Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 853
Filtrer
1.
Biomed Environ Sci ; 37(6): 617-627, 2024 Jun 20.
Article de Anglais | MEDLINE | ID: mdl-38988112

RÉSUMÉ

Objective: The aim of this study was to explore the role and mechanism of ferroptosis in SiO 2-induced cardiac injury using a mouse model. Methods: Male C57BL/6 mice were intratracheally instilled with SiO 2 to create a silicosis model. Ferrostatin-1 (Fer-1) and deferoxamine (DFO) were used to suppress ferroptosis. Serum biomarkers, oxidative stress markers, histopathology, iron content, and the expression of ferroptosis-related proteins were assessed. Results: SiO 2 altered serum cardiac injury biomarkers, oxidative stress, iron accumulation, and ferroptosis markers in myocardial tissue. Fer-1 and DFO reduced lipid peroxidation and iron overload, and alleviated SiO 2-induced mitochondrial damage and myocardial injury. SiO 2 inhibited Nuclear factor erythroid 2-related factor 2 (Nrf2) and its downstream antioxidant genes, while Fer-1 more potently reactivated Nrf2 compared to DFO. Conclusion: Iron overload-induced ferroptosis contributes to SiO 2-induced cardiac injury. Targeting ferroptosis by reducing iron accumulation or inhibiting lipid peroxidation protects against SiO 2 cardiotoxicity, potentially via modulation of the Nrf2 pathway.


Sujet(s)
Modèles animaux de maladie humaine , Ferroptose , Surcharge en fer , Souris de lignée C57BL , Myocytes cardiaques , Silice , Silicose , Animaux , Ferroptose/effets des médicaments et des substances chimiques , Mâle , Souris , Surcharge en fer/métabolisme , Silice/toxicité , Silicose/métabolisme , Silicose/traitement médicamenteux , Silicose/anatomopathologie , Myocytes cardiaques/effets des médicaments et des substances chimiques , Myocytes cardiaques/métabolisme , Déferoxamine/pharmacologie , Phénylènediamines/pharmacologie , Facteur-2 apparenté à NF-E2/métabolisme , Facteur-2 apparenté à NF-E2/génétique , Stress oxydatif/effets des médicaments et des substances chimiques , Fer/métabolisme , Cyclohexylamines/pharmacologie
2.
Sci Adv ; 10(28): eadl4913, 2024 Jul 12.
Article de Anglais | MEDLINE | ID: mdl-38985878

RÉSUMÉ

The pathophysiology of silicosis is poorly understood, limiting development of therapies for those who have been exposed to the respirable particle. We explored mechanisms of silica-induced pulmonary fibrosis in human lung samples collected from patients with occupational exposure to silica and in a longitudinal mouse model of silicosis using multiple modalities including whole-lung single-cell RNA sequencing and histological, biochemical, and physiologic assessments. In addition to pulmonary inflammation and fibrosis, intratracheal silica challenge induced osteoclast-like differentiation of alveolar macrophages and recruited monocytes, driven by induction of the osteoclastogenic cytokine, receptor activator of nuclear factor κΒ ligand (RANKL) in pulmonary lymphocytes, and alveolar type II cells. Anti-RANKL monoclonal antibody treatment suppressed silica-induced osteoclast-like differentiation in the lung and attenuated pulmonary fibrosis. We conclude that silica induces differentiation of pulmonary osteoclast-like cells leading to progressive lung injury, likely due to sustained elaboration of bone-resorbing proteases and hydrochloric acid. Interrupting osteoclast-like differentiation may therefore constitute a promising avenue for moderating lung damage in silicosis.


Sujet(s)
Différenciation cellulaire , Ostéoclastes , Fibrose pulmonaire , Silice , Silicose , Silice/toxicité , Animaux , Humains , Ostéoclastes/métabolisme , Ostéoclastes/effets des médicaments et des substances chimiques , Ostéoclastes/anatomopathologie , Fibrose pulmonaire/induit chimiquement , Fibrose pulmonaire/anatomopathologie , Fibrose pulmonaire/métabolisme , Souris , Silicose/anatomopathologie , Silicose/métabolisme , Silicose/étiologie , Différenciation cellulaire/effets des médicaments et des substances chimiques , Ligand de RANK/métabolisme , Modèles animaux de maladie humaine , Mâle , Poumon/anatomopathologie , Poumon/métabolisme , Poumon/effets des médicaments et des substances chimiques , Macrophages alvéolaires/métabolisme , Macrophages alvéolaires/anatomopathologie , Macrophages alvéolaires/effets des médicaments et des substances chimiques , Femelle
3.
Respir Res ; 25(1): 242, 2024 Jun 15.
Article de Anglais | MEDLINE | ID: mdl-38877465

