Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 1.849
Filtrer
2.
J Immunol ; 213(2): 187-203, 2024 Jul 15.
Article de Anglais | MEDLINE | ID: mdl-38829131

RÉSUMÉ

The RING finger (RNF) family, a group of E3 ubiquitin ligases, plays multiple essential roles in the regulation of innate immunity and resistance to viral infection in mammals. However, it is still unclear whether RNF proteins affect the production of IFN-I and the replication of avian influenza virus (AIV) in ducks. In this article, we found that duck RNF216 (duRNF216) inhibited the duRIG-I signaling pathway. Conversely, duRNF216 deficiency enhanced innate immune responses in duck embryonic fibroblasts. duRNF216 did not interacted with duRIG-I, duMDA5, duMAVS, duSTING, duTBK1, or duIRF7 in the duck RIG-I pathway. However, duRNF216 targeted duTRAF3 and inhibited duMAVS in the recruitment of duTRAF3 in a dose-dependent manner. duRNF216 catalyzed K48-linked polyubiquitination of duck TRAF3, which was degraded by the proteasome pathway. Additionally, AIV PB1 protein competed with duTRAF3 for binding to duRNF216 to reduce degradation of TRAF3 by proteasomes in the cytoplasm, thereby slightly weakening duRNF216-mediated downregulation of IFN-I. Moreover, although duRNF216 downregulated the IFN-ß expression during virus infection, the expression level of IFN-ß in AIV-infected duck embryonic fibroblasts overexpressing duRNF216 was still higher than that in uninfected cells, which would hinder the viral replication. During AIV infection, duRNF216 protein targeted the core protein PB1 of viral polymerase to hinder viral polymerase activity and viral RNA synthesis in the nucleus, ultimately strongly restricting viral replication. Thus, our study reveals a new mechanism by which duRNF216 downregulates innate immunity and inhibits AIV replication in ducks. These findings broaden our understanding of the mechanisms by which the duRNF216 protein affects AIV replication in ducks.


Sujet(s)
Canards , Immunité innée , Sous-type H5N1 du virus de la grippe A , Grippe chez les oiseaux , Transduction du signal , Ubiquitin-protein ligases , Réplication virale , Animaux , Canards/immunologie , Canards/virologie , Réplication virale/immunologie , Transduction du signal/immunologie , Grippe chez les oiseaux/immunologie , Grippe chez les oiseaux/virologie , Sous-type H5N1 du virus de la grippe A/immunologie , Sous-type H5N1 du virus de la grippe A/physiologie , Immunité innée/immunologie , Ubiquitin-protein ligases/génétique , Ubiquitin-protein ligases/immunologie , Fibroblastes/immunologie , Fibroblastes/virologie , Protéines aviaires/immunologie , Protéines aviaires/génétique , Protéines aviaires/métabolisme , Ubiquitination , Protéine-58 à domaine DEAD/métabolisme , Protéine-58 à domaine DEAD/immunologie
3.
Virology ; 596: 110125, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38805804

RÉSUMÉ

Influenza viruses present a significant threat to global health. The production of a universal vaccine is considered essential due to the ineffectiveness of current seasonal influenza vaccines against mutant strains. mRNA technology offers new prospects in vaccinology, with various candidates for different infectious diseases currently in development and testing phases. In this study, we encapsulated a universal influenza mRNA vaccine. The vaccine encoded influenza hemagglutinin (HA), nucleoprotein (NP), and three tandem repeats of matrix protein 2 (3M2e). Twice-vaccinated mice exhibited strong humoral and cell-mediated immune responses in vivo. Notably, these immune responses led to a significant reduction in viral load of the lungs in challenged mice, and also conferred protection against future wild-type H1N1, H3N2, or H5N1 influenza virus challenges. Our findings suggest that this mRNA-universal vaccine strategy for influenza virus may be instrumental in mitigating the impact of future influenza pandemics.


Sujet(s)
Anticorps antiviraux , Glycoprotéine hémagglutinine du virus influenza , Sous-type H3N2 du virus de la grippe A , Vaccins antigrippaux , Souris de lignée BALB C , Infections à Orthomyxoviridae , Protéines de la matrice virale , Vaccins à ARNm , Animaux , Vaccins antigrippaux/immunologie , Vaccins antigrippaux/administration et posologie , Vaccins antigrippaux/génétique , Souris , Infections à Orthomyxoviridae/prévention et contrôle , Infections à Orthomyxoviridae/immunologie , Infections à Orthomyxoviridae/virologie , Anticorps antiviraux/immunologie , Vaccins à ARNm/immunologie , Sous-type H3N2 du virus de la grippe A/immunologie , Sous-type H3N2 du virus de la grippe A/génétique , Glycoprotéine hémagglutinine du virus influenza/immunologie , Glycoprotéine hémagglutinine du virus influenza/génétique , Protéines de la matrice virale/immunologie , Protéines de la matrice virale/génétique , Femelle , Sous-type H1N1 du virus de la grippe A/immunologie , Sous-type H1N1 du virus de la grippe A/génétique , Sous-type H5N1 du virus de la grippe A/immunologie , Sous-type H5N1 du virus de la grippe A/génétique , Vaccins synthétiques/immunologie , Vaccins synthétiques/administration et posologie , Protection croisée/immunologie , Charge virale , Poumon/virologie , Poumon/immunologie , Humains , Protéines viroporines
4.
Poult Sci ; 103(7): 103800, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38743966

RÉSUMÉ

The combination of inflammatory factors resulting from an influenza A virus infection is one of the main causes of death in host animals. Studies have shown that guinea pig guanosine monophosphate binding protein 1 (guanylate-binding protein 1, gGBP1) can downregulate cytokine production induced by the influenza virus. Therefore, exploring the innate immune defense mechanism of GBP1 in the process of H5N1 influenza virus infection has important implications for understanding the pathogenic mechanism, disease prevention, and the control of influenza A virus infections. We found that, in addition to inhibiting the early replication of influenza virus, gGBP1 also inhibited the production of CCL2 and CXCL10 cytokines induced by the influenza virus as well as the proliferation of mononuclear macrophages induced by these cytokines. These findings further confirmed that gGBP1 inhibited the production of cytokines through its GTPase activity and cell proliferation through its C-terminal α-helix structure. This study revealed the effect of gGBP1 on the production of cellular inflammatory factors during influenza virus infection and determined the key amino acid residues that assist in the inhibitory processes mediated by gGBP1.


Sujet(s)
Protéines G , Sous-type H5N1 du virus de la grippe A , Animaux , Sous-type H5N1 du virus de la grippe A/physiologie , Sous-type H5N1 du virus de la grippe A/immunologie , Protéines G/génétique , Protéines G/métabolisme , Protéines G/immunologie , Cytokines/métabolisme , Cytokines/génétique , Grippe chez les oiseaux/virologie , Grippe chez les oiseaux/immunologie , dGTPases/métabolisme , dGTPases/génétique , Immunité innée , Maladies de la volaille/virologie , Maladies de la volaille/immunologie , Poulets
6.
Vaccine ; 42(18): 3756-3767, 2024 Jul 11.
Article de Anglais | MEDLINE | ID: mdl-38724417

RÉSUMÉ

A Newcastle disease virus (NDV)-vectored vaccine expressing clade 2.3.4.4b H5 Hemagglutinin was developed and assessed for efficacy against H5N1 highly pathogenic avian influenza (HPAI) in specific pathogen-free (SPF) chickens, broilers, and domestic ducks. In SPF chickens, the live recombinant NDV-vectored vaccine, rK148/22-H5, achieved complete survival against HPAI and NDV challenges and significantly reduced viral shedding. Notably, the live rK148/22-H5 vaccine conferred good clinical protection in broilers despite the presence of maternally derived antibodies. Good clinical protection was observed in domestic ducks, with decreased viral shedding. It demonstrated complete survival and reduced cloacal viral shedding when used as an inactivated vaccine from SPF chickens. The rK148/22-H5 vaccine is potentially a viable and supportive option for biosecurity measure, effectively protecting in chickens against the deadly clade 2.3.4.4b H5 HPAI and NDV infections. Furthermore, it aligns with the strategy of Differentiating Infected from Vaccinated Animals (DIVA).


Sujet(s)
Anticorps antiviraux , Poulets , Canards , Glycoprotéine hémagglutinine du virus influenza , Sous-type H5N1 du virus de la grippe A , Grippe chez les oiseaux , Virus de la maladie de Newcastle , Vaccins inactivés , Vaccins synthétiques , Excrétion virale , Animaux , Poulets/immunologie , Grippe chez les oiseaux/prévention et contrôle , Grippe chez les oiseaux/immunologie , Virus de la maladie de Newcastle/immunologie , Virus de la maladie de Newcastle/génétique , Sous-type H5N1 du virus de la grippe A/immunologie , Sous-type H5N1 du virus de la grippe A/génétique , Sous-type H5N1 du virus de la grippe A/pathogénicité , Canards/virologie , Canards/immunologie , Vaccins inactivés/immunologie , Vaccins inactivés/administration et posologie , Vaccins synthétiques/immunologie , Vaccins synthétiques/administration et posologie , Vaccins synthétiques/génétique , Anticorps antiviraux/immunologie , Anticorps antiviraux/sang , Glycoprotéine hémagglutinine du virus influenza/immunologie , Glycoprotéine hémagglutinine du virus influenza/génétique , Vaccins antigrippaux/immunologie , Vaccins antigrippaux/administration et posologie , Vaccins antigrippaux/génétique , Organismes exempts d'organismes pathogènes spécifiques , Vaccins atténués/immunologie , Vaccins atténués/administration et posologie , Vaccins atténués/génétique , Maladies de la volaille/prévention et contrôle , Maladies de la volaille/virologie , Maladies de la volaille/immunologie , Maladie de Newcastle/prévention et contrôle , Maladie de Newcastle/immunologie , Vaccins antiviraux/immunologie , Vaccins antiviraux/administration et posologie , Vaccins antiviraux/génétique
7.
FEMS Microbiol Rev ; 48(3)2024 May 08.
Article de Anglais | MEDLINE | ID: mdl-38734891

RÉSUMÉ

Avian influenza viruses evolve antigenically to evade host immunity. Two influenza A virus surface glycoproteins, the haemagglutinin and neuraminidase, are the major targets of host immunity and undergo antigenic drift in response to host pre-existing humoral and cellular immune responses. Specific sites have been identified as important epitopes in prominent subtypes such as H5 and H7, which are of animal and public health significance due to their panzootic and pandemic potential. The haemagglutinin is the immunodominant immunogen, it has been extensively studied, and the antigenic reactivity is closely monitored to ensure candidate vaccine viruses are protective. More recently, the neuraminidase has received increasing attention for its role as a protective immunogen. The neuraminidase is expressed at a lower abundance than the haemagglutinin on the virus surface but does elicit a robust antibody response. This review aims to compile the current information on haemagglutinin and neuraminidase epitopes and immune escape mutants of H5 and H7 highly pathogenic avian influenza viruses. Understanding the evolution of immune escape mutants and the location of epitopes is critical for identification of vaccine strains and development of broadly reactive vaccines that can be utilized in humans and animals.


Sujet(s)
Oiseaux , Épitopes , Glycoprotéine hémagglutinine du virus influenza , Grippe chez les oiseaux , Sialidase , Sialidase/immunologie , Sialidase/génétique , Animaux , Glycoprotéine hémagglutinine du virus influenza/immunologie , Glycoprotéine hémagglutinine du virus influenza/génétique , Glycoprotéine hémagglutinine du virus influenza/composition chimique , Épitopes/immunologie , Épitopes/génétique , Oiseaux/virologie , Grippe chez les oiseaux/immunologie , Grippe chez les oiseaux/virologie , Dérive et cassure antigéniques/immunologie , Humains , Sous-type H5N1 du virus de la grippe A/immunologie , Sous-type H5N1 du virus de la grippe A/génétique , Grippe humaine/immunologie , Grippe humaine/virologie , Grippe humaine/prévention et contrôle , Protéines virales/immunologie , Protéines virales/génétique , Protéines virales/composition chimique , Virus de la grippe A/immunologie , Virus de la grippe A/génétique
8.
Vaccine ; 42(15): 3505-3513, 2024 May 31.
Article de Anglais | MEDLINE | ID: mdl-38714444

RÉSUMÉ

It is necessary to develop universal vaccines that act broadly and continuously to combat regular seasonal epidemics of influenza and rare pandemics. The aim of this study was to find the optimal dose regimen for the efficacy and safety of a mixture of previously developed recombinant adenovirus-based vaccines that expressed influenza nucleoprotein, hemagglutinin, and ectodomain of matrix protein 2 (rAd/NP and rAd/HA-M2e). The vaccine efficacy and safety were measured in the immunized mice with the mixture of rAd/NP and rAd/HA-M2e intranasally or intramuscularly. The minimum dose that would be efficacious in a single intranasal administration of the vaccine mixture and cross-protective efficacy against various influenza strains were examined. In addition, the immune responses that may affect the cross-protective efficacy were measured. We found that intranasal administration is an optimal route for 107 pfu of vaccine mixture, which is effective against pre-existing immunity against adenovirus. In a study to find the minimum dose with vaccine efficacy, the 106 pfu of vaccine mixture showed higher antibody titers to the nucleoprotein than did the same dose of rAd/NP alone in the serum of immunized mice. The 106 pfu of vaccine mixture overcame the morbidity and mortality of mice against the lethal dose of pH1N1, H3N2, and H5N1 influenza infections. No noticeable side effects were observed in single and repeated toxicity studies. We found that the mucosal administration of adenovirus-based universal influenza vaccine has both efficacy and safety, and can provide cross-protection against various influenza infections even at doses lower than those previously known to be effective.


Sujet(s)
Adenoviridae , Administration par voie nasale , Anticorps antiviraux , Protection croisée , Glycoprotéine hémagglutinine du virus influenza , Vaccins antigrippaux , Souris de lignée BALB C , Infections à Orthomyxoviridae , Protéines de la matrice virale , Animaux , Vaccins antigrippaux/immunologie , Vaccins antigrippaux/administration et posologie , Vaccins antigrippaux/génétique , Protéines de la matrice virale/immunologie , Protéines de la matrice virale/génétique , Adenoviridae/génétique , Adenoviridae/immunologie , Glycoprotéine hémagglutinine du virus influenza/immunologie , Glycoprotéine hémagglutinine du virus influenza/génétique , Souris , Anticorps antiviraux/sang , Anticorps antiviraux/immunologie , Infections à Orthomyxoviridae/prévention et contrôle , Infections à Orthomyxoviridae/immunologie , Femelle , Sous-type H3N2 du virus de la grippe A/immunologie , Sous-type H3N2 du virus de la grippe A/génétique , Vaccins synthétiques/immunologie , Vaccins synthétiques/administration et posologie , Vaccins synthétiques/génétique , Sous-type H1N1 du virus de la grippe A/immunologie , Sous-type H5N1 du virus de la grippe A/immunologie , Sous-type H5N1 du virus de la grippe A/génétique , , Nucléoprotéines/immunologie , Nucléoprotéines/génétique , Protéines du core viral/immunologie , Protéines du core viral/génétique , Injections musculaires , Protéines viroporines
10.
Nat Commun ; 15(1): 4350, 2024 May 23.
Article de Anglais | MEDLINE | ID: mdl-38782954

RÉSUMÉ

mRNA lipid nanoparticle (LNP) vaccines would be useful during an influenza virus pandemic since they can be produced rapidly and do not require the generation of egg-adapted vaccine seed stocks. Highly pathogenic avian influenza viruses from H5 clade 2.3.4.4b are circulating at unprecedently high levels in wild and domestic birds and have the potential to adapt to humans. Here, we generate an mRNA lipid nanoparticle (LNP) vaccine encoding the hemagglutinin (HA) glycoprotein from a clade 2.3.4.4b H5 isolate. The H5 mRNA-LNP vaccine elicits strong T cell and antibody responses in female mice, including neutralizing antibodies and broadly-reactive anti-HA stalk antibodies. The H5 mRNA-LNP vaccine elicits antibodies at similar levels compared to whole inactivated vaccines in female mice with and without prior H1N1 exposures. Finally, we find that the H5 mRNA-LNP vaccine is immunogenic in male ferrets and prevents morbidity and mortality of animals following 2.3.4.4b H5N1 challenge. Together, our data demonstrate that a monovalent mRNA-LNP vaccine expressing 2.3.4.4b H5 is immunogenic and protective in pre-clinical animal models.


Sujet(s)
Anticorps antiviraux , Furets , Glycoprotéine hémagglutinine du virus influenza , Sous-type H5N1 du virus de la grippe A , Vaccins antigrippaux , Nanoparticules , Infections à Orthomyxoviridae , Vaccins à ARNm , Animaux , Vaccins antigrippaux/immunologie , Vaccins antigrippaux/administration et posologie , Femelle , Souris , Nanoparticules/composition chimique , Mâle , Sous-type H5N1 du virus de la grippe A/immunologie , Sous-type H5N1 du virus de la grippe A/génétique , Anticorps antiviraux/immunologie , Glycoprotéine hémagglutinine du virus influenza/immunologie , Glycoprotéine hémagglutinine du virus influenza/génétique , Infections à Orthomyxoviridae/prévention et contrôle , Infections à Orthomyxoviridae/immunologie , Infections à Orthomyxoviridae/virologie , Vaccins à ARNm/immunologie , Anticorps neutralisants/immunologie , Souris de lignée BALB C , Grippe chez les oiseaux/prévention et contrôle , Grippe chez les oiseaux/immunologie , Grippe chez les oiseaux/virologie , Humains , ARN messager/génétique , ARN messager/immunologie , ARN messager/métabolisme , Sous-type H1N1 du virus de la grippe A/immunologie , Sous-type H1N1 du virus de la grippe A/génétique , Oiseaux/virologie , Lipides/composition chimique , Liposomes
11.
Hum Vaccin Immunother ; 20(1): 2347019, 2024 Dec 31.
Article de Anglais | MEDLINE | ID: mdl-38807261

RÉSUMÉ

Influenza A viruses pose a significant threat to global health, impacting both humans and animals. Zoonotic transmission, particularly from swine and avian species, is the primary source of human influenza outbreaks. Notably, avian influenza viruses of the H5N1, H7N9, and H9N2 subtypes are of pandemic concern through their global spread and sporadic human infections. Preventing and controlling these viruses is critical due to their high threat level. Vaccination remains the most effective strategy for influenza prevention and control in humans, despite varying vaccine efficacy across strains. This review focuses specifically on pandemic preparedness for avian influenza viruses. We delve into vaccines tested in animal models and summarize clinical trials conducted on H5N1, H7N9, and H9N2 vaccines in humans.


Sujet(s)
Oiseaux , Vaccins antigrippaux , Grippe chez les oiseaux , Grippe humaine , Pandémies , Animaux , Vaccins antigrippaux/immunologie , Vaccins antigrippaux/administration et posologie , Humains , Grippe humaine/prévention et contrôle , Grippe humaine/épidémiologie , Grippe humaine/immunologie , Grippe chez les oiseaux/prévention et contrôle , Grippe chez les oiseaux/épidémiologie , Pandémies/prévention et contrôle , Développement de vaccin , Sous-type H7N9 du virus de la grippe A/immunologie , Sous-type H9N2 du virus de la grippe A/immunologie , Sous-type H5N1 du virus de la grippe A/immunologie , Essais cliniques comme sujet , Modèles animaux de maladie humaine , Vaccination ,
12.
PLoS One ; 19(5): e0302865, 2024.
Article de Anglais | MEDLINE | ID: mdl-38723016

RÉSUMÉ

Influenza A viruses (IAVs) continue to pose a huge threat to public health, and their prevention and treatment remain major international issues. Neuraminidase (NA) is the second most abundant surface glycoprotein on influenza viruses, and antibodies to NA have been shown to be effective against influenza infection. In this study, we generated a monoclonal antibody (mAb), named FNA1, directed toward N1 NAs. FNA1 reacted with H1N1 and H5N1 NA, but failed to react with the NA proteins of H3N2 and H7N9. In vitro, FNA1 displayed potent antiviral activity that mediated both NA inhibition (NI) and blocking of pseudovirus release. Moreover, residues 219, 254, 358, and 388 in the NA protein were critical for FNA1 binding to H1N1 NA. However, further validation is necessary to confirm whether FNA1 mAb is indeed a good inhibitor against NA for application against H1N1 and H5N1 viruses.


Sujet(s)
Anticorps monoclonaux , Sous-type H1N1 du virus de la grippe A , Sialidase , Sialidase/immunologie , Sialidase/métabolisme , Sialidase/antagonistes et inhibiteurs , Anticorps monoclonaux/immunologie , Sous-type H1N1 du virus de la grippe A/immunologie , Humains , Animaux , Anticorps antiviraux/immunologie , Souris , Sous-type H5N1 du virus de la grippe A/immunologie , Souris de lignée BALB C , Antiviraux/pharmacologie , Protéines virales/immunologie , Protéines virales/métabolisme , Sous-type H3N2 du virus de la grippe A/immunologie , Sous-type H7N9 du virus de la grippe A/immunologie
13.
J Virol ; 98(3): e0112923, 2024 Mar 19.
Article de Anglais | MEDLINE | ID: mdl-38305155

RÉSUMÉ

The global circulation of clade 2.3.4.4b H5Ny highly pathogenic avian influenza viruses (HPAIVs) in poultry and wild birds, increasing mammal infections, continues to pose a public health threat and may even form a pandemic. An efficacious vaccine against H5Ny HPAIVs is crucial for emergency use and pandemic preparedness. In this study, we developed a parainfluenza virus 5 (PIV5)-based vaccine candidate expressing hemagglutinin (HA) protein of clade 2.3.4.4b H5 HPAIV, termed rPIV5-H5, and evaluated its safety and efficacy in mice and ferrets. Our results demonstrated that intranasal immunization with a single dose of rPIV5-H5 could stimulate H5-specific antibody responses, moreover, a prime-boost regimen using rPIV5-H5 stimulated robust humoral, cellular, and mucosal immune responses in mice. Challenge study showed that rPIV5-H5 prime-boost regimen provided sterile immunity against lethal clade 2.3.4.4b H5N1 virus infection in mice and ferrets. Notably, rPIV5-H5 prime-boost regimen provided protection in mice against challenge with lethal doses of heterologous clades 2.2, 2.3.2, and 2.3.4 H5N1, and clade 2.3.4.4h H5N6 viruses. These results revealed that rPIV5-H5 can elicit protective immunity against a diverse clade of highly pathogenic H5Ny virus infection in mammals, highlighting the potential of rPIV5-H5 as a pan-H5 influenza vaccine candidate for emergency use.IMPORTANCEClade 2.3.4.4b H5Ny highly pathogenic avian influenza viruses (HPAIVs) have been widely circulating in wild birds and domestic poultry all over the world, leading to infections in mammals, including humans. Here, we developed a recombinant PIV5-vectored vaccine candidate expressing the HA protein of clade 2.3.4.4b H5 virus. Intranasal immunization with rPIV5-H5 in mice induced airway mucosal IgA responses, high levels of antibodies, and robust T-cell responses. Importantly, rPIV5-H5 conferred complete protection in mice and ferrets against clade 2.3.4.4b H5N1 virus challenge, the protective immunity was extended against heterologous H5Ny viruses. Taken together, our data demonstrate that rPIV5-H5 is a promising vaccine candidate against diverse H5Ny influenza viruses in mammals.


Sujet(s)
Sous-type H5N1 du virus de la grippe A , , Vaccins antigrippaux , Infections à Orthomyxoviridae , Virus parainfluenza de type 5 , Animaux , Humains , Souris , Furets/immunologie , Glycoprotéine hémagglutinine du virus influenza/génétique , Glycoprotéine hémagglutinine du virus influenza/immunologie , Immunité cellulaire , Immunité humorale , Immunité muqueuse , Sous-type H5N1 du virus de la grippe A/composition chimique , Sous-type H5N1 du virus de la grippe A/classification , Sous-type H5N1 du virus de la grippe A/génétique , Sous-type H5N1 du virus de la grippe A/immunologie , /composition chimique , /classification , /génétique , /immunologie , Grippe chez les oiseaux/immunologie , Grippe chez les oiseaux/prévention et contrôle , Grippe chez les oiseaux/transmission , Grippe chez les oiseaux/virologie , Vaccins antigrippaux/administration et posologie , Vaccins antigrippaux/effets indésirables , Vaccins antigrippaux/génétique , Vaccins antigrippaux/immunologie , Infections à Orthomyxoviridae/immunologie , Infections à Orthomyxoviridae/prévention et contrôle , Infections à Orthomyxoviridae/transmission , Infections à Orthomyxoviridae/virologie , /méthodes , Virus parainfluenza de type 5/génétique , Virus parainfluenza de type 5/immunologie , Virus parainfluenza de type 5/métabolisme , Vaccins synthétiques/administration et posologie , Vaccins synthétiques/effets indésirables , Vaccins synthétiques/génétique , Vaccins synthétiques/immunologie , Administration par voie nasale , Volaille/virologie , Immunoglobuline A/immunologie , Lymphocytes T/immunologie
14.
Viruses ; 14(2)2022 02 18.
Article de Anglais | MEDLINE | ID: mdl-35216022

RÉSUMÉ

Avian influenza virus remains a threat for humans, and vaccines preventing both avian and human influenza virus infections are needed. Since virus-like particles (VLPs) expressing single neuraminidase (NA) subtype elicited limited heterosubtypic protection, VLPs expressing multiple NA subtypes would enhance the extent of heterosubtypic immunity. Here, we generated avian influenza VLP vaccines displaying H5 hemagglutinin (HA) antigen with or without avian NA subtypes (N1, N6, N8) in different combinations. BALB/c mice were intramuscularly immunized with the VLPs to evaluate the resulting homologous and heterosubtypic immunity upon challenge infections with the avian and human influenza viruses (A/H5N1, A/H3N2, A/H1N1). VLPs expressing H5 alone conferred homologous protection but not heterosubtypic protection, whereas VLPs co-expressing H5 and NA subtypes elicited both homologous and heterosubtypic protection against human influenza viruses in mice. We observed that VLP induced neuraminidase inhibitory activities (NAI), virus-neutralizing activity, and virus-specific antibody (IgG, IgA) responses were strongly correlated with the number of different NA subtype expressions on the VLPs. VLPs expressing all 3 NA subtypes resulted in the highest protection, indicated by the lowest lung titer, negligible body weight changes, and survival in immunized mice. These results suggest that expressing multiple neuraminidases in avian HA VLPs is a promising approach for developing a universal influenza A vaccine against avian and human influenza virus infections.


Sujet(s)
Sous-type H1N1 du virus de la grippe A/immunologie , Sous-type H3N2 du virus de la grippe A/immunologie , Sous-type H5N1 du virus de la grippe A/immunologie , Sialidase/immunologie , Infections à Orthomyxoviridae/prévention et contrôle , Vaccins à pseudo-particules virales/immunologie , Animaux , Anticorps antiviraux/immunologie , Femelle , Glycoprotéine hémagglutinine du virus influenza , Sous-type H1N1 du virus de la grippe A/génétique , Sous-type H3N2 du virus de la grippe A/génétique , Vaccins antigrippaux/immunologie , Souris , Souris de lignée BALB C , Sialidase/génétique , Analyse de survie , Vaccination , Vaccins à pseudo-particules virales/administration et posologie , Vaccins à pseudo-particules virales/génétique
15.
Viruses ; 14(2)2022 02 21.
Article de Anglais | MEDLINE | ID: mdl-35216034

RÉSUMÉ

Involvement of macrophages in the SARS-CoV-2-associated cytokine storm, the excessive secretion of inflammatory/anti-viral factors leading to the acute respiratory distress syndrome (ARDS) in COVID-19 patients, is unclear. In this study, we sought to characterize the interplay between the virus and primary human monocyte-derived macrophages (MDM). MDM were stimulated with recombinant IFN-α and/or infected with either live or UV-inactivated SARS-CoV-2 or with two reassortant influenza viruses containing external genes from the H1N1 PR8 strain and heterologous internal genes from a highly pathogenic avian H5N1 or a low pathogenic human seasonal H1N1 strain. Virus replication was monitored by qRT-PCR for the E viral gene for SARS-CoV-2 or M gene for influenza and TCID50 or plaque assay, and cytokine levels were assessed semiquantitatively with qRT-PCR and a proteome cytokine array. We report that MDM are not susceptible to SARS-CoV-2 whereas both influenza viruses replicated in MDM, albeit abortively. We observed a modest cytokine response in SARS-CoV-2 exposed MDM with notable absence of IFN-ß induction, which was instead strongly induced by the influenza viruses. Pre-treatment of MDM with IFN-α enhanced proinflammatory cytokine expression upon exposure to virus. Together, the findings concur that the hyperinflammation observed in SARS-CoV-2 infection is not driven by macrophages.


Sujet(s)
Inflammation/virologie , Macrophages/immunologie , Macrophages/virologie , SARS-CoV-2/immunologie , Réplication virale/génétique , Lignée cellulaire , Lignée cellulaire tumorale , Cellules cultivées , Cytokines/analyse , Cytokines/immunologie , Humains , Sous-type H1N1 du virus de la grippe A/génétique , Sous-type H1N1 du virus de la grippe A/immunologie , Sous-type H5N1 du virus de la grippe A/génétique , Sous-type H5N1 du virus de la grippe A/immunologie , Interféron alpha/pharmacologie , Macrophages/effets des médicaments et des substances chimiques , Mâle , SARS-CoV-2/génétique , SARS-CoV-2/physiologie
16.
Sci Rep ; 12(1): 2311, 2022 02 10.
Article de Anglais | MEDLINE | ID: mdl-35145121

RÉSUMÉ

Many studies have been conducted on measuring avian influenza viruses and their hemagglutinin (HA) antigens via electrochemical principles; most of these studies have used gold electrodes on ceramic, glass, or silicon substrates, and/or labeling for signal enhancement. Herein, we present a paper-based immunosensor for label-free measurement of multiple avian influenza virus (H5N1, H7N9, and H9N2) antigens using flexible screen-printed carbon nanotube-polydimethylsiloxane electrodes. These flexible electrodes on a paper substrate can complement the physical weakness of the paper-based sensors when wetted, without affecting flexibility. The relative standard deviation of the peak currents was 1.88% when the electrodes were repeatedly bent and unfolded twenty times with deionized water provided each cycle, showing the stability of the electrodes. For the detection of HA antigens, approximately 10-µl samples (concentration: 100 pg/ml-100 ng/ml) were needed to form the antigen-antibody complexes during 20-30 min incubation, and the immune responses were measured via differential pulse voltammetry. The limits of detections were 55.7 pg/ml (0.95 pM) for H5N1 HA, 99.6 pg/ml (1.69 pM) for H7N9 HA, and 54.0 pg/ml (0.72 pM) for H9N2 HA antigens in phosphate buffered saline, and the sensors showed good selectivity and reproducibility. Such paper-based sensors are economical, flexible, robust, and easy-to-manufacture, with the ability to detect several avian influenza viruses.


Sujet(s)
Antigènes viraux/analyse , Techniques de biocapteur/méthodes , Polydiméthylsiloxanes , Techniques électrochimiques/méthodes , Électrodes , Dosage immunologique/méthodes , Sous-type H5N1 du virus de la grippe A/immunologie , Sous-type H7N9 du virus de la grippe A/immunologie , Sous-type H9N2 du virus de la grippe A/immunologie , Nanotubes de carbone , Papier , Virologie/méthodes , Animaux , Oiseaux , Humains , Grippe chez les oiseaux/diagnostic , Grippe chez les oiseaux/virologie , Grippe humaine/diagnostic , Grippe humaine/virologie , Limite de détection , Reproductibilité des résultats
17.
FASEB J ; 36(3): e22182, 2022 03.
Article de Anglais | MEDLINE | ID: mdl-35113455

RÉSUMÉ

Pre-pandemic influenza H5N1 vaccine has relatively low immunogenicity and often requires high antigen amounts and two immunizations to induce protective immunity. Incorporation of vaccine adjuvants is promising to stretch vaccine doses during pandemic outbreaks. This study presents a physical radiofrequency (RF) adjuvant (RFA) to conveniently and effectively increase the immunogenicity and efficacy of H5N1 vaccine without modification of vaccine preparation. Physical RFA is based on a brief RF treatment of the skin to induce thermal stress to enhance intradermal vaccine-induced immune responses with minimal local or systemic adverse reactions. We found that physical RFA could significantly increase H5N1 vaccine-induced hemagglutination inhibition antibody titers in murine models. Intradermal H5N1 vaccine in the presence of RFA but not vaccine alone significantly lowered lung viral titers, reduced body weight loss, and improved survival rates after lethal viral challenges. The improved protection in the presence of RFA was correlated with enhanced humoral and cellular immune responses to H5N1 vaccination in both male and female mice, indicating no gender difference of RFA effects in murine models. Our data support further development of the physical RFA to conveniently enhance the efficacy of H5N1 vaccine.


Sujet(s)
Immunité cellulaire/immunologie , Immunité humorale/immunologie , Sous-type H5N1 du virus de la grippe A/immunologie , Vaccins antigrippaux/immunologie , Infections à Orthomyxoviridae/immunologie , Adjuvants immunologiques/pharmacologie , Animaux , Anticorps antiviraux/immunologie , Femelle , Tests d'inhibition de l'hémagglutination/méthodes , Poumon/immunologie , Poumon/virologie , Mâle , Souris , Souris de lignée C57BL , Pandémies/prévention et contrôle , Vaccination/méthodes
18.
Viruses ; 14(1)2022 01 17.
Article de Anglais | MEDLINE | ID: mdl-35062369

RÉSUMÉ

Highly pathogenic avian influenza viruses (HPAIVs) cause fatal systemic infections in chickens, which are associated with endotheliotropism. HPAIV infections in wild birds are generally milder and not endotheliotropic. Here, we aimed to elucidate the species-specific endotheliotropism of HPAIVs using primary chicken and duck aortic endothelial cells (chAEC and dAEC respectively). Viral replication kinetics and host responses were assessed in chAEC and dAEC upon inoculation with HPAIV H5N1 and compared to embryonic fibroblasts. Although dAEC were susceptible to HPAIV upon inoculation at high multiplicity of infection, HPAIV replicated to lower levels in dAEC than chAEC during multi-cycle replication. The susceptibility of duck embryonic endothelial cells to HPAIV was confirmed in embryos. Innate immune responses upon HPAIV inoculation differed between chAEC, dAEC, and embryonic fibroblasts. Expression of the pro-inflammatory cytokine IL8 increased in chicken cells but decreased in dAEC. Contrastingly, the induction of antiviral responses was stronger in dAEC than in chAEC, and chicken and duck fibroblasts. Taken together, these data demonstrate that although duck endothelial cells are permissive to HPAIV infection, they display markedly different innate immune responses than chAEC and embryonic fibroblasts. These differences may contribute to the species-dependent differences in endotheliotropism and consequently HPAIV pathogenesis.


Sujet(s)
Cellules endothéliales/immunologie , Cellules endothéliales/virologie , Immunité innée , Sous-type H5N1 du virus de la grippe A/immunologie , Sous-type H5N1 du virus de la grippe A/physiologie , Tropisme viral , Réplication virale/immunologie , Animaux , Poulets/virologie , Cytokines , Canards/virologie , Sous-type H5N1 du virus de la grippe A/pathogénicité , Grippe chez les oiseaux/virologie , Réplication virale/physiologie
19.
BMC Vet Res ; 18(1): 3, 2022 Jan 03.
Article de Anglais | MEDLINE | ID: mdl-34980121

RÉSUMÉ

BACKGROUND: The development of an influenza vaccine for poultry that provides broadly protective immunity against influenza H5Nx viruses is a challenging goal. RESULTS: Lactococcus lactis (L. lactis)/pNZ8149-HA1-M2 expressing hemagglutinin-1 (HA1) of A/chicken/Vietnam/NCVD-15A59/2015 (H5N6) and the conserved M2 gene of A/Vietnam/1203/2004 (H5N1) was generated. L. lactis/pNZ8149-HA1-M2 could induce significant humoral, mucosal and cell-mediated immune responses, as well as neutralization antibodies. Importantly, L. lactis/pNZ8149-HA1-M2 could prevent disease symptoms without significant weight loss and confer protective immunity in a chicken model against lethal challenge with divergent influenza H5Nx viruses, including H5N6 and H5N1. CONCLUSIONS: L. lactis/pNZ8149-HA1-M2 can serve as a promising vaccine candidate in poultry industry for providing protection against H5Nx virus infection in the field application.


Sujet(s)
Sous-type H5N1 du virus de la grippe A , Vaccins antigrippaux/immunologie , Lactococcus lactis , Infections à Orthomyxoviridae/prévention et contrôle , Maladies de la volaille/prévention et contrôle , Animaux , Anticorps antiviraux , Poulets , Glycoprotéine hémagglutinine du virus influenza/génétique , Sous-type H5N1 du virus de la grippe A/immunologie , Lactococcus lactis/génétique , Lactococcus lactis/immunologie , Vaccination/médecine vétérinaire , Vaccins synthétiques/immunologie
20.
J Virol ; 96(5): e0040821, 2022 03 09.
Article de Anglais | MEDLINE | ID: mdl-33853954

RÉSUMÉ

PA-X is a nonstructural protein of influenza A virus (IAV), which is encoded by the polymerase acidic (PA) N-terminal region that contains a C-terminal +1 frameshifted sequence. IAV PA-X protein modulates virus-induced host innate immune responses and viral pathogenicity via suppression of host gene expression or cellular shutoff, through cellular mRNA cleavage. Highly pathogenic avian influenza viruses (HPAIV) of the H5N1 subtype naturally infect different avian species, they have an enormous economic impact in the poultry farming, and they also have zoonotic and pandemic potential, representing a risk to human public health. In the present study, we describe a novel bacterium-based approach to identify amino acid residues in the PA-X protein of the HPAIV A/Viet Nam/1203/2004 H5N1 that are important for its ability to inhibit host protein expression or cellular shutoff activity. Identified PA-X mutants displayed a reduced shutoff activity compared to that of the wild-type A/Viet Nam/1203/2004 H5N1 PA-X protein. Notably, this new bacterium-based screening allowed us to identify amino acid residues widely distributed over the entire N-terminal region of PA-X. Furthermore, we found that some of the residues affecting A/Viet Nam/1203/2004 H5N1 PA-X host shutoff activity also affect PA polymerase activity in a minigenome assay. This information could be used for the rational design of new and more effective compounds with antiviral activity against IAV. Moreover, our results demonstrate the feasibility of using this bacterium-based approach to identify amino acid residues important for the activity of viral proteins to inhibit host gene expression. IMPORTANCE Highly pathogenic avian influenza viruses continue to pose a huge threat to global animal and human health. Despite of the limited genome size of Influenza A virus (IAV), the virus encodes eight main viral structural proteins and multiple accessory nonstructural proteins, depending on the IAV type, subtype, or strain. One of the IAV accessory proteins, PA-X, is encoded by the polymerase acidic (PA) protein and is involved in pathogenicity through the modulation of IAV-induced host inflammatory and innate immune responses. However, the molecular mechanism(s) of IAV PA-X regulation of the host immune response is not well understood. Here, we used, for the first time, a bacterium-based approach for the identification of amino acids important for the ability of IAV PA-X to induce host shutoff activity and describe novel residues relevant for its ability to inhibit host gene expression, and their contribution in PA polymerase activity.


Sujet(s)
Acides aminés , Expression des gènes , Interactions hôte-pathogène , Sous-type H5N1 du virus de la grippe A , Protéines de répression , Protéines virales non structurales , Acides aminés/génétique , Acides aminés/immunologie , Animaux , Bactéries/virologie , Oiseaux/immunologie , Expression des gènes/génétique , Interactions hôte-pathogène/génétique , Interactions hôte-pathogène/immunologie , Humains , Sous-type H5N1 du virus de la grippe A/génétique , Sous-type H5N1 du virus de la grippe A/immunologie , Grippe chez les oiseaux/immunologie , Grippe chez les oiseaux/virologie , Protéines de répression/composition chimique , Protéines de répression/génétique , Protéines de répression/immunologie , Vietnam , Protéines virales non structurales/composition chimique , Protéines virales non structurales/génétique , Protéines virales non structurales/immunologie
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...