisme , Mâle , Pronostic , Carcinome épidermoïde/génétique , Carcinome épidermoïde/anatomopathologie , Carcinome épidermoïde/métabolisme , Souris nude
13.
J Orthop Surg Res ; 19(1): 321, 2024 May 29.
Article de Anglais | MEDLINE | ID: mdl-38812038

RÉSUMÉ

BACKGROUND: The larval zebrafish tail fin can completely regenerate in 3 days post amputation. mTOR, the main regulator of cell growth and metabolism, plays an essential role in regeneration. Lots of studies have documented the role of mTOR in regeneration. However, the mechanisms involved are still not fully elucidated. MATERIALS AND RESULTS: This study aimed to explore the role and mechanism of mTOR in the regeneration of larval zebrafish tail fins. Initially, the spatial and temporal expression of mTOR signaling in the larval fin was examined, revealing its activation following tail fin amputation. Subsequently, a mTOR knockout (mTOR-KO) zebrafish line was created using CRISPR/Cas9 gene editing technology. The investigation demonstrated that mTOR depletion diminished the proliferative capacity of epithelial and mesenchymal cells during fin regeneration, with no discernible impact on cell apoptosis. Insight from SMART-seq analysis uncovered alterations in the cell cycle, mitochondrial functions and metabolic pathways when mTOR signaling was suppressed during fin regeneration. Furthermore, mTOR was confirmed to enhance mitochondrial functions and Ca2 + activation following fin amputation. These findings suggest a potential role for mTOR in promoting mitochondrial fission to facilitate tail fin regeneration. CONCLUSION: In summary, our results demonstrated that mTOR played a key role in larval zebrafish tail fin regeneration, via promoting mitochondrial fission and proliferation of blastema cells.


Sujet(s)
Nageoires animales , Prolifération cellulaire , Larve , Mitochondries , Régénération , Sérine-thréonine kinases TOR , Queue , Protéines de poisson-zèbre , Danio zébré , Animaux , Danio zébré/génétique , Sérine-thréonine kinases TOR/génétique , Sérine-thréonine kinases TOR/métabolisme , Régénération/génétique , Régénération/physiologie , Prolifération cellulaire/génétique , Nageoires animales/physiologie , Protéines de poisson-zèbre/génétique , Queue/physiologie , Larve/génétique , Mitochondries/génétique , Mitochondries/métabolisme , Mutation , Transduction du signal/génétique , Dynamique mitochondriale/génétique , Dynamique mitochondriale/physiologie
14.
Theriogenology ; 224: 119-133, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38762919

RÉSUMÉ

Lysine-specific demethylase 1 (LSD1) stands as the pioneering histone demethylase uncovered, proficient in demethylating H3K4me1/2 and H3K9me1/2, thereby governing transcription and participating in cell apoptosis, proliferation, or differentiation. Nevertheless, the complete understanding of LSD1 during porcine early embryonic development and the underlying molecular mechanism remains unclear. Thus, we investigated the mechanism by which LSD1 plays a regulatory role in porcine early embryos. This study revealed that LSD1 inhibition resulted in parthenogenetic activation (PA) and in vitro fertilization (IVF) embryo arrested the development, and decreased blastocyst quality. Meanwhile, H3K4me1/2 and H3K9me1/2 methylase activity was increased at the 4-cell embryo stage. RNA-seq results revealed that autophagy related biological processes were highly enriched through GO and KEGG pathway analyses when LSD1 inhibition. Further studies showed that LSD1 depletion in porcine early embryos resulted in low mTOR and p-mTOR levels and high autophagy and apoptosis levels. The LSD1 deletion-induced increases in autophagy and apoptosis could be reversed by addition of mTOR activators. We further demonstrated that LSD1 inhibition induced mitochondrial dysfunction and mitophagy. In summary, our research results indicate that LSD1 may regulate autophagy and apoptosis through the mTOR pathway and affect early embryonic development of pigs.