RÉSUMÉ

BACKGROUND: Silicosis represents a paramount occupational health hazard globally, with its incidence, morbidity, and mortality on an upward trajectory, posing substantial clinical dilemmas due to limited effective treatment options available. Trigonelline (Trig), a plant alkaloid extracted mainly from coffee and fenugreek, have diverse biological properties such as protecting dermal fibroblasts against ultraviolet radiation and has the potential to inhibit collagen synthesis. However, it's unclear whether Trig inhibits fibroblast activation to attenuate silicosis-induced pulmonary fibrosis is unclear. METHODS: To evaluate the therapeutic efficacy of Trig in the context of silicosis-related pulmonary fibrosis, a mouse model of silicosis was utilized. The investigation seeks to elucidated Trig's impact on the progression of silica-induced pulmonary fibrosis by evaluating protein expression, mRNA levels and employing Hematoxylin and Eosin (H&E), Masson's trichrome, and Sirius Red staining. Subsequently, we explored the mechanism underlying of its functions. RESULTS: In vivo experiment, Trig has been demonstrated the significant efficacy in mitigating SiO2-induced silicosis and BLM-induced pulmonary fibrosis, as evidenced by improved histochemical staining and reduced fibrotic marker expressions. Additionally, we showed that the differentiation of fibroblast to myofibroblast was imped in Trig + SiO2 group. In terms of mechanism, we obtained in vitro evidence that Trig inhibited fibroblast-to-myofibroblast differentiation by repressing TGF-ß/Smad signaling according to the in vitro evidence. Notably, our finding indicated that Trig seemed to be safe in mice and fibroblasts. CONCLUSION: In summary, Trig attenuated the severity of silicosis-related pulmonary fibrosis by alleviating the differentiation of myofibroblasts, indicating the development of novel therapeutic approaches for silicosis fibrosis.


Sujet(s)
Alcaloïdes , Différenciation cellulaire , Fibroblastes , Souris de lignée C57BL , Myofibroblastes , Fibrose pulmonaire , Silice , Silicose , Animaux , Fibrose pulmonaire/métabolisme , Fibrose pulmonaire/anatomopathologie , Fibrose pulmonaire/induit chimiquement , Fibrose pulmonaire/traitement médicamenteux , Fibrose pulmonaire/prévention et contrôle , Alcaloïdes/pharmacologie , Silice/toxicité , Souris , Fibroblastes/effets des médicaments et des substances chimiques , Fibroblastes/métabolisme , Fibroblastes/anatomopathologie , Myofibroblastes/effets des médicaments et des substances chimiques , Myofibroblastes/métabolisme , Myofibroblastes/anatomopathologie , Différenciation cellulaire/effets des médicaments et des substances chimiques , Silicose/anatomopathologie , Silicose/métabolisme , Silicose/traitement médicamenteux , Mâle
4.
Int J Mol Sci ; 25(11)2024 May 24.
Article de Anglais | MEDLINE | ID: mdl-38891910

RÉSUMÉ

Silicosis caused by engineered stone (ES-silicosis) is an emerging worldwide issue characterized by inflammation and fibrosis in the lungs. To our knowledge, only a few reports have investigated leukocyte/lymphocyte subsets in ES-silicosis patients. The present study was designed to explore the proportions of the main lymphocyte subsets in ES-silicosis patients stratified into two groups, one with simple silicosis (SS) and the other with a more advanced state of the disease, defined as progressive massive fibrosis (PMF). The proportions of B (memory and plasmablasts) cells, T (helper, cytotoxic, regulatory) cells, and natural killer (NK) (regulatory and cytotoxic) cells were investigated by multiparameter flow cytometry in 91 ES-silicosis patients (53 SS patients and 38 PMF patients) and 22 healthy controls (HC). Although the total number of leukocytes did not differ between the groups studied, lymphopenia was observed in patients compared to healthy controls. Compared with those in healthy controls, the proportions of memory B cells, naïve helper T cells, and the CD4+/CD8+ T cells' ratio in the peripheral blood of patients with silicosis were significantly decreased, while the percentages of plasma cells, memory helper T cells, and regulatory T cells were significantly increased. For the NK cell subsets, no significant differences were found between the groups studied. These results revealed altered cellular immune processes in the peripheral blood of patients with ES-silicosis and provided further insight into silicosis pathogenesis.


Sujet(s)
Silice , Silicose , Humains , Mâle , Silicose/immunologie , Silicose/sang , Silicose/anatomopathologie , Adulte d'âge moyen , Femelle , Adulte , Cellules tueuses naturelles/immunologie , Sous-populations de lymphocytes/immunologie , Sous-populations de lymphocytes/métabolisme , Pneumopathie infectieuse/immunologie , Pneumopathie infectieuse/sang , Sujet âgé , Études cas-témoins
5.
Redox Biol ; 74: 103224, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38865904

RÉSUMÉ

BACKGROUND: Silicosis, characterized by interstitial lung inflammation and fibrosis, poses a significant health threat. ATII cells play a crucial role in alveolar epithelial repair and structural integrity maintenance. Inhibiting ATII cell senescence has shown promise in silicosis treatment. However, the mechanism behind silica-induced senescence remains elusive. METHODS: The study employed male C57BL/6 N mice and A549 human alveolar epithelial cells to investigate silicosis and its potential treatment. Silicosis was induced in mice via intratracheal instillation of crystalline silica particles, with honokiol administered intraperitoneally for 14 days. Silica-induced senescence in A549 cells was confirmed, and SIRT3 knockout and overexpression cell lines were generated. Various analyses were conducted, including immunoblotting, qRT-PCR, histology, and transmission electron microscopy. Statistical significance was determined using one-way ANOVA with Tukey's post-hoc test. RESULTS: This study elucidates how silica induces ATII cell senescence, emphasizing mtDNA damage. Notably, honokiol (HKL) emerges as a promising anti-senescence and anti-fibrosis agent, acting through sirt3. honokiol effectively attenuated senescence in ATII cells, dependent on sirt3 expression, while mitigating mtDNA damage. Sirt3, a class III histone deacetylase, regulates senescence and mitochondrial stress. HKL activates sirt3, protecting against pulmonary fibrosis and mitochondrial damage. Additionally, HKL downregulated cGAS expression in senescent ATII cells induced by silica, suggesting sirt3's role as an upstream regulator of the cGAS/STING signaling pathway. Moreover, honokiol treatment inhibited the activation of the NF-κB signaling pathway, associated with reduced oxidative stress and mtDNA damage. Notably, HKL enhanced the activity of SOD2, crucial for mitochondrial function, through sirt3-mediated deacetylation. Additionally, HKL promoted the deacetylation activity of sirt3, further safeguarding mtDNA integrity. CONCLUSIONS: This study uncovers a natural compound, HKL, with significant anti-fibrotic properties through activating sirt3, shedding light on silicosis pathogenesis and treatment avenues.


