Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 468
Filtrer
1.
Nat Commun ; 15(1): 4550, 2024 May 29.
Article de Anglais | MEDLINE | ID: mdl-38811547

RÉSUMÉ

The emergence of new structures can often be linked to the evolution of novel cell types that follows the rewiring of developmental gene regulatory subnetworks. Vertebrates are characterized by a complex body plan compared to the other chordate clades and the question remains of whether and how the emergence of vertebrate morphological innovations can be related to the appearance of new embryonic cell populations. We previously proposed, by studying mesoderm development in the cephalochordate amphioxus, a scenario for the evolution of the vertebrate head mesoderm. To further test this scenario at the cell population level, we used scRNA-seq to construct a cell atlas of the amphioxus neurula, stage at which the main mesodermal compartments are specified. Our data allowed us to validate the presence of a prechordal-plate like territory in amphioxus. Additionally, the transcriptomic profile of somite cell populations supports the homology between specific territories of amphioxus somites and vertebrate cranial/pharyngeal and lateral plate mesoderm. Finally, our work provides evidence that the appearance of the specific mesodermal structures of the vertebrate head was associated to both segregation of pre-existing cell populations, and co-option of new genes for the control of myogenesis.


Sujet(s)
Régulation de l'expression des gènes au cours du développement , Tête , Lancelets , Mésoderme , Vertébrés , Animaux , Mésoderme/cytologie , Mésoderme/embryologie , Lancelets/embryologie , Lancelets/génétique , Tête/embryologie , Vertébrés/embryologie , Vertébrés/génétique , Somites/embryologie , Somites/cytologie , Somites/métabolisme , Évolution biologique , Transcriptome
2.
Dev Cell ; 59(12): 1489-1505.e14, 2024 Jun 17.
Article de Anglais | MEDLINE | ID: mdl-38579718

RÉSUMÉ

Embryogenesis requires substantial coordination to translate genetic programs to the collective behavior of differentiating cells, but understanding how cellular decisions control tissue morphology remains conceptually and technically challenging. Here, we combine continuous Cas9-based molecular recording with a mouse embryonic stem cell-based model of the embryonic trunk to build single-cell phylogenies that describe the behavior of transient, multipotent neuro-mesodermal progenitors (NMPs) as they commit into neural and somitic cell types. We find that NMPs show subtle transcriptional signatures related to their recent differentiation and contribute to downstream lineages through a surprisingly broad distribution of individual fate outcomes. Although decision-making can be heavily influenced by environmental cues to induce morphological phenotypes, axial progenitors intrinsically mature over developmental time to favor the neural lineage. Using these data, we present an experimental and analytical framework for exploring the non-homeostatic dynamics of transient progenitor populations as they shape complex tissues during critical developmental windows.


Sujet(s)
Différenciation cellulaire , Lignage cellulaire , Cellules souches embryonnaires de souris , Animaux , Souris , Cellules souches embryonnaires de souris/cytologie , Cellules souches embryonnaires de souris/métabolisme , Régulation de l'expression des gènes au cours du développement , Mésoderme/cytologie , Développement embryonnaire , Somites/cytologie , Somites/métabolisme
3.
Nature ; 626(8001): 1084-1093, 2024 Feb.
Article de Anglais | MEDLINE | ID: mdl-38355799

RÉSUMÉ

The house mouse (Mus musculus) is an exceptional model system, combining genetic tractability with close evolutionary affinity to humans1,2. Mouse gestation lasts only 3 weeks, during which the genome orchestrates the astonishing transformation of a single-cell zygote into a free-living pup composed of more than 500 million cells. Here, to establish a global framework for exploring mammalian development, we applied optimized single-cell combinatorial indexing3 to profile the transcriptional states of 12.4 million nuclei from 83 embryos, precisely staged at 2- to 6-hour intervals spanning late gastrulation (embryonic day 8) to birth (postnatal day 0). From these data, we annotate hundreds of cell types and explore the ontogenesis of the posterior embryo during somitogenesis and of kidney, mesenchyme, retina and early neurons. We leverage the temporal resolution and sampling depth of these whole-embryo snapshots, together with published data4-8 from earlier timepoints, to construct a rooted tree of cell-type relationships that spans the entirety of prenatal development, from zygote to birth. Throughout this tree, we systematically nominate genes encoding transcription factors and other proteins as candidate drivers of the in vivo differentiation of hundreds of cell types. Remarkably, the most marked temporal shifts in cell states are observed within one hour of birth and presumably underlie the massive physiological adaptations that must accompany the successful transition of a mammalian fetus to life outside the womb.