Sujet(s)
Apoptose , Autophagie , Développement embryonnaire , Histone Demethylases , Transduction du signal , Sérine-thréonine kinases TOR , Animaux , Histone Demethylases/métabolisme , Histone Demethylases/génétique , Suidae/embryologie , Sérine-thréonine kinases TOR/métabolisme , Sérine-thréonine kinases TOR/génétique , Développement embryonnaire/physiologie , Autophagie/physiologie , Régulation de l'expression des gènes au cours du développement , Fécondation in vitro/médecine vétérinaire
15.
Zhongguo Zhong Yao Za Zhi ; 49(9): 2376-2384, 2024 May.
Article de Chinois | MEDLINE | ID: mdl-38812138

RÉSUMÉ

The abnormal activation of the mammalian target of rapamycin(mTOR) signaling pathway in non-small cell lung cancer(NSCLC) is closely associated with distant metastasis, drug resistance, tumor immune escape, and low overall survival. The present study reported that betulinic acid(BA), a potent inhibitor of mTOR signaling pathway, exhibited an inhibitory activity against NSCLC in vitro and in vivo. CCK-8 and colony formation results demonstrated that BA significantly inhibited the viability and clonogenic ability of H1299, A549, and LLC cells. Additionally, the treatment with BA induced mitochondrion-mediated apoptosis of H1299 and LLC cells. Furthermore, BA inhibited the mobility and invasion of H1299 and LLC cells by down-regulating the expression level of matrix metalloproteinase 2(MMP2) and impairing epithelial-mesenchymal transition. The results demonstrated that the inhibition of mTOR signaling pathway by BA decreased the proportion of M2 phenotype(CD206 positive) cells in total macrophages. Furthermore, a mouse model of subcutaneous tumor was established with LLC cells to evaluate the anti-tumor efficiency of BA in vivo. The results revealed that the administration of BA dramatically retarded the tumor growth and inhibited the proliferation of tumor cells. More importantly, BA increased the ratio of M1/M2 macrophages in the tumor tissue, which implied the enhancement of anti-tumor immunity. In conclusion, BA demonstrated the inhibitory effect on NSCLC by repolarizing tumor-associated macrophages via the mTOR signaling pathway.


Sujet(s)
Acide bétulinique , Carcinome pulmonaire non à petites cellules , Tumeurs du poumon , Triterpènes pentacycliques , Transduction du signal , Sérine-thréonine kinases TOR , Macrophages associés aux tumeurs , Sérine-thréonine kinases TOR/métabolisme , Sérine-thréonine kinases TOR/génétique , Animaux , Souris , Transduction du signal/effets des médicaments et des substances chimiques , Humains , Carcinome pulmonaire non à petites cellules/traitement médicamenteux , Carcinome pulmonaire non à petites cellules/génétique , Carcinome pulmonaire non à petites cellules/immunologie , Carcinome pulmonaire non à petites cellules/métabolisme , Tumeurs du poumon/traitement médicamenteux , Tumeurs du poumon/immunologie , Tumeurs du poumon/génétique , Tumeurs du poumon/métabolisme , Triterpènes pentacycliques/pharmacologie , Macrophages associés aux tumeurs/effets des médicaments et des substances chimiques , Macrophages associés aux tumeurs/immunologie , Lignée cellulaire tumorale , Triterpènes/pharmacologie , Prolifération cellulaire/effets des médicaments et des substances chimiques , Apoptose/effets des médicaments et des substances chimiques , Transition épithélio-mésenchymateuse/effets des médicaments et des substances chimiques
16.
Mol Cell ; 84(11): 2166-2184.e9, 2024 Jun 06.
Article de Anglais | MEDLINE | ID: mdl-38788716