Sujet(s)
Pneumocytes , Dérivés du biphényle , Vieillissement de la cellule , Lignanes , Transduction du signal , Silicose , Sirtuine-3 , Animaux , Silicose/métabolisme , Silicose/traitement médicamenteux , Silicose/anatomopathologie , Silicose/étiologie , Sirtuine-3/métabolisme , Sirtuine-3/génétique , Vieillissement de la cellule/effets des médicaments et des substances chimiques , Souris , Pneumocytes/métabolisme , Pneumocytes/effets des médicaments et des substances chimiques , Dérivés du biphényle/pharmacologie , Humains , Lignanes/pharmacologie , Transduction du signal/effets des médicaments et des substances chimiques , Mâle , Cellules A549 , Nucleotidyltransferases/métabolisme , Nucleotidyltransferases/génétique , Modèles animaux de maladie humaine , Protéines membranaires/métabolisme , Protéines membranaires/génétique , Souris de lignée C57BL , Altération de l'ADN/effets des médicaments et des substances chimiques , Composés allyliques , Phénols
6.
Sci Total Environ ; 946: 174299, 2024 Oct 10.
Article de Anglais | MEDLINE | ID: mdl-38936737

RÉSUMÉ

Crystalline silica (CS) particles are ubiquitously present in the environment, particularly in occupational settings, and exposure to respirable CS causes silicosis, imposing a significant disease burden. However, the pathogenesis of silicosis remains unclear. Exposure to external stimuli, such as CS, leads to the accumulation of unfolded proteins and triggers endoplasmic reticulum (ER) stress, disrupting tissue immune homeostasis and accelerating pathological progression. While pulmonary macrophages phagocytose CS particles to initiate the immune response, the role of ER stress in this process is unknown. Herein, we used a murine model of silicosis to simulate the pathological progression from acute inflammation to fibrosis in silicosis and conducted in vivo pharmacological inhibition of ER stress to explore the underlying mechanism. Using flow cytometry, we further classified pulmonary macrophages into monocyte-like macrophages (monocytes), interstitial macrophages (IMs), and alveolar macrophages (AMs). Our results showed that CS-induced ER stress primarily contributed to the augmentation of IMs and thereby exerted a significant impact on pulmonary macrophages. Despite coexpressing M1- and M2-like markers, IMs predominantly exhibited an M1-like polarization state and played a proinflammatory role by expressing the cytokines pro-IL-1ß and TNF-α during the pathological progression of silicosis. Additionally, IMs recruited by CS-induced ER stress also exhibited high expression of MHCII and exerted active immunomodulatory effects. Overall, our study demonstrates that ER stress induced by CS particles triggers a proinflammatory immune microenvironment dominated by IMs and reveals novel insights into the pulmonary toxicological effects of CS particles.


Sujet(s)
Stress du réticulum endoplasmique , Macrophages alvéolaires , Silice , Silicose , Silicose/anatomopathologie , Stress du réticulum endoplasmique/effets des médicaments et des substances chimiques , Silice/toxicité , Animaux , Souris , Macrophages alvéolaires/effets des médicaments et des substances chimiques , Inflammation , Mâle , Souris de lignée C57BL
7.
Int Immunopharmacol ; 136: 112368, 2024 Jul 30.
Article de Anglais | MEDLINE | ID: mdl-38823175

RÉSUMÉ

Silicosis is a chronic fibroproliferative lung disease caused by long-term inhalation of crystalline silica dust, characterized by the proliferation of fibroblasts and pulmonary interstitial fibrosis. Currently, there are no effective treatments available. Recent research suggests that the Integrin ß1/ILK/PI3K signaling pathway may be associated with the pathogenesis of silicosis fibrosis. In this study, we investigated the effects of Echistatin (Integrin ß1 inhibitor) and BYL-719 (PI3K inhibitor) on silicosis rats at 28 and 56 days after silica exposure. Histopathological analysis of rat lung tissue was performed using H&E staining and Masson staining. Immunohistochemistry, Western blotting, and qRT-PCR were employed to assess the expression of markers associated with epithelial-mesenchymal transition (EMT), fibrosis, and the Integrin ß1/ILK/PI3K pathway in lung tissue. The results showed that Echistatin, BYL 719 or their combination up-regulated the expression of E-cadherin and down-regulated the expression of Vimentin and extracellular matrix (ECM) components, including type I and type III collagen. The increase of Snail, AKT and ß-catenin in the downstream Integrin ß1/ILK/PI3K pathway was inhibited. These results indicate that Echistatin and BYL 719 can inhibit EMT and pulmonary fibrosis by blocking different stages of Integrinß1 /ILK/PI3K signaling pathway. This indicates that the Integrin ß1/ILK/PI3K signaling pathway is associated with silica-induced EMT and may serve as a potential therapeutic target for silicosis.