Sujet(s)
Animaux nouveau-nés , Embryon de mammifère , Développement embryonnaire , Gastrula , Analyse sur cellule unique , Imagerie accélérée , Animaux , Femelle , Souris , Grossesse , Animaux nouveau-nés/embryologie , Animaux nouveau-nés/génétique , Différenciation cellulaire/génétique , Embryon de mammifère/cytologie , Embryon de mammifère/embryologie , Développement embryonnaire/génétique , Gastrula/cytologie , Gastrula/embryologie , Gastrulation/génétique , Rein/cytologie , Rein/embryologie , Mésoderme/cytologie , Mésoderme/enzymologie , Neurones/cytologie , Neurones/métabolisme , Rétine/cytologie , Rétine/embryologie , Somites/cytologie , Somites/embryologie , Facteurs temps , Facteurs de transcription/génétique , Transcription génétique , Spécificité d'organe/génétique
4.
Nature ; 614(7948): 500-508, 2023 02.
Article de Anglais | MEDLINE | ID: mdl-36543321

RÉSUMÉ

The vertebrate body displays a segmental organization that is most conspicuous in the periodic organization of the vertebral column and peripheral nerves. This metameric organization is first implemented when somites, which contain the precursors of skeletal muscles and vertebrae, are rhythmically generated from the presomitic mesoderm. Somites then become subdivided into anterior and posterior compartments that are essential for vertebral formation and segmental patterning of the peripheral nervous system1-4. How this key somitic subdivision is established remains poorly understood. Here we introduce three-dimensional culture systems of human pluripotent stem cells called somitoids and segmentoids, which recapitulate the formation of somite-like structures with anteroposterior identity. We identify a key function of the segmentation clock in converting temporal rhythmicity into the spatial regularity of anterior and posterior somitic compartments. We show that an initial 'salt and pepper' expression of the segmentation gene MESP2 in the newly formed segment is transformed into compartments of anterior and posterior identity through an active cell-sorting mechanism. Our research demonstrates that the major patterning modules that are involved in somitogenesis, including the clock and wavefront, anteroposterior polarity patterning and somite epithelialization, can be dissociated and operate independently in our in vitro systems. Together, we define a framework for the symmetry-breaking process that initiates somite polarity patterning. Our work provides a platform for decoding general principles of somitogenesis and advancing knowledge of human development.


Sujet(s)
Plan d'organisation du corps , Techniques de cultures cellulaires tridimensionnelles , Somites , Humains , Techniques in vitro , Somites/cytologie , Somites/embryologie , Somites/métabolisme , Rachis/cytologie , Rachis/embryologie , Horloges biologiques , Épithélium/embryologie
5.
Nature ; 614(7948): 509-520, 2023 02.
Article de Anglais | MEDLINE | ID: mdl-36543322

RÉSUMÉ

The segmented body plan of vertebrates is established during somitogenesis, a well-studied process in model organisms; however, the details of this process in humans remain largely unknown owing to ethical and technical limitations. Despite recent advances with pluripotent stem cell-based approaches1-5, models that robustly recapitulate human somitogenesis in both space and time remain scarce. Here we introduce a pluripotent stem cell-derived mesoderm-based 3D model of human segmentation and somitogenesis-which we termed 'axioloid'-that captures accurately the oscillatory dynamics of the segmentation clock and the morphological and molecular characteristics of sequential somite formation in vitro. Axioloids show proper rostrocaudal patterning of forming segments and robust anterior-posterior FGF-WNT signalling gradients and retinoic acid signalling components. We identify an unexpected critical role of retinoic acid signalling in the stabilization of forming segments, indicating distinct, but also synergistic effects of retinoic acid and extracellular matrix on the formation and epithelialization of somites. Comparative analysis demonstrates marked similarities of axioloids to the human embryo, further validated by the presence of a Hox code in axioloids. Finally, we demonstrate the utility of axioloids for studying the pathogenesis of human congenital spine diseases using induced pluripotent stem cells with mutations in HES7 and MESP2. Our results indicate that axioloids represent a promising platform for the study of axial development and disease in humans.