RÉSUMÉ

Mammalian target of rapamycin (mTOR) senses changes in nutrient status and stimulates the autophagic process to recycle amino acids. However, the impact of nutrient stress on protein degradation beyond autophagic turnover is incompletely understood. We report that several metabolic enzymes are proteasomal targets regulated by mTOR activity based on comparative proteome degradation analysis. In particular, 3-hydroxy-3-methylglutaryl (HMG)-coenzyme A (CoA) synthase 1 (HMGCS1), the initial enzyme in the mevalonate pathway, exhibits the most significant half-life adaptation. Degradation of HMGCS1 is regulated by the C-terminal to LisH (CTLH) E3 ligase through the Pro/N-degron motif. HMGCS1 is ubiquitylated on two C-terminal lysines during mTORC1 inhibition, and efficient degradation of HMGCS1 in cells requires a muskelin adaptor. Importantly, modulating HMGCS1 abundance has a dose-dependent impact on cell proliferation, which is restored by adding a mevalonate intermediate. Overall, our unbiased degradomics study provides new insights into mTORC1 function in cellular metabolism: mTORC1 regulates the stability of limiting metabolic enzymes through the ubiquitin system.


Sujet(s)
Prolifération cellulaire , Hydroxymethylglutaryl-coA synthase , Complexe-1 cible mécanistique de la rapamycine , Protéolyse , Ubiquitin-protein ligases , Ubiquitination , Complexe-1 cible mécanistique de la rapamycine/métabolisme , Complexe-1 cible mécanistique de la rapamycine/génétique , Humains , Ubiquitin-protein ligases/métabolisme , Ubiquitin-protein ligases/génétique , Cellules HEK293 , Hydroxymethylglutaryl-coA synthase/métabolisme , Hydroxymethylglutaryl-coA synthase/génétique , Proteasome endopeptidase complex/métabolisme , Proteasome endopeptidase complex/génétique , Sérine-thréonine kinases TOR/métabolisme , Sérine-thréonine kinases TOR/génétique , Acide mévalonique/métabolisme , Complexes multiprotéiques/métabolisme , Complexes multiprotéiques/génétique , Transduction du signal , , Protéines adaptatrices de la transduction du signal
17.
Gene ; 924: 148616, 2024 Oct 05.
Article de Anglais | MEDLINE | ID: mdl-38795856

RÉSUMÉ

Transcription initiation is a vital step in the regulation of eukaryotic gene expression. It can be dysregulated in response to various cellular stressors which is associated with numerous human diseases including cancer. Transcription initiation is facilitated via many gene-specific trans-regulatory elements such as transcription factors, activators, and coactivators through their interactions with transcription pre-initiation complex (PIC). These trans-regulatory elements can uniquely facilitate PIC formation (hence, transcription initiation) in response to cellular nutrient stress. Cellular nutrient stress also regulates the activity of other pathways such as target of rapamycin (TOR) pathway. TOR pathway exhibits distinct regulatory mechanisms of transcriptional activation in response to stress. Like TOR pathway, the cell cycle regulatory pathway is also found to be linked to transcriptional regulation in response to cellular stress. Several transcription factors such as p53, C/EBP Homologous Protein (CHOP), activating transcription factor 6 (ATF6α), E2F, transforming growth factor (TGF)-ß, Adenomatous polyposis coli (APC), SMAD, and MYC have been implicated in regulation of transcription of target genes involved in cell cycle progression, apoptosis, and DNA damage repair pathways. Additionally, cellular metabolic and oxidative stressors have been found to regulate the activity of long non-coding RNAs (lncRNA). LncRNA regulates transcription by upregulating or downregulating the transcription regulatory proteins involved in metabolic and cell signaling pathways. Numerous human diseases, triggered by chronic cellular stressors, are associated with abnormal regulation of transcription. Hence, understanding these mechanisms would help unravel the molecular regulatory insights with potential therapeutic interventions. Therefore, here we emphasize the recent advances of regulation of eukaryotic transcription initiation in response to cellular stress.