Sujet(s)
Transition épithélio-mésenchymateuse , Antigènes CD29 , Phosphatidylinositol 3-kinases , Protein-Serine-Threonine Kinases , Fibrose pulmonaire , Transduction du signal , Silice , Silicose , Animaux , Transition épithélio-mésenchymateuse/effets des médicaments et des substances chimiques , Transduction du signal/effets des médicaments et des substances chimiques , Antigènes CD29/métabolisme , Antigènes CD29/génétique , Fibrose pulmonaire/induit chimiquement , Fibrose pulmonaire/métabolisme , Fibrose pulmonaire/traitement médicamenteux , Fibrose pulmonaire/anatomopathologie , Mâle , Silice/toxicité , Silicose/métabolisme , Silicose/anatomopathologie , Silicose/traitement médicamenteux , Phosphatidylinositol 3-kinases/métabolisme , Protein-Serine-Threonine Kinases/métabolisme , Rats , Poumon/anatomopathologie , Poumon/effets des médicaments et des substances chimiques , Rat Sprague-Dawley
8.
Ecotoxicol Environ Saf ; 278: 116444, 2024 Jun 15.
Article de Anglais | MEDLINE | ID: mdl-38728943

RÉSUMÉ

Silicosis is a disease characterized by lung inflammation and fibrosis caused by long-term inhalation of free silicon dioxide (SiO2). Recent studies have found that a large number of lymphatic hyperplasia occurs during the occurrence and development of silicosis. miRNAs play an important role in lymphangiogenesis. However, the regulation and mechanism of miRNAs on lymphangiogenesis in silicosis remain unclear. In this study, lymphangiogenesis was observed in silicosis rats, and VEGF-C-targeted miRNAs were screened, and the effect of miRNAs on the formation of human lymphatic endothelial cells (HLECs) tubular structure was investigated in vitro. The results showed that SiO2 promoted the expressions of Collagen Ι and α-SMA, TNF-α, IL-6 and VEGF-C increased first and then decreased, and promoted the formation of lymphatic vessels. Bioinformatics methods screened miR-455-3p for targeted binding to VEGF-C, and dual luciferase reporter genes confirmed VEGF-C as the target gene of miR-455-3p, and miR-455-3p was down-regulated in the lung tissue of silicosis rats. Transfection of miR-455-3p Inhibitors down-regulated the expression level of miR-455-3p and up-regulated the expression levels of VEGF-C and VEGFR-3 in HLECs, enhanced migration ability and increased tube formation. Transfection of miR-455-3p Mimics showed an opposite trend. These results suggest that miR-455-3p further regulates the tubular structure formation of HLECs by regulating VEGF-C/VEGFR3. Therefore, targeting miR-455-3p may provide a new therapeutic strategy for SiO2-induced silicosis injury.


Sujet(s)
Lymphangiogenèse , microARN , Silicose , Facteur de croissance endothéliale vasculaire de type C , Récepteur-3 au facteur croissance endothéliale vasculaire , Animaux , Humains , Mâle , Rats , Cellules endothéliales/effets des médicaments et des substances chimiques , Lymphangiogenèse/effets des médicaments et des substances chimiques , microARN/génétique , Rat Sprague-Dawley , Silice/toxicité , Silicose/anatomopathologie , Facteur de croissance endothéliale vasculaire de type C/génétique , Facteur de croissance endothéliale vasculaire de type C/métabolisme , Récepteur-3 au facteur croissance endothéliale vasculaire/génétique , Récepteur-3 au facteur croissance endothéliale vasculaire/métabolisme
9.
Front Immunol ; 15: 1380628, 2024.
Article de Anglais | MEDLINE | ID: mdl-38774866

RÉSUMÉ

Introduction: TAM receptor-mediated efferocytosis plays an important function in immune regulation and may contribute to antigen tolerance in the lungs, a site with continuous cellular turnover and generation of apoptotic cells. Some studies have identified failures in efferocytosis as a common driver of inflammation and tissue destruction in lung diseases. Our study is the first to characterize the in vivo function of the TAM receptors, Axl and MerTk, in the innate immune cell compartment, cytokine and chemokine production, as well as the alveolar macrophage (AM) phenotype in different settings in the airways and lung parenchyma. Methods: We employed MerTk and Axl defective mice to induce acute silicosis by a single exposure to crystalline silica particles (20 mg/50 µL). Although both mRNA levels of Axl and MerTk receptors were constitutively expressed by lung cells and isolated AMs, we found that MerTk was critical for maintaining lung homeostasis, whereas Axl played a role in the regulation of silica-induced inflammation. Our findings imply that MerTk and Axl differently modulated inflammatory tone via AM and neutrophil recruitment, phenotype and function by flow cytometry, and TGF-ß and CXCL1 protein levels, respectively. Finally, Axl expression was upregulated in both MerTk-/- and WT AMs, confirming its importance during inflammation. Conclusion: This study provides strong evidence that MerTk and Axl are specialized to orchestrate apoptotic cell clearance across different circumstances and may have important implications for the understanding of pulmonary inflammatory disorders as well as for the development of new approaches to therapy.


Sujet(s)
Axl Receptor Tyrosine Kinase , Homéostasie , Poumon , Macrophages alvéolaires , Souris knockout , Protéines proto-oncogènes , Récepteurs à activité tyrosine kinase , Silicose , c-Mer Tyrosine kinase , Animaux , Souris , c-Mer Tyrosine kinase/métabolisme , c-Mer Tyrosine kinase/génétique , Cytokines/métabolisme , Modèles animaux de maladie humaine , Poumon/immunologie , Poumon/métabolisme , Poumon/anatomopathologie , Macrophages alvéolaires/immunologie , Macrophages alvéolaires/métabolisme , Souris de lignée C57BL , Protéines proto-oncogènes/métabolisme , Protéines proto-oncogènes/génétique , Récepteurs à activité tyrosine kinase/métabolisme , Récepteurs à activité tyrosine kinase/génétique , Silicose/métabolisme , Silicose/immunologie , Silicose/anatomopathologie , Mâle
10.
BMC Pulm Med ; 24(1): 224, 2024 May 08.
Article de Anglais | MEDLINE | ID: mdl-38720270