Sujet(s)
Plan d'organisation du corps , Techniques de cultures cellulaires tridimensionnelles , Somites , Humains , Plan d'organisation du corps/effets des médicaments et des substances chimiques , Matrice extracellulaire/métabolisme , Facteurs de croissance fibroblastique/métabolisme , Techniques in vitro , Cellules souches pluripotentes induites/cytologie , Cellules souches pluripotentes induites/métabolisme , Modèles biologiques , Mutation , Somites/cytologie , Somites/effets des médicaments et des substances chimiques , Somites/embryologie , Somites/métabolisme , Maladies du rachis/anatomopathologie , Trétinoïne/métabolisme , Trétinoïne/pharmacologie , Voie de signalisation Wnt/effets des médicaments et des substances chimiques
6.
PLoS Genet ; 18(1): e1010000, 2022 01.
Article de Anglais | MEDLINE | ID: mdl-35025872

RÉSUMÉ

Organisms are inherently equipped with buffering systems against genetic perturbations. Genetic compensation, the compensatory response by upregulating another gene or genes, is one such buffering mechanism. Recently, a well-conserved compensatory mechanism was proposed: transcriptional adaptation of homologs under the nonsense-mediated mRNA decay pathways. However, this model cannot explain the onset of all compensatory events. We report a novel genetic compensation mechanism operating over the Mesp gene locus. Mesp1 and Mesp2 are paralogs located adjacently in the genome. Mesp2 loss is partially rescued by Mesp1 upregulation in the presomitic mesoderm (PSM). Using a cultured PSM induction system, we reproduced the compensatory response in vitro and found that the Mesp2-enhancer is required to promote Mesp1. We revealed that the Mesp2-enhancer directly interacts with the Mesp1 promoter, thereby upregulating Mesp1 expression upon the loss of Mesp2. Of note, this interaction is established by genomic arrangement upon PSM development independently of Mesp2 disruption. We propose that the repurposing of this established enhancer-promoter communication is the mechanism underlying this compensatory response for the upregulation of the adjacent gene.


Sujet(s)
Facteurs de transcription à motif basique hélice-boucle-hélice/génétique , Somites/cytologie , Animaux , Cellules cultivées , Compensation de dosage génétique , Éléments activateurs (génétique) , Régulation de l'expression des gènes au cours du développement , Souris , Dégradation des ARNm non-sens , Régions promotrices (génétique) , Somites/métabolisme
7.
Dev Biol ; 478: 155-162, 2021 10.
Article de Anglais | MEDLINE | ID: mdl-34256037

RÉSUMÉ

In vertebrate embryos, the kidney primordium metanephros is formed from two distinct cell lineages, Wolffian duct and metanephric mesenchyme, which were classically grouped as intermediate mesoderm. Whereas the reciprocal interactions between these two cell populations in kidney development have been studied extensively, the mechanisms generating them remain elusive. Here, we show that the mouse cell lineage that forms nephric mesenchyme develops as a subpopulation of Tbx6-expressing mesodermal precursor derivatives of neuro-mesodermal progenitors (NMPs) under the condition of bone morphogenetic protein (BMP)-signal-dependent Osr1 expression. The Osr1-expressing nephric mesenchyme precursors were confirmed as descendants of NMPs because they were labeled by Sox2 N1 enhancer-EGFP. In Tbx6 mutant embryos, nephric mesenchyme changed its fate into neural tissues, which reflected its NMP origin. In Osr1 mutant embryos, the specific region of the Tbx6-expressing mesoderm precursor, which normally expresses Osr1 and develops into the nephric mesenchyme, instead expressed the somite marker FoxC2. BMP signaling activated Osr1 expression in a region of TBX6-expressing mesoderm and elicited nephric mesenchyme development. This study suggested a new model of cell lineage segregation during gastrulation.


Sujet(s)
Gastrulation , Rein/embryologie , Mésoderme/embryologie , Cellules souches/physiologie , Protéines à domaine boîte-T/métabolisme , Facteurs de transcription/métabolisme , Animaux , Protéines morphogénétiques osseuses/métabolisme , Lignage cellulaire , Facteurs de transcription Forkhead/métabolisme , Cellules souches mésenchymateuses/physiologie , Mésoderme/cytologie , Souris , Cellules souches neurales/physiologie , Organogenèse , Transduction du signal , Somites/cytologie , Somites/physiologie
8.
Nat Commun ; 12(1): 3851, 2021 06 22.
Article de Anglais | MEDLINE | ID: mdl-34158501