Sujet(s)
Stress physiologique , Humains , Stress physiologique/génétique , Régulation de l'expression des gènes , Initiation de la transcription , Animaux , Transduction du signal , Facteurs de transcription/métabolisme , Facteurs de transcription/génétique , ARN long non codant/génétique , ARN long non codant/métabolisme , Sérine-thréonine kinases TOR/métabolisme , Sérine-thréonine kinases TOR/génétique
18.
mBio ; 15(6): e0086224, 2024 Jun 12.
Article de Anglais | MEDLINE | ID: mdl-38767353

RÉSUMÉ

Mammalian target of rapamycin (mTOR) is a key regulator of metabolism in the mammalian cell. Here, we show the essential role for mTOR signaling in the immune response to bacterial infection. Inhibition of mTOR during infection with Staphylococcus aureus revealed that mTOR signaling is required for bactericidal free radical production by phagocytes. Mechanistically, mTOR supported glucose transporter GLUT1 expression, potentially through hypoxia-inducible factor 1α, upon phagocyte activation. Cytokine and chemokine signaling, inducible nitric oxide synthase, and p65 nuclear translocation were present at similar levels during mTOR suppression, suggesting an NF-κB-independent role for mTOR signaling in the immune response during bacterial infection. We propose that mTOR signaling primarily mediates the metabolic requirements necessary for phagocyte bactericidal free radical production. This study has important implications for the metabolic requirements of innate immune cells during bacterial infection as well as the clinical use of mTOR inhibitors.IMPORTANCESirolimus, everolimus, temsirolimus, and similar are a class of pharmaceutics commonly used in the clinical treatment of cancer and the anti-rejection of transplanted organs. Each of these agents suppresses the activity of the mammalian target of rapamycin (mTOR), a master regulator of metabolism in human cells. Activation of mTOR is also involved in the immune response to bacterial infection, and treatments that inhibit mTOR are associated with increased susceptibility to bacterial infections in the skin and soft tissue. Infections caused by Staphylococcus aureus are among the most common and severe. Our study shows that this susceptibility to S. aureus infection during mTOR suppression is due to an impaired function of phagocytic immune cells responsible for controlling bacterial infections. Specifically, we observed that mTOR activity is required for phagocytes to produce antimicrobial free radicals. These results have important implications for immune responses during clinical treatments and in disease states where mTOR is suppressed.


Sujet(s)
Transporteur de glucose de type 1 , Phagocytes , Transduction du signal , Infections à staphylocoques , Staphylococcus aureus , Sérine-thréonine kinases TOR , Staphylococcus aureus/immunologie , Sérine-thréonine kinases TOR/métabolisme , Sérine-thréonine kinases TOR/génétique , Infections à staphylocoques/immunologie , Infections à staphylocoques/microbiologie , Phagocytes/immunologie , Phagocytes/métabolisme , Phagocytes/microbiologie , Humains , Transporteur de glucose de type 1/métabolisme , Transporteur de glucose de type 1/génétique , Animaux , Radicaux libres/métabolisme , Souris , Souris de lignée C57BL
19.
Free Radic Biol Med ; 221: 64-74, 2024 Aug 20.
Article de Anglais | MEDLINE | ID: mdl-38754744

RÉSUMÉ

α-Tocopherol (α-T) is a vitamin, but the reasons for the α-T requirement are controversial. Given that α-T deficiency was first identified in embryos, we studied to the premier model of vertebrate embryo development, the zebrafish embryo. We developed an α-T-deficient diet for zebrafish and used fish consuming this diet to produce α-T deficient (E-) embryos. We showed that α-T deficiency causes increased lipid peroxidation, leading to metabolic dysregulation that impacts both biochemical and morphological changes at very early stages in development. These changes occur at an early developmental window, which takes place prior to an analogous time to when a human knows she is pregnant. We found that α-T limits the chain reaction of lipid peroxidation and protects metabolic pathways and integrated gene expression networks that control embryonic development. Importantly, not only is α-T critical during early development, but the neurodevelopmental process is highly dependent on α-T trafficking by the α-T transfer protein (TTPa). Data from both gene expression and evaluation of the metabolome in E- embryos suggest that the activity of the mechanistic Target of Rapamycin (mTOR) signaling pathway is dysregulated-mTOR is a master regulatory mechanism, which controls both metabolism and neurodevelopment. Our findings suggest that TTPa is needed not only for regulation of plasma α-T in adults but is a key regulator during embryogenesis.


Sujet(s)
Danio zébré , alpha-Tocophérol , Animaux , Femelle , Humains , alpha-Tocophérol/métabolisme , Protéines de transport/métabolisme , Protéines de transport/génétique , Embryon non mammalien/métabolisme , Développement embryonnaire/génétique , Régulation de l'expression des gènes au cours du développement , Peroxydation lipidique , Transduction du signal , Sérine-thréonine kinases TOR/métabolisme , Sérine-thréonine kinases TOR/génétique , Danio zébré/métabolisme , Danio zébré/génétique , Protéines de poisson-zèbre/métabolisme , Protéines de poisson-zèbre/génétique , Grossesse
20.
J Physiol ; 602(12): 2839-2854, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38748517

RÉSUMÉ

Loss of muscle mass and function induced by sepsis contributes to physical inactivity and disability in intensive care unit patients. Limiting skeletal muscle deconditioning may thus be helpful in reducing the long-term effect of muscle wasting in patients. We tested the hypothesis that invalidation of the myostatin gene, which encodes a powerful negative regulator of skeletal muscle mass, could prevent or attenuate skeletal muscle wasting and improve survival of septic mice. Sepsis was induced by caecal ligature and puncture (CLP) in 13-week-old C57BL/6J wild-type and myostatin knock-out male mice. Survival rates were similar in wild-type and myostatin knock-out mice seven days after CLP. Loss in muscle mass was also similar in wild-type and myostatin knock-out mice 4 and 7 days after CLP. The loss in muscle mass was molecularly supported by an increase in the transcript level of E3-ubiquitin ligases and autophagy-lysosome markers. This transcriptional response was blunted in myostatin knock-out mice. No change was observed in the protein level of markers of the anabolic insulin/IGF1-Akt-mTOR pathway. Muscle strength was similarly decreased in wild-type and myostatin knock-out mice 4 and 7 days after CLP. This was associated with a modified expression of genes involved in ion homeostasis and excitation-contraction coupling, suggesting that a long-term functional recovery following experimental sepsis may be impaired by a dysregulated expression of molecular determinants of ion homeostasis and excitation-contraction coupling. In conclusion, myostatin gene invalidation does not provide any benefit in preventing skeletal muscle mass loss and strength in response to experimental sepsis. KEY POINTS: Survival rates are similar in wild-type and myostatin knock-out mice seven days after the induction of sepsis. Loss in muscle mass and muscle strength are similar in wild-type and myostatin knock-out mice 4 and 7 days after the induction of an experimental sepsis. Despite evidence of a transcriptional regulation, the protein level of markers of the anabolic insulin/IGF1-Akt-mTOR pathway remained unchanged. RT-qPCR analysis of autophagy-lysosome pathway markers indicates that activity of the pathway may be altered by experimental sepsis in wild-type and myostatin knock-out mice. Experimental sepsis induces greater variations in the mRNA levels of wild-type mice than those of myostatin knock-out mice, without providing any significant catabolic resistance or functional benefits.


Sujet(s)
Souris de lignée C57BL , Souris knockout , Muscles squelettiques , Myostatine , Sepsie , Animaux , Myostatine/génétique , Myostatine/métabolisme , Sepsie/génétique , Sepsie/métabolisme , Muscles squelettiques/métabolisme , Mâle , Souris , Autophagie , Amyotrophie/génétique , Amyotrophie/métabolisme , Force musculaire , Sérine-thréonine kinases TOR/métabolisme , Sérine-thréonine kinases TOR/génétique , Protéines proto-oncogènes c-akt/métabolisme , Protéines proto-oncogènes c-akt/génétique
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...