RÉSUMÉ

BACKGROUND: Simvastatin (Sim), a hydroxy-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor, has been widely used in prevention and treatment of cardiovascular diseases. Studies have suggested that Sim exerts anti-fibrotic effects by interfering fibroblast proliferation and collagen synthesis. This study was to determine whether Sim could alleviate silica-induced pulmonary fibrosis and explore the underlying mechanisms. METHODS: The rat model of silicosis was established by the tracheal perfusion method and treated with Sim (5 or 10 mg/kg), AICAR (an AMPK agonist), and apocynin (a NOX inhibitor) for 28 days. Lung tissues were collected for further analyses including pathological histology, inflammatory response, oxidative stress, epithelial mesenchymal transformation (EMT), and the AMPK-NOX pathway. RESULTS: Sim significantly reduced silica-induced pulmonary inflammation and fibrosis at 28 days after administration. Sim could reduce the levels of interleukin (IL)-1ß, IL-6, tumor necrosis factor-α and transforming growth factor-ß1 in lung tissues. The expressions of hydroxyproline, α-SMA and vimentin were down-regulated, while E-cad was increased in Sim-treated rats. In addition, NOX4, p22pox, p40phox, p-p47phox/p47phox expressions and ROS levels were all increased, whereas p-AMPK/AMPK was decreased in silica-induced rats. Sim or AICAR treatment could notably reverse the decrease of AMPK activity and increase of NOX activity induced by silica. Apocynin treatment exhibited similar protective effects to Sim, including down-regulating of oxidative stress and inhibition of the EMT process and inflammatory reactions. CONCLUSIONS: Sim attenuates silica-induced pulmonary inflammation and fibrosis by downregulating EMT and oxidative stress through the AMPK-NOX pathway.


Sujet(s)
AMP-Activated Protein Kinases , Fibrose pulmonaire , Silice , Simvastatine , Animaux , Mâle , Rats , Acétophénones/pharmacologie , 5-Amino-imidazole-4-carboxamide/analogues et dérivés , 5-Amino-imidazole-4-carboxamide/pharmacologie , AMP-Activated Protein Kinases/métabolisme , Modèles animaux de maladie humaine , Transition épithélio-mésenchymateuse/effets des médicaments et des substances chimiques , Inhibiteurs de l'hydroxyméthylglutaryl-CoA réductase/pharmacologie , Poumon/anatomopathologie , Poumon/effets des médicaments et des substances chimiques , Poumon/métabolisme , NADPH Oxidase 4/métabolisme , NADPH oxidase/métabolisme , Stress oxydatif/effets des médicaments et des substances chimiques , Pneumopathie infectieuse/induit chimiquement , Pneumopathie infectieuse/prévention et contrôle , Pneumopathie infectieuse/traitement médicamenteux , Pneumopathie infectieuse/métabolisme , Pneumopathie infectieuse/anatomopathologie , Fibrose pulmonaire/induit chimiquement , Fibrose pulmonaire/traitement médicamenteux , Ribonucléotides/pharmacologie , Transduction du signal/effets des médicaments et des substances chimiques , Silicose/traitement médicamenteux , Silicose/anatomopathologie , Silicose/métabolisme , Simvastatine/pharmacologie , Facteur de croissance transformant bêta-1/métabolisme
11.
Surg Pathol Clin ; 17(2): 193-202, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38692804

RÉSUMÉ

Although silicosis has been an established disease with a recognized cause for more than 100 years, many workers continue to be exposed to silica and new outbreaks of disease continue to occur. This article describes some of the well-established and new exposures, including denim sandblasting, artificial stone cutting, and some forms of "coal worker's pneumoconiosis." The authors review the imaging and pathology of acute silicosis (silicoproteinosis), simple silicosis, and progressive massive fibrosis and summarize known and putative associations of silica exposure, including tuberculosis, lung cancer, connective tissue disease (especially systemic sclerosis), and vasculitis.


Sujet(s)
Silicose , Silicose/anatomopathologie , Silicose/diagnostic , Silicose/étiologie , Humains , Exposition professionnelle/effets indésirables , Silice/effets indésirables
12.
Mol Cell Proteomics ; 23(6): 100770, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38641226

RÉSUMÉ

Inhalation of crystalline silica dust induces incurable lung damage, silicosis, and pulmonary fibrosis. However, the mechanisms of the lung injury remain poorly understood, with limited therapeutic options aside from lung transplantation. Posttranslational modifications can regulate the function of proteins and play an important role in studying disease mechanisms. To investigate changes in posttranslational modifications of proteins in silicosis, combined quantitative proteome, acetylome, and succinylome analyses were performed with lung tissues from silica-injured and healthy mice using liquid chromatography-mass spectrometry. Combined analysis was applied to the three omics datasets to construct a protein landscape. The acetylation and succinylation of the key transcription factor STAT1 were found to play important roles in the silica-induced pathophysiological changes. Modulating the acetylation level of STAT1 with geranylgeranylacetone effectively inhibited the progression of silicosis. This report revealed a comprehensive landscape of posttranslational modifications in silica-injured mouse and presented a novel therapeutic strategy targeting the posttranslational level for silica-induced lung diseases.