RÉSUMÉ

Positional information driving limb muscle patterning is contained in connective tissue fibroblasts but not in myogenic cells. Limb muscles originate from somites, while connective tissues originate from lateral plate mesoderm. With cell and genetic lineage tracing we challenge this model and identify an unexpected contribution of lateral plate-derived fibroblasts to the myogenic lineage, preferentially at the myotendinous junction. Analysis of single-cell RNA-sequencing data from whole limbs at successive developmental stages identifies a population displaying a dual muscle and connective tissue signature. BMP signalling is active in this dual population and at the tendon/muscle interface. In vivo and in vitro gain- and loss-of-function experiments show that BMP signalling regulates a fibroblast-to-myoblast conversion. These results suggest a scenario in which BMP signalling converts a subset of lateral plate mesoderm-derived cells to a myogenic fate in order to create a boundary of fibroblast-derived myonuclei at the myotendinous junction that controls limb muscle patterning.


Sujet(s)
Plan d'organisation du corps/génétique , Fibroblastes/métabolisme , Régulation de l'expression des gènes au cours du développement , Muscles squelettiques/métabolisme , Somites/métabolisme , Animaux , Lignage cellulaire/génétique , Cellules cultivées , Embryon de poulet , Membres/embryologie , Fibroblastes/cytologie , Mésoderme/cytologie , Mésoderme/embryologie , Mésoderme/métabolisme , Souris de lignée C57BL , Souris de lignée DBA , Souris transgéniques , Développement musculaire/génétique , Muscles squelettiques/cytologie , Muscles squelettiques/embryologie , RT-PCR , Somites/cytologie , Somites/embryologie
9.
Biochem J ; 478(9): 1809-1825, 2021 05 14.
Article de Anglais | MEDLINE | ID: mdl-33988704

RÉSUMÉ

Epithelial plasticity involved the terminal and transitional stages that occur during epithelial-to-mesenchymal transition (EMT) and mesenchymal-to-epithelial transition (MET), both are essential at different stages of early embryonic development that have been co-opted by cancer cells to undergo tumor metastasis. These processes are regulated at multiple instances, whereas the post-transcriptional regulation of key genes mediated by microRNAs is gaining major attention as a common and conserved pathway. In this review, we focus on discussing the latest findings of the cellular and molecular basis of the less characterized process of MET during embryonic development, with special attention to the role of microRNAs. Although we take in consideration the necessity of being cautious when extrapolating the obtained evidence, we propose some commonalities between early embryonic development and cancer progression that can shed light into our current understanding of this complex event and might aid in the design of specific therapeutic approaches.


Sujet(s)
Développement embryonnaire/génétique , Transition épithélio-mésenchymateuse/génétique , microARN/génétique , Protéines tumorales/génétique , Tumeurs/génétique , Évolution de la maladie , Embryon de mammifère , Régulation de l'expression des gènes tumoraux , Feuillets embryonnaires/cytologie , Feuillets embryonnaires/croissance et développement , Feuillets embryonnaires/métabolisme , Humains , microARN/classification , microARN/métabolisme , Métastase tumorale , Protéines tumorales/classification , Protéines tumorales/métabolisme , Tumeurs/métabolisme , Tumeurs/anatomopathologie , Transduction du signal , Somites/cytologie , Somites/croissance et développement , Somites/métabolisme
11.
Methods Mol Biol ; 2179: 173-181, 2021.
Article de Anglais | MEDLINE | ID: mdl-32939721

RÉSUMÉ

Avian (chick) embryos are an established and accessible model organism making them ideal for studying developmental processes. Chick embryos can be harvested from the egg and cultured allowing real-time observations and imaging. Here, we describe ex vivo culture and preparation of somite tissue followed by time-lapse multi-photon microscopy, image capture and processing. We applied this approach to perform live imaging of somites, the paired segments in vertebrate embryos that form in a regular sequence on either side of the neural tube, posteriorly from presomitic mesoderm (psm). Somites give rise to cell lineages of the musculoskeletal system in the trunk such as skeletal muscle, cartilage and tendon, as well as endothelial cells. Until recently it was not possible to observe the cellular dynamics underlying morphological transitions in live tissue, including in somites which undergo epithelial-to-mesenchymal transitions (EMT) during their differentiation. In addition to the experimental setup, we describe the analytical tools used for image processing.