Sujet(s)
Lysine , Maturation post-traductionnelle des protéines , Protéome , Facteur de transcription STAT-1 , Silicose , Animaux , Silicose/métabolisme , Silicose/traitement médicamenteux , Silicose/anatomopathologie , Facteur de transcription STAT-1/métabolisme , Protéome/métabolisme , Lysine/métabolisme , Acétylation/effets des médicaments et des substances chimiques , Souris , Silice , Poumon/métabolisme , Poumon/effets des médicaments et des substances chimiques , Poumon/anatomopathologie , Souris de lignée C57BL , Protéomique/méthodes , Mâle , Acide succinique/métabolisme
13.
Article de Chinois | MEDLINE | ID: mdl-38678001

RÉSUMÉ

Silicosis is a common occupational disease, and its main characteristic pathological features are the formation of silicon nodules and diffuse pulmonary fibrosis. In the process of silicosis fibrosis, macrophages can be polarized into M1 macrophages and M2 macrophages. M1 macrophages play a pro-inflammatory role in the early stage of silicosis and release a variety of inflammatory factors, which is the core of inflammatory response. M2 macrophages promote inflammation resolution and tissue repair in silicosis fibrosis stage by secreting anti-inflammatory cytokines and pro-fibrotic mediators. M1/M2 polarization balance plays an important role in the occurrence and development of silicosis, and the regulation of macrophage polarization direction may play a positive role in the prevention and treatment of silicosis fibrosis. In this review, the role of macrophage polarization in silicosis fibrosis, the related signaling pathways regulating macrophage polarization in silicosis fibrosis, and the potential therapeutic targets based on macrophage polarization in silicosis fibrosis are reviewed, with a view to further strengthening the understanding of the mechanism of macrophage polarization in the pathogenesis and treatment of silicosis fibrosis.


Sujet(s)
Macrophages , Fibrose pulmonaire , Silicose , Silicose/anatomopathologie , Humains , Fibrose pulmonaire/anatomopathologie , Transduction du signal , Cytokines/métabolisme
14.
Part Fibre Toxicol ; 21(1): 10, 2024 Mar 01.
Article de Anglais | MEDLINE | ID: mdl-38429797

RÉSUMÉ

BACKGROUND: Crystalline silica (cSiO2) is a mineral found in rocks; workers from the construction or denim industries are particularly exposed to cSiO2 through inhalation. cSiO2 inhalation increases the risk of silicosis and systemic autoimmune diseases. Inhaled cSiO2 microparticles can reach the alveoli where they induce inflammation, cell death, auto-immunity and fibrosis but the specific molecular pathways involved in these cSiO2 effects remain unclear. This systematic review aims to provide a comprehensive state of the art on omic approaches and exposure models used to study the effects of inhaled cSiO2 in mice and rats and to highlight key results from omic data in rodents also validated in human. METHODS: The protocol of systematic review follows PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. Eligible articles were identified in PubMed, Embase and Web of Science. The search strategy included original articles published after 1990 and written in English which included mouse or rat models exposed to cSiO2 and utilized omic approaches to identify pathways modulated by cSiO2. Data were extracted and quality assessment was based on the SYRCLE's Risk of Bias tool for animal studies. RESULTS: Rats and male rodents were the more used models while female rodents and autoimmune prone models were less studied. Exposure of animals were both acute and chronic and the timing of outcome measurement through omics approaches were homogeneously distributed. Transcriptomic techniques were more commonly performed while proteomic, metabolomic and single-cell omic methods were less utilized. Immunity and inflammation were the main domains modified by cSiO2 exposure in lungs of mice and rats. Less than 20% of the results obtained in rodents were finally verified in humans. CONCLUSION: Omic technics offer new insights on the effects of cSiO2 exposure in mice and rats although the majority of data still need to be validated in humans. Autoimmune prone model should be better characterised and systemic effects of cSiO2 need to be further studied to better understand cSiO2-induced autoimmunity. Single-cell omics should be performed to inform on pathological processes induced by cSiO2 exposure.


Sujet(s)
Silice , Silicose , Animaux , Rats , Inflammation/induit chimiquement , Poumon , Protéomique , Silice/effets indésirables , Silicose/anatomopathologie , Souris
15.
Environ Toxicol ; 39(6): 3628-3640, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38491797

RÉSUMÉ

Silicosis is a systemic disease caused by long-term inhalation of free SiO2 and retention in the lungs. At present, it is still the most important occupational health hazard disease in the world. Existing studies have shown that non-coding RNA can also participate in complex fibrosis regulatory networks. However, its role in regulating silicotic fibrosis is still unclear. In this study, we constructed a NR8383/RLE-6TN co-culture system to simulate the pathogenesis of silicosis in vitro. Design of miR-204-3p mimics and inhibitors to overexpress or downregulate miR-204-3p in RLE-6TN cells. Design of short hairpin RNA (sh-RNA) to downregulate MRAK052509 in RLE-6TN cells. The regulatory mechanism of miR-204-3p and LncRNA MRAK052509 on EMT process was studied by Quantitative real-time PCR, Western blotting, Immunofluorescence and Cell scratch test. The results revealed that miR-204-3p affects the occurrence of silica dust-induced cellular EMT process mainly through regulating TGF-ßRΙ, a key molecule of TGF-ß signaling pathway. In contrast, Lnc MRAK052509 promotes the EMT process in epithelial cells by competitively adsorbing miR-204-3p and reducing its inhibitory effect on the target gene TGF-ßRΙ, which may influence the development of silicosis fibrosis. This study perfects the targeted regulation relationship between LncRNA MRAK052509, miR-204-3p and TGF-ßRΙ, and may provide a new strategy for the study of the pathogenesis and treatment of silicosis.


Sujet(s)
Transition épithélio-mésenchymateuse , microARN , ARN long non codant , Silice , Silicose , Animaux , Humains , Rats , Lignée cellulaire , Poussière , Cellules épithéliales/effets des médicaments et des substances chimiques , Cellules épithéliales/anatomopathologie , Transition épithélio-mésenchymateuse/effets des médicaments et des substances chimiques , microARN/génétique , microARN/métabolisme , ARN long non codant/génétique , Silice/toxicité , Silicose/génétique , Silicose/anatomopathologie
16.
Environ Toxicol ; 39(7): 3808-3819, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38523403

RÉSUMÉ

Silicon dioxide (SiO2)-induced pulmonary fibrosis is potentially associated with the impairment of mitochondrial function. Previous research found that inhibition of macrophage receptor with collagenous structure (MARCO) could alleviate particle-induced lung injury by regulating phagocytosis and mitigating mitochondrial damage. The present study aims to explore the underlying anti-fibrosis mechanism of polyguanylic acid (PolyG, MARCO inhibitor) in a silicotic rat model. Hematoxylin and eosin and Masson staining were performed to visualize lung tissue pathological changes. Confocal microscopy, transmission electron microscope, western blot analysis, quantitative real-time PCR (qPCR), and adenosine triphosphate (ATP) content assay were performed to evaluate collagen content, mitochondrial function, and morphology changes in SiO2-induced rat pulmonary fibrosis. The results suggested that SiO2 exposure contributed to reactive oxygen species aggregation and the reduction of respiratory complexes and ATP synthesis. PolyG treatment could effectively reduce MARCO expression and ameliorate lung injury and fibrosis by rectifying the imbalance of mitochondrial respiration and energy synthesis. Furthermore, PolyG could maintain mitochondrial homeostasis by promoting peroxisome proliferator-activated receptor-coactivator 1 α (PGC1α)-mediated mitochondrial biogenesis and regulating fusion and fission. Together, PolyG could ameliorate SiO2-induced pulmonary fibrosis via inhibiting MARCO to protect mitochondrial function.


Sujet(s)
Mitochondries , Fibrose pulmonaire , Silice , Silicose , Animaux , Fibrose pulmonaire/induit chimiquement , Fibrose pulmonaire/traitement médicamenteux , Silicose/traitement médicamenteux , Silicose/anatomopathologie , Silicose/métabolisme , Mitochondries/effets des médicaments et des substances chimiques , Mitochondries/métabolisme , Silice/toxicité , Mâle , Rats , Rat Sprague-Dawley , Modèles animaux de maladie humaine , Poumon/effets des médicaments et des substances chimiques , Poumon/anatomopathologie , Poumon/métabolisme , Espèces réactives de l'oxygène/métabolisme
17.
Int J Biol Macromol ; 266(Pt 1): 131058, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38522707

RÉSUMÉ

Long-term exposure to inhalable silica particles may lead to severe systemic pulmonary disease, such as silicosis. Exosomes have been demonstrated to dominate the pathogenesis of silicosis, but the underlying mechanisms remain unclear. Therefore, this study aimed to explore the roles of exosomes by transmitting miR-107, which has been linked to the toxic pulmonary effects of silica particles. We found that miR-107, miR-122-5p, miR-125a-5p, miR-126-5p, and miR-335-5p were elevated in exosomes extracted from the serum of patients with silicosis. Notably, an increase in miR-107 in serum exosomes and lung tissue was observed in the experimental silicosis mouse model, while the inhibition of miR-107 reduced pulmonary fibrosis. Moreover, exosomes helped the migration of miR-107 from macrophages to lung fibroblasts, triggering the transdifferentiation of cell phenotypes. Further experiments demonstrated that miR-107 targets CDK6 and suppresses the expression of retinoblastoma protein phosphorylation and E2F1, resulting in cell-cycle arrest. Overall, micron-grade silica particles induced lung fibrosis through exosomal miR-107 negatively regulating the cell cycle signaling pathway. These findings may open a new avenue for understanding how silicosis is regulated by exosome-mediated cell-to-cell communication and suggest the prospect of exosomes as therapeutic targets.


Sujet(s)
Exosomes , microARN , Fibrose pulmonaire , Silice , Exosomes/métabolisme , Exosomes/génétique , microARN/génétique , microARN/métabolisme , Animaux , Silice/toxicité , Fibrose pulmonaire/induit chimiquement , Fibrose pulmonaire/métabolisme , Fibrose pulmonaire/génétique , Fibrose pulmonaire/anatomopathologie , Souris , Humains , Silicose/métabolisme , Silicose/anatomopathologie , Silicose/génétique , Silicose/étiologie , Communication cellulaire , Mâle , Modèles animaux de maladie humaine , Fibroblastes/métabolisme , Macrophages/métabolisme , Poumon/anatomopathologie , Poumon/métabolisme
18.
Biomolecules ; 14(2)2024 Jan 24.
Article de Anglais | MEDLINE | ID: mdl-38397383

RÉSUMÉ

Long-term silica particle exposure leads to interstitial pulmonary inflammation and fibrosis, called silicosis. Silica-activated macrophages secrete a wide range of cytokines resulting in persistent inflammation. In addition, silica-stimulated activation of fibroblast is another checkpoint in the progression of silicosis. The pathogenesis after silica exposure is complex, involving intercellular communication and intracellular signaling pathway transduction, which was ignored previously. Exosomes are noteworthy because of their crucial role in intercellular communication by delivering bioactive substances, such as lncRNA. However, the expression profile of exosomal lncRNA in silicosis has not been reported yet. In this study, exosomes were isolated from the peripheral serum of silicosis patients or healthy donors. The exosomal lncRNAs were profiled using high-throughput sequencing technology. Target genes were predicted, and functional annotation was performed using differentially expressed lncRNAs. Eight aberrant expressed exosomal lncRNAs were considered to play a key role in the process of silicosis according to the OPLS-DA. Furthermore, the increased expression of lncRNA MSTRG.43085.16 was testified in vitro. Its target gene PARP1 was critical in regulating apoptosis based on bioinformatics analysis. In addition, the effects of exosomes on macrophage apoptosis and fibroblast activation were checked based on a co-cultured system. Our findings suggested that upregulation of lncRNA MSTRG.43085.16 could regulate silica-induced macrophage apoptosis through elevating PARP1 expression, and promote fibroblast activation, implying that the exosomal lncRNA MSTRG.43085.16 might have potential as a biomarker for the early diagnosis of silicosis.