Sujet(s)
Imagerie tridimensionnelle/méthodes , Microscopie de fluorescence multiphotonique/méthodes , Somites/cytologie , Animaux , Différenciation cellulaire , Embryon de poulet , Transition épithélio-mésenchymateuse , Traitement d'image par ordinateur/méthodes , Techniques de culture de tissus/méthodes
12.
Dev Cell ; 56(1): 141-153.e6, 2021 01 11.
Article de Anglais | MEDLINE | ID: mdl-33308481

RÉSUMÉ

Somite formation is foundational to creating the vertebrate segmental body plan. Here, we describe three transcriptional trajectories toward somite formation in the early mouse embryo. Precursors of the anterior-most somites ingress through the primitive streak before E7 and migrate anteriorly by E7.5, while a second wave of more posterior somites develops in the vicinity of the streak. Finally, neuromesodermal progenitors (NMPs) are set aside for subsequent trunk somitogenesis. Single-cell profiling of T-/- chimeric embryos shows that the anterior somites develop in the absence of T and suggests a cell-autonomous function of T as a gatekeeper between paraxial mesoderm production and the building of the NMP pool. Moreover, we identify putative regulators of early T-independent somites and challenge the T-Sox2 cross-antagonism model in early NMPs. Our study highlights the concept of molecular flexibility during early cell-type specification, with broad relevance for pluripotent stem cell differentiation and disease modeling.


Sujet(s)
Plan d'organisation du corps/génétique , Chimère/métabolisme , Protéines foetales/métabolisme , Régulation de l'expression des gènes au cours du développement/génétique , Mésoderme/cytologie , Facteurs de transcription SOX-B1/métabolisme , Somites/cytologie , Protéines à domaine boîte-T/métabolisme , Animaux , Différenciation cellulaire/génétique , Différenciation cellulaire/physiologie , Lignée cellulaire , Chimère/embryologie , Chimère/génétique , Embryon de mammifère , Femelle , Protéines foetales/génétique , Analyse de profil d'expression de gènes , Cellules germinales/cytologie , Cellules germinales/métabolisme , Hétérozygote , Mâle , Mésoderme/métabolisme , Souris , Souris de lignée C57BL , Analyse sur cellule unique , Somites/métabolisme , Protéines à domaine boîte-T/génétique , Transcriptome/génétique
13.
Nature ; 582(7812): 410-415, 2020 06.
Article de Anglais | MEDLINE | ID: mdl-32528178

RÉSUMÉ

The body plan of the mammalian embryo is shaped through the process of gastrulation, an early developmental event that transforms an isotropic group of cells into an ensemble of tissues that is ordered with reference to three orthogonal axes1. Although model organisms have provided much insight into this process, we know very little about gastrulation in humans, owing to the difficulty of obtaining embryos at such early stages of development and the ethical and technical restrictions that limit the feasibility of observing gastrulation ex vivo2. Here we show that human embryonic stem cells can be used to generate gastruloids-three-dimensional multicellular aggregates that differentiate to form derivatives of the three germ layers organized spatiotemporally, without additional extra-embryonic tissues. Human gastruloids undergo elongation along an anteroposterior axis, and we use spatial transcriptomics to show that they exhibit patterned gene expression. This includes a signature of somitogenesis that suggests that 72-h human gastruloids show some features of Carnegie-stage-9 embryos3. Our study represents an experimentally tractable model system to reveal and examine human-specific regulatory processes that occur during axial organization in early development.


Sujet(s)
Plan d'organisation du corps , Gastrula/cytologie , Cellules souches embryonnaires humaines/cytologie , Organoïdes/cytologie , Organoïdes/embryologie , Somites/cytologie , Somites/embryologie , Plan d'organisation du corps/génétique , Gastrula/embryologie , Gastrula/métabolisme , Régulation de l'expression des gènes au cours du développement , Humains , Techniques in vitro , Organoïdes/métabolisme , Transduction du signal , Somites/métabolisme , Transcriptome
14.
Nature ; 580(7801): 124-129, 2020 04.
Article de Anglais | MEDLINE | ID: mdl-32238941

RÉSUMÉ

Pluripotent stem cells are increasingly used to model different aspects of embryogenesis and organ formation1. Despite recent advances in in vitro induction of major mesodermal lineages and cell types2,3, experimental model systems that can recapitulate more complex features of human mesoderm development and patterning are largely missing. Here we used induced pluripotent stem cells for the stepwise in vitro induction of presomitic mesoderm and its derivatives to model distinct aspects of human somitogenesis. We focused initially on modelling the human segmentation clock, a major biological concept believed to underlie the rhythmic and controlled emergence of somites, which give rise to the segmental pattern of the vertebrate axial skeleton. We observed oscillatory expression of core segmentation clock genes, including HES7 and DKK1, determined the period of the human segmentation clock to be around five hours, and demonstrated the presence of dynamic travelling-wave-like gene expression in in vitro-induced human presomitic mesoderm. Furthermore, we identified and compared oscillatory genes in human and mouse presomitic mesoderm derived from pluripotent stem cells, which revealed species-specific and shared molecular components and pathways associated with the putative mouse and human segmentation clocks. Using CRISPR-Cas9-based genome editing technology, we then targeted genes for which mutations in patients with segmentation defects of the vertebrae, such as spondylocostal dysostosis, have been reported (HES7, LFNG, DLL3 and MESP2). Subsequent analysis of patient-like and patient-derived induced pluripotent stem cells revealed gene-specific alterations in oscillation, synchronization or differentiation properties. Our findings provide insights into the human segmentation clock as well as diseases associated with human axial skeletogenesis.


Sujet(s)
Horloges biologiques/physiologie , Développement embryonnaire/physiologie , Cellules souches pluripotentes/cytologie , Somites/cytologie , Somites/croissance et développement , Malformations multiples/génétique , Animaux , Facteurs de transcription à motif basique hélice-boucle-hélice/déficit , Facteurs de transcription à motif basique hélice-boucle-hélice/génétique , Horloges biologiques/génétique , Développement embryonnaire/génétique , Édition de gène , Régulation de l'expression des gènes au cours du développement/génétique , Glycosyltransferase/déficit , Glycosyltransferase/génétique , Hernie diaphragmatique/génétique , Humains , Techniques in vitro , Protéines et peptides de signalisation intercellulaire/génétique , Protéines et peptides de signalisation intracellulaire/déficit , Protéines et peptides de signalisation intracellulaire/génétique , Mâle , Protéines membranaires/déficit , Protéines membranaires/génétique , Souris , Phénotype , Somites/métabolisme , Facteurs temps
15.
Zygote ; 28(3): 196-202, 2020 Jun.
Article de Anglais | MEDLINE | ID: mdl-32083523

RÉSUMÉ

Marine angelfish (family: Pomacanthidae) are among the most sought-after fish species in the saltwater aquarium trade. However, there is a lack of information in the literature on their early ontogeny. The objective of this study was to describe the embryonic and early larval development of two dwarf angelfish, the bicolour angelfish, Centropyge bicolor and the coral beauty angelfish, Centropyge bispinosa. The eggs of these two species were obtained from spontaneous spawning of the broodstock fish in captivity and incubated at 26.0 ± 0.2°C throughout the study. Fertilized eggs (n = 15) of both species are transparent, pelagic and spherical; the mean diameters of the eggs were measured at 703.6 ± 7.8 µm for C. bicolor and 627.6 ± 7.8 µm for C. bispinosa. The eggs of both species possessed a narrow perivitelline space, smooth and thin chorion, a homogenous and non-segmented yolk as well as a single oil globule. Overall, the observed embryonic development pattern of C. bicolor and C. bispinosa was very similar, and the main difference was the embryonic pigmentation pattern, which only became evident close to hatching. Larvae of both species started hatching at 13 h 30 min after fertilization, and the larval characteristics of both species also showed high levels of similarities. However, the mouth opening time for C. bicolor was 72 h after hatching (AH) and 96 AH for C. bispinosa. In general, the observed early ontogeny of C. bicolor and C. bispinosa also resembled that of other Centropyge species documented in the literature.


Sujet(s)
Embryon non mammalien/embryologie , Développement embryonnaire/physiologie , Ovule/croissance et développement , Perciformes/croissance et développement , Zygote/croissance et développement , Animaux , Blastula/cytologie , Blastula/embryologie , Embryon non mammalien/cytologie , Femelle , Gastrula/cytologie , Gastrula/embryologie , Larve/croissance et développement , Ovule/cytologie , Perciformes/classification , Perciformes/embryologie , Pigmentation/physiologie , Somites/cytologie , Somites/embryologie , Spécificité d'espèce , Facteurs temps , Zygote/cytologie
16.
Nature ; 582(7812): 405-409, 2020 06.
Article de Anglais | MEDLINE | ID: mdl-32076263

RÉSUMÉ

Gastruloids are three-dimensional aggregates of embryonic stem cells that display key features of mammalian development after implantation, including germ-layer specification and axial organization1-3. To date, the expression pattern of only a small number of genes in gastruloids has been explored with microscopy, and the extent to which genome-wide expression patterns in gastruloids mimic those in embryos is unclear. Here we compare mouse gastruloids with mouse embryos using single-cell RNA sequencing and spatial transcriptomics. We identify various embryonic cell types that were not previously known to be present in gastruloids, and show that key regulators of somitogenesis are expressed similarly between embryos and gastruloids. Using live imaging, we show that the somitogenesis clock is active in gastruloids and has dynamics that resemble those in vivo. Because gastruloids can be grown in large quantities, we performed a small screen that revealed how reduced FGF signalling induces a short-tail phenotype in embryos. Finally, we demonstrate that embedding in Matrigel induces gastruloids to generate somites with the correct rostral-caudal patterning, which appear sequentially in an anterior-to-posterior direction over time. This study thus shows the power of gastruloids as a model system for exploring development and somitogenesis in vitro in a high-throughput manner.


Sujet(s)
Gastrula , Cellules souches embryonnaires de souris/cytologie , Organoïdes/cytologie , Organoïdes/embryologie , Analyse sur cellule unique , Somites/cytologie , Somites/embryologie , Transcriptome , Animaux , Collagène , Association médicamenteuse , Embryon de mammifère/cytologie , Embryon de mammifère/embryologie , Embryon de mammifère/métabolisme , Développement embryonnaire , Femelle , Gastrula/cytologie , Gastrula/embryologie , Gastrula/métabolisme , Régulation de l'expression des gènes au cours du développement , Laminine , Mâle , Souris , Cellules souches embryonnaires de souris/métabolisme , Organoïdes/métabolisme , Protéoglycanes , RNA-Seq , Somites/métabolisme , Facteurs temps
17.
Development ; 147(3)2020 02 03.
Article de Anglais | MEDLINE | ID: mdl-32014863

RÉSUMÉ

Cardiopharyngeal mesoderm (CPM) gives rise to muscles of the head and heart. Using genetic lineage analysis in mice, we show that CPM develops into a broad range of pharyngeal structures and cell types encompassing musculoskeletal and connective tissues. We demonstrate that CPM contributes to medial pharyngeal skeletal and connective tissues associated with both branchiomeric and somite-derived neck muscles. CPM and neural crest cells (NCC) make complementary mediolateral contributions to pharyngeal structures, in a distribution established in the early embryo. We further show that biallelic expression of the CPM regulatory gene Tbx1, haploinsufficient in 22q11.2 deletion syndrome patients, is required for the correct patterning of muscles with CPM-derived connective tissue. Our results suggest that CPM plays a patterning role during muscle development, similar to that of NCC during craniofacial myogenesis. The broad lineage contributions of CPM to pharyngeal structures provide new insights into congenital disorders and evolution of the mammalian pharynx.


Sujet(s)
Tissu conjonctif/embryologie , Développement musculaire/génétique , Pharynx/embryologie , Somites/physiologie , Animaux , Plan d'organisation du corps/génétique , Lignage cellulaire/génétique , Régulation de l'expression des gènes au cours du développement , Souris , Souris transgéniques , Crête neurale/métabolisme , Pharynx/cytologie , Somites/cytologie , Protéines à domaine boîte-T/métabolisme
18.
Nature ; 580(7801): 119-123, 2020 04.
Article de Anglais | MEDLINE | ID: mdl-31915376

RÉSUMÉ

Individual cellular activities fluctuate but are constantly coordinated at the population level via cell-cell coupling. A notable example is the somite segmentation clock, in which the expression of clock genes (such as Hes7) oscillates in synchrony between the cells that comprise the presomitic mesoderm (PSM)1,2. This synchronization depends on the Notch signalling pathway; inhibiting this pathway desynchronizes oscillations, leading to somite fusion3-7. However, how Notch signalling regulates the synchronicity of HES7 oscillations is unknown. Here we establish a live-imaging system using a new fluorescent reporter (Achilles), which we fuse with HES7 to monitor synchronous oscillations in HES7 expression in the mouse PSM at a single-cell resolution. Wild-type cells can rapidly correct for phase fluctuations in HES7 oscillations, whereas the absence of the Notch modulator gene lunatic fringe (Lfng) leads to a loss of synchrony between PSM cells. Furthermore, HES7 oscillations are severely dampened in individual cells of Lfng-null PSM. However, when Lfng-null PSM cells were completely dissociated, the amplitude and periodicity of HES7 oscillations were almost normal, which suggests that LFNG is involved mostly in cell-cell coupling. Mixed cultures of control and Lfng-null PSM cells, and an optogenetic Notch signalling reporter assay, revealed that LFNG delays the signal-sending process of intercellular Notch signalling transmission. These results-together with mathematical modelling-raised the possibility that Lfng-null PSM cells shorten the coupling delay, thereby approaching a condition known as the oscillation or amplitude death of coupled oscillators8. Indeed, a small compound that lengthens the coupling delay partially rescues the amplitude and synchrony of HES7 oscillations in Lfng-null PSM cells. Our study reveals a delay control mechanism of the oscillatory networks involved in somite segmentation, and indicates that intercellular coupling with the correct delay is essential for synchronized oscillation.


Sujet(s)
Horloges biologiques/physiologie , Développement embryonnaire/physiologie , Somites/métabolisme , Animaux , Facteurs de transcription à motif basique hélice-boucle-hélice/analyse , Facteurs de transcription à motif basique hélice-boucle-hélice/génétique , Facteurs de transcription à motif basique hélice-boucle-hélice/métabolisme , Protéines de liaison au calcium/métabolisme , Femelle , Gènes rapporteurs/génétique , Glycosyltransferase/déficit , Glycosyltransferase/génétique , Mâle , Souris , Optogénétique , Récepteurs Notch/métabolisme , Transduction du signal , Analyse sur cellule unique , Somites/cytologie , Facteurs temps
19.
Nature ; 580(7801): 113-118, 2020 04.
Article de Anglais | MEDLINE | ID: mdl-31915384

RÉSUMÉ

The segmental organization of the vertebral column is established early in embryogenesis, when pairs of somites are rhythmically produced by the presomitic mesoderm (PSM). The tempo of somite formation is controlled by a molecular oscillator known as the segmentation clock1,2. Although this oscillator has been well-characterized in model organisms1,2, whether a similar oscillator exists in humans remains unknown. Genetic analyses of patients with severe spine segmentation defects have implicated several human orthologues of cyclic genes that are associated with the mouse segmentation clock, suggesting that this oscillator might be conserved in humans3. Here we show that human PSM cells derived in vitro-as well as those of the mouse4-recapitulate the oscillations of the segmentation clock. Human PSM cells oscillate with a period two times longer than that of mouse cells (5 h versus 2.5 h), but are similarly regulated by FGF, WNT, Notch and YAP signalling5. Single-cell RNA sequencing reveals that mouse and human PSM cells in vitro follow a developmental trajectory similar to that of mouse PSM in vivo. Furthermore, we demonstrate that FGF signalling controls the phase and period of oscillations, expanding the role of this pathway beyond its classical interpretation in 'clock and wavefront' models1. Our work identifying the human segmentation clock represents an important milestone in understanding human developmental biology.


Sujet(s)
Horloges biologiques/physiologie , Développement embryonnaire/physiologie , Somites/métabolisme , Animaux , Différenciation cellulaire , Cellules cultivées , Femelle , Facteurs de croissance fibroblastique/métabolisme , Humains , Techniques in vitro , Mâle , Souris , Cellules souches pluripotentes/cytologie , RNA-Seq , Transduction du signal , Analyse sur cellule unique , Somites/cytologie
20.
J R Soc Interface ; 16(160): 20190436, 2019 11 29.
Article de Anglais | MEDLINE | ID: mdl-31771454

RÉSUMÉ

Using a stochastic individual-based modelling approach, we examine the role that Delta-Notch signalling plays in the regulation of a robust and reliable somite segmentation clock. We find that not only can Delta-Notch signalling synchronize noisy cycles of gene expression in adjacent cells in the presomitic mesoderm (as is known), but it can also amplify and increase the coherence of these cycles. We examine some of the shortcomings of deterministic approaches to modelling these cycles and demonstrate how intrinsic noise can play an active role in promoting sustained oscillations, giving rise to noise-induced quasi-cycles. Finally, we explore how translational/transcriptional delays can result in the cycles in neighbouring cells oscillating in anti-phase and we study how this effect relates to the propagation of noise-induced stochastic waves.


Sujet(s)
Horloges biologiques/physiologie , Protéines et peptides de signalisation intracellulaire/métabolisme , Protéines membranaires/métabolisme , Mésoderme/embryologie , Modèles biologiques , Récepteurs Notch/métabolisme , Transduction du signal/physiologie , Animaux , Régulation de l'expression des gènes au cours du développement , Mésoderme/cytologie , Somites/cytologie , Somites/embryologie
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...