Sujet(s)
Exosomes , ARN long non codant , Silicose , Humains , Silice , ARN long non codant/génétique , ARN long non codant/métabolisme , Exosomes/génétique , Exosomes/métabolisme , Silicose/génétique , Silicose/métabolisme , Silicose/anatomopathologie , Macrophages/métabolisme , Fibroblastes/métabolisme , Apoptose/génétique
19.
Toxicology ; 504: 153762, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38403151

RÉSUMÉ

Recent research has hinted at a potential connection between silicosis, a fibrotic lung disease caused by exposure to crystalline silica particles, and cuproptosis. The aim of the study was to explore how cuproptosis-related genes (CRGs) may influence the development of silicosis and elucidate the underlying mechanisms. An analysis of genes associated with both silicosis and cuproptosis was conducted. Key gene identification was achieved through the application of two machine learning techniques. Additionally, the correlation between these key genes and immune cell populations was explored and the critical pathways were discerned. To corroborate our findings, the expression of key genes was verified in both a publicly available silica-induced mouse model and our own silicosis mouse model. A total of 12 differentially expressed CRGs associated with silicosis were identified. Further analysis resulted in the identification of 6 CRGs, namely LOX, SPARC, MOXD1, ALB, MT-CO2, and AOC2. Elevated immune cell infiltration of CD8 T cells, regulatory T cells, M0 macrophages, and neutrophils in silicosis patients compared to healthy controls was indicated. Validation in a silica-induced pulmonary fibrosis mouse model supported SPARC and MT-CO2 as potential signature genes for the prediction of silicosis. These findings highlight a strong association between silicosis and cuproptosis. Among CRGs, LOX, SPARC, MOXD1, ALB, MT-CO2, and AOC2 emerged as pivotal players in the context of silicosis by modulating CD8 T cells, regulatory T cells, M0 macrophages, and neutrophils.


Sujet(s)
Silice , Silicose , Silicose/génétique , Silicose/immunologie , Silicose/anatomopathologie , Animaux , Silice/toxicité , Souris , Mâle , Souris de lignée C57BL , Humains , Modèles animaux de maladie humaine , Poumon/anatomopathologie , Poumon/immunologie , Poumon/effets des médicaments et des substances chimiques , Fibrose pulmonaire/génétique , Fibrose pulmonaire/induit chimiquement , Fibrose pulmonaire/immunologie , Fibrose pulmonaire/anatomopathologie , Apprentissage machine , Ostéonectine/génétique
20.
Int J Mol Med ; 53(3)2024 Mar.
Article de Anglais | MEDLINE | ID: mdl-38240085

RÉSUMÉ

NOD-like receptor protein 3 (NLRP3) inflammasome is closely related to silica particle­induced chronic lung inflammation but its role in epithelial remodeling, repair and regeneration in the distal lung during development of silicosis remains to be elucidated. The present study aimed to determine the effects of the NLRP3 inflammasome on epithelial remodeling and cellular regeneration and potential mechanisms in the distal lung of silica­treated mice at three time points. Pulmonary function assessment, inflammatory cell counting, enzyme­linked immunosorbent assay, histological and immunological analyses, hydroxyproline assay and western blotting were used in the study. Single intratracheal instillation of a silica suspension caused sustained NLRP3 inflammasome activation in the distal lung. Moreover, a time­dependent increase in airway resistance and a decrease in lung compliance accompanied progression of pulmonary fibrosis. In the terminal bronchiole, lung remodeling including pyroptosis (membrane­distributed GSDMD+), excessive proliferation (Ki67+), mucus overproduction (mucin 5 subtype AC and B) and epithelial­mesenchymal transition (decreased E­Cadherin+ and increased Vimentin+), was observed by immunofluorescence analysis. Notably, aberrant spatiotemporal expression of the embryonic lung stem/progenitor cell markers SOX2 and SOX9 and ectopic distribution of bronchioalveolar stem cells were observed in the distal lung only on the 7th day after silica instillation (the early inflammatory phase of silicosis). Western blotting revealed that the Sonic hedgehog/Glioma­associated oncogene (Shh/Gli) and Wnt/ß­catenin pathways were involved in NLRP3 inflammasome activation­mediated epithelial remodeling and dysregulated regeneration during the inflammatory and fibrotic phases. Overall, sustained NLRP3 inflammasome activation led to epithelial remodeling in the distal lung of mice. Moreover, understanding the spatiotemporal profile of dysregulated epithelial repair and regeneration may provide a novel therapeutic strategy for inhalable particle­related chronic inflammatory and fibrotic lung disease.


Sujet(s)
Fibrose pulmonaire , Silicose , Souris , Animaux , Inflammasomes/métabolisme , Fibrose pulmonaire/induit chimiquement , Fibrose pulmonaire/anatomopathologie , Protéine-3 de la famille des NLR contenant un domaine pyrine/métabolisme , Silice/toxicité , Protéines NLR , Protéines Hedgehog , Poumon/anatomopathologie , Silicose/anatomopathologie
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE