Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 1.015
Filtrer
1.
Wiley Interdiscip Rev RNA ; 15(4): e1866, 2024.
Article de Anglais | MEDLINE | ID: mdl-38972853

RÉSUMÉ

Pre-mRNA splicing, the removal of introns and ligation of flanking exons, is a crucial step in eukaryotic gene expression. The spliceosome, a macromolecular complex made up of five small nuclear RNAs (snRNAs) and dozens of proteins, assembles on introns via a complex pathway before catalyzing the two transesterification reactions necessary for splicing. All of these steps have the potential to be highly regulated to ensure correct mRNA isoform production for proper cellular function. While Saccharomyces cerevisiae (yeast) has a limited set of intron-containing genes, many of these genes are highly expressed, resulting in a large number of transcripts in a cell being spliced. As a result, splicing regulation is of critical importance for yeast. Just as in humans, yeast splicing can be influenced by protein components of the splicing machinery, structures and properties of the pre-mRNA itself, or by the action of trans-acting factors. It is likely that further analysis of the mechanisms and pathways of splicing regulation in yeast can reveal general principles applicable to other eukaryotes. This article is categorized under: RNA Processing > Splicing Mechanisms RNA Processing > Splicing Regulation/Alternative Splicing.


Sujet(s)
Précurseurs des ARN , Épissage des ARN , Saccharomyces cerevisiae , Splicéosomes , Saccharomyces cerevisiae/génétique , Saccharomyces cerevisiae/métabolisme , Splicéosomes/métabolisme , Splicéosomes/génétique , Précurseurs des ARN/génétique , Précurseurs des ARN/métabolisme , Protéines de Saccharomyces cerevisiae/métabolisme , Protéines de Saccharomyces cerevisiae/génétique
2.
BMC Genomics ; 25(1): 649, 2024 Jun 28.
Article de Anglais | MEDLINE | ID: mdl-38943073

RÉSUMÉ

Despite the fact that introns mean an energy and time burden for eukaryotic cells, they play an irreplaceable role in the diversification and regulation of protein production. As a common feature of eukaryotic genomes, it has been reported that in protein-coding genes, the longest intron is usually one of the first introns. The goal of our work was to find a possible difference in the biological function of genes that fulfill this common feature compared to genes that do not. Data on the lengths of all introns in genes were extracted from the genomes of six vertebrates (human, mouse, koala, chicken, zebrafish and fugu) and two other model organisms (nematode worm and arabidopsis). We showed that more than 40% of protein-coding genes have the relative position of the longest intron located in the second or third tertile of all introns. Genes divided according to the relative position of the longest intron were found to be significantly increased in different KEGG pathways. Genes with the longest intron in the first tertile predominate in a range of pathways for amino acid and lipid metabolism, various signaling, cell junctions or ABC transporters. Genes with the longest intron in the second or third tertile show increased representation in pathways associated with the formation and function of the spliceosome and ribosomes. In the two groups of genes defined in this way, we further demonstrated the difference in the length of the longest introns and the distribution of their absolute positions. We also pointed out other characteristics, namely the positive correlation between the length of the longest intron and the sum of the lengths of all other introns in the gene and the preservation of the exact same absolute and relative position of the longest intron between orthologous genes.


Sujet(s)
Introns , Introns/génétique , Animaux , Humains , Arabidopsis/génétique , Splicéosomes/génétique , Splicéosomes/métabolisme
3.
Nat Commun ; 15(1): 4697, 2024 Jun 01.
Article de Anglais | MEDLINE | ID: mdl-38824128

RÉSUMÉ

Differentiation of male gametocytes into flagellated fertile male gametes relies on the assembly of axoneme, a major component of male development for mosquito transmission of the malaria parasite. RNA-binding protein (RBP)-mediated post-transcriptional regulation of mRNA plays important roles in eukaryotic sexual development, including the development of female Plasmodium. However, the role of RBP in defining the Plasmodium male transcriptome and its function in male gametogenesis remains incompletely understood. Here, we performed genome-wide screening for gender-specific RBPs and identified an undescribed male-specific RBP gene Rbpm1 in the Plasmodium. RBPm1 is localized in the nucleus of male gametocytes. RBPm1-deficient parasites fail to assemble the axoneme for male gametogenesis and thus mosquito transmission. RBPm1 interacts with the spliceosome E complex and regulates the splicing initiation of certain introns in a group of 26 axonemal genes. RBPm1 deficiency results in intron retention and protein loss of these axonemal genes. Intron deletion restores axonemal protein expression and partially rectifies axonemal defects in RBPm1-null gametocytes. Further splicing assays in both reporter and endogenous genes exhibit stringent recognition of the axonemal introns by RBPm1. The splicing activator RBPm1 and its target introns constitute an axonemal intron splicing program in the post-transcriptional regulation essential for Plasmodium male development.


Sujet(s)
Axonème , Introns , Protéines de protozoaire , Épissage des ARN , Protéines de liaison à l'ARN , Introns/génétique , Protéines de liaison à l'ARN/métabolisme , Protéines de liaison à l'ARN/génétique , Animaux , Protéines de protozoaire/génétique , Protéines de protozoaire/métabolisme , Mâle , Axonème/métabolisme , Femelle , Gamétogenèse/génétique , Splicéosomes/métabolisme , Splicéosomes/génétique , Plasmodium berghei/génétique , Plasmodium berghei/croissance et développement , Plasmodium berghei/métabolisme , Paludisme/parasitologie , Plasmodium/génétique , Plasmodium/métabolisme
4.
Genes Dev ; 38(7-8): 322-335, 2024 05 21.
Article de Anglais | MEDLINE | ID: mdl-38724209

RÉSUMÉ

Rare, full-length circular intron RNAs distinct from lariats have been reported in several species, but their biogenesis is not understood. We envisioned and tested a hypothesis for their formation using Saccharomyces cerevisiae, documenting full-length and novel processed circular RNAs from multiple introns. Evidence implicates a previously undescribed catalytic activity of the intron lariat spliceosome (ILS) in which the 3'-OH of the lariat tail (with optional trimming and adenylation by the nuclear 3' processing machinery) attacks the branch, joining the intron 3' end to the 5' splice site in a 3'-5' linked circle. Human U2 and U12 spliceosomes produce analogous full-length and processed circles. Postsplicing catalytic activity of the spliceosome may promote intron transposition during eukaryotic genome evolution.


Sujet(s)
Introns , Épissage des ARN , Saccharomyces cerevisiae , Splicéosomes , Splicéosomes/métabolisme , Splicéosomes/génétique , Introns/génétique , Saccharomyces cerevisiae/génétique , Saccharomyces cerevisiae/métabolisme , Humains , Épissage des ARN/génétique , ARN circulaire/génétique , ARN circulaire/métabolisme , ARN/métabolisme , ARN/génétique
5.
PLoS Genet ; 20(5): e1011272, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38768219

RÉSUMÉ

The position of the nucleus before it divides during mitosis is variable in different budding yeasts. Studies in the pathogenic intron-rich fungus Cryptococcus neoformans reveal that the nucleus moves entirely into the daughter bud before its division. Here, we report functions of a zinc finger motif containing spliceosome protein C. neoformans Slu7 (CnSlu7) in cell cycle progression. The budding yeast and fission yeast homologs of Slu7 have predominant roles for intron 3' splice site definition during pre-mRNA splicing. Using a conditional knockdown strategy, we show CnSlu7 is an essential factor for viability and is required for efficient cell cycle progression with major role during mitosis. Aberrant nuclear migration, including improper positioning of the nucleus as well as the spindle, were frequently observed in cells depleted of CnSlu7. However, cell cycle delays observed due to Slu7 depletion did not activate the Mad2-dependent spindle assembly checkpoint (SAC). Mining of the global transcriptome changes in the Slu7 knockdown strain identified downregulation of transcripts encoding several cell cycle regulators and cytoskeletal factors for nuclear migration, and the splicing of specific introns of these genes was CnSlu7 dependent. To test the importance of splicing activity of CnSlu7 on nuclear migration, we complemented Slu7 knockdown cells with an intron less PAC1 minigene and demonstrated that the nuclear migration defects were significantly rescued. These findings show that CnSlu7 regulates the functions of diverse cell cycle regulators and cytoskeletal components, ensuring timely cell cycle transitions and nuclear division during mitosis.


Sujet(s)
Noyau de la cellule , Cryptococcus neoformans , Protéines fongiques , Mitose , Épissage des ARN , Splicéosomes , Mitose/génétique , Cryptococcus neoformans/génétique , Épissage des ARN/génétique , Noyau de la cellule/génétique , Noyau de la cellule/métabolisme , Protéines fongiques/génétique , Protéines fongiques/métabolisme , Splicéosomes/génétique , Splicéosomes/métabolisme , Appareil du fuseau/métabolisme , Appareil du fuseau/génétique , Régulation de l'expression des gènes fongiques , Cycle cellulaire/génétique
6.
Commun Biol ; 7(1): 640, 2024 May 25.
Article de Anglais | MEDLINE | ID: mdl-38796645

RÉSUMÉ

Facioscapulohumeral muscular dystrophy (FSHD) is one of the most common autosomal dominant muscle disorders, yet no cure or amelioration exists. The clinical presentation is diverse, making it difficult to identify the actual driving pathomechanism among many downstream events. To unravel this complexity, we performed a meta-analysis of 13 original omics datasets (in total 171 FSHD and 129 control samples). Our approach confirmed previous findings about the disease pathology and specified them further. We confirmed increased expression of former proposed DUX4 biomarkers, and furthermore impairment of the respiratory chain. Notably, the meta-analysis provides insights about so far not reported pathways, including misregulation of neuromuscular junction protein encoding genes, downregulation of the spliceosome, and extensive alterations of nuclear envelope protein expression. Finally, we developed a publicly available shiny app to provide a platform for researchers who want to search our analysis for genes of interest in the future.


Sujet(s)
Dystrophie musculaire facio-scapulo-humérale , Jonction neuromusculaire , Enveloppe nucléaire , Splicéosomes , Humains , Dystrophie musculaire facio-scapulo-humérale/génétique , Dystrophie musculaire facio-scapulo-humérale/métabolisme , Dystrophie musculaire facio-scapulo-humérale/anatomopathologie , Enveloppe nucléaire/métabolisme , Enveloppe nucléaire/génétique , Splicéosomes/métabolisme , Splicéosomes/génétique , Jonction neuromusculaire/métabolisme , Jonction neuromusculaire/génétique , Protéines à homéodomaine/génétique , Protéines à homéodomaine/métabolisme , Régulation de l'expression des gènes
7.
Mol Med ; 30(1): 62, 2024 May 17.
Article de Anglais | MEDLINE | ID: mdl-38760666

RÉSUMÉ

Alternative splicing (AS) is a strictly regulated process that generates multiple mRNA variants from a single gene, thus contributing to proteome diversity. Transcriptome-wide sequencing studies revealed networks of functionally coordinated splicing events, which produce isoforms with distinct or even opposing functions. To date, several mechanisms of AS are deregulated in leukemic cells, mainly due to mutations in splicing and/or epigenetic regulators and altered expression of splicing factors (SFs). In this review, we discuss aberrant splicing events induced by mutations affecting SFs (SF3B1, U2AF1, SRSR2, and ZRSR2), spliceosome components (PRPF8, LUC7L2, DDX41, and HNRNPH1), and epigenetic modulators (IDH1 and IDH2). Finally, we provide an extensive overview of the biological relevance of aberrant isoforms of genes involved in the regulation of apoptosis (e. g. BCL-X, MCL-1, FAS, and c-FLIP), activation of key cellular signaling pathways (CASP8, MAP3K7, and NOTCH2), and cell metabolism (PKM).


Sujet(s)
Épissage alternatif , Tumeurs hématologiques , Humains , Tumeurs hématologiques/génétique , Facteurs d'épissage des ARN/génétique , Facteurs d'épissage des ARN/métabolisme , Mutation , Animaux , Régulation de l'expression des gènes tumoraux , Épigenèse génétique , Splicéosomes/métabolisme , Splicéosomes/génétique , Transduction du signal/génétique
8.
Sci Adv ; 10(19): eadn1547, 2024 May 10.
Article de Anglais | MEDLINE | ID: mdl-38718117

RÉSUMÉ

Pre-mRNA splicing is a fundamental step in gene expression, conserved across eukaryotes, in which the spliceosome recognizes motifs at the 3' and 5' splice sites (SSs), excises introns, and ligates exons. SS recognition and pairing is often influenced by protein splicing factors (SFs) that bind to splicing regulatory elements (SREs). Here, we describe SMsplice, a fully interpretable model of pre-mRNA splicing that combines models of core SS motifs, SREs, and exonic and intronic length preferences. We learn models that predict SS locations with 83 to 86% accuracy in fish, insects, and plants and about 70% in mammals. Learned SRE motifs include both known SF binding motifs and unfamiliar motifs, and both motif classes are supported by genetic analyses. Our comparisons across species highlight similarities between non-mammals, increased reliance on intronic SREs in plant splicing, and a greater reliance on SREs in mammalian splicing.


Sujet(s)
Exons , Introns , Précurseurs des ARN , Sites d'épissage d'ARN , Épissage des ARN , Précurseurs des ARN/génétique , Précurseurs des ARN/métabolisme , Animaux , Introns/génétique , Exons/génétique , Gènes de plante , Modèles génétiques , Splicéosomes/métabolisme , Splicéosomes/génétique , Plantes/génétique , Humains , Facteurs d'épissage des ARN/génétique , Facteurs d'épissage des ARN/métabolisme
9.
PLoS Genet ; 20(5): e1011284, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38743783

RÉSUMÉ

The Integrator is a multi-subunit protein complex that catalyzes the maturation of snRNA transcripts via 3' cleavage, a step required for snRNA incorporation with snRNP for spliceosome biogenesis. Here we developed a GFP based in vivo snRNA misprocessing reporter as a readout of Integrator function and performed a genome-wide RNAi screen for Integrator regulators. We found that loss of the Argonaute encoding csr-1 gene resulted in widespread 3' misprocessing of snRNA transcripts that is accompanied by a significant increase in alternative splicing. Loss of the csr-1 gene down-regulates the germline expression of Integrator subunits 4 and 6 and is accompanied by a reduced protein translation efficiency of multiple Integrator catalytic and non-catalytic subunits. Through isoform and motif mutant analysis, we determined that CSR-1's effect on snRNA processing is dependent on its catalytic slicer activity but does not involve the CSR-1a isoform. Moreover, mRNA-sequencing revealed high similarity in the transcriptome profile between csr-1 and Integrator subunit knockdown via RNAi. Together, our findings reveal CSR-1 as a new regulator of the Integrator complex and implicate a novel role of this Argonaute protein in snRNA 3' processing.


Sujet(s)
Protéines Argonaute , Protéines de Caenorhabditis elegans , Caenorhabditis elegans , Petit ARN nucléaire , Caenorhabditis elegans/génétique , Caenorhabditis elegans/métabolisme , Animaux , Petit ARN nucléaire/génétique , Petit ARN nucléaire/métabolisme , Protéines de Caenorhabditis elegans/génétique , Protéines de Caenorhabditis elegans/métabolisme , Protéines Argonaute/métabolisme , Protéines Argonaute/génétique , Épissage alternatif/génétique , Interférence par ARN , Maturation post-transcriptionnelle des ARN , Splicéosomes/métabolisme , Splicéosomes/génétique
10.
RNA Biol ; 21(1): 1-17, 2024 Jan.
Article de Anglais | MEDLINE | ID: mdl-38711165

RÉSUMÉ

Spliceosome assembly contributes an important but incompletely understood aspect of splicing regulation. Prp45 is a yeast splicing factor which runs as an extended fold through the spliceosome, and which may be important for bringing its components together. We performed a whole genome analysis of the genetic interaction network of the truncated allele of PRP45 (prp45(1-169)) using synthetic genetic array technology and found chromatin remodellers and modifiers as an enriched category. In agreement with related studies, H2A.Z-encoding HTZ1, and the components of SWR1, INO80, and SAGA complexes represented prominent interactors, with htz1 conferring the strongest growth defect. Because the truncation of Prp45 disproportionately affected low copy number transcripts of intron-containing genes, we prepared strains carrying intronless versions of SRB2, VPS75, or HRB1, the most affected cases with transcription-related function. Intron removal from SRB2, but not from the other genes, partly repaired some but not all the growth phenotypes identified in the genetic screen. The interaction of prp45(1-169) and htz1Δ was detectable even in cells with SRB2 intron deleted (srb2Δi). The less truncated variant, prp45(1-330), had a synthetic growth defect with htz1Δ at 16°C, which also persisted in the srb2Δi background. Moreover, htz1Δ enhanced prp45(1-330) dependent pre-mRNA hyper-accumulation of both high and low efficiency splicers, genes ECM33 and COF1, respectively. We conclude that while the expression defects of low expression intron-containing genes contribute to the genetic interactome of prp45(1-169), the genetic interactions between prp45 and htz1 alleles demonstrate the sensitivity of spliceosome assembly, delayed in prp45(1-169), to the chromatin environment.


Sujet(s)
Introns , Phénotype , Épissage des ARN , Protéines de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Splicéosomes , Splicéosomes/métabolisme , Splicéosomes/génétique , Protéines de Saccharomyces cerevisiae/génétique , Protéines de Saccharomyces cerevisiae/métabolisme , Saccharomyces cerevisiae/génétique , Saccharomyces cerevisiae/métabolisme , Régulation de l'expression des gènes fongiques , Facteurs d'épissage des ARN/génétique , Facteurs d'épissage des ARN/métabolisme , Histone/métabolisme , Histone/génétique
11.
Plant J ; 119(1): 153-175, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38593295

RÉSUMÉ

Plant acclimation to an ever-changing environment is decisive for growth, reproduction, and survival. Light availability limits biomass production on both ends of the intensity spectrum. Therefore, the adjustment of plant metabolism is central to high-light (HL) acclimation, and the accumulation of photoprotective anthocyanins is commonly observed. However, mechanisms and factors regulating the HL acclimation response are less clear. Two Arabidopsis mutants of spliceosome components exhibiting a pronounced anthocyanin overaccumulation in HL were isolated from a forward genetic screen for new factors crucial for plant acclimation. Time-resolved physiological, transcriptome, and metabolome analysis revealed a vital function of the spliceosome components for rapidly adjusting gene expression and metabolism. Deficiency of INCREASED LEVEL OF POLYPLOIDY1 (ILP1), NTC-RELATED PROTEIN1 (NTR1), and PLEIOTROPIC REGULATORY LOCUS1 (PRL1) resulted in a marked overaccumulation of carbohydrates and strongly diminished amino acid biosynthesis in HL. While not generally limited in N-assimilation, ilp1, ntr1, and prl1 showed higher glutamate levels and reduced amino acid biosynthesis in HL. The comprehensive analysis reveals a function of the spliceosome components in the conditional regulation of the carbon:nitrogen balance and the accumulation of anthocyanins during HL acclimation. The importance of gene expression, metabolic regulation, and re-direction of carbon towards anthocyanin biosynthesis for HL acclimation are discussed.


Sujet(s)
Acclimatation , Protéines d'Arabidopsis , Arabidopsis , Carbone , Régulation de l'expression des gènes végétaux , Lumière , Azote , Splicéosomes , Arabidopsis/génétique , Arabidopsis/physiologie , Arabidopsis/métabolisme , Arabidopsis/effets des radiations , Protéines d'Arabidopsis/génétique , Protéines d'Arabidopsis/métabolisme , Splicéosomes/métabolisme , Splicéosomes/génétique , Carbone/métabolisme , Azote/métabolisme , Anthocyanes/métabolisme
12.
Nucleic Acids Res ; 52(12): 7245-7260, 2024 Jul 08.
Article de Anglais | MEDLINE | ID: mdl-38676950

RÉSUMÉ

Spliced leader trans-splicing of pre-mRNAs is a critical step in the gene expression of many eukaryotes. How the spliced leader RNA and its target transcripts are brought together to form the trans-spliceosome remains an important unanswered question. Using immunoprecipitation followed by protein analysis via mass spectrometry and RIP-Seq, we show that the nematode-specific proteins, SNA-3 and SUT-1, form a complex with a set of enigmatic non-coding RNAs, the SmY RNAs. Our work redefines the SmY snRNP and shows for the first time that it is essential for nematode viability and is involved in spliced leader trans-splicing. SNA-3 and SUT-1 are associated with the 5' ends of most, if not all, nascent capped RNA polymerase II transcripts, and they also interact with components of the major nematode spliced leader (SL1) snRNP. We show that depletion of SNA-3 impairs the co-immunoprecipitation between one of the SL1 snRNP components, SNA-2, and several core spliceosomal proteins. We thus propose that the SmY snRNP recruits the SL1 snRNP to the 5' ends of nascent pre-mRNAs, an instrumental step in the assembly of the trans-spliceosome.


Sujet(s)
Précurseurs des ARN , ARN de tête épissé , Petites ribonucléoprotéines nucléaires , Splicéosomes , Animaux , ARN de tête épissé/métabolisme , ARN de tête épissé/génétique , Précurseurs des ARN/métabolisme , Précurseurs des ARN/génétique , Petites ribonucléoprotéines nucléaires/métabolisme , Petites ribonucléoprotéines nucléaires/génétique , Splicéosomes/métabolisme , Splicéosomes/génétique , Caenorhabditis elegans/génétique , Caenorhabditis elegans/métabolisme , Protéines de Caenorhabditis elegans/métabolisme , Protéines de Caenorhabditis elegans/génétique , Épissage en trans , Liaison aux protéines
13.
Nat Commun ; 15(1): 3138, 2024 Apr 11.
Article de Anglais | MEDLINE | ID: mdl-38605034

RÉSUMÉ

The carboxy-terminus of the spliceosomal protein PRPF8, which regulates the RNA helicase Brr2, is a hotspot for mutations causing retinitis pigmentosa-type 13, with unclear role in human splicing and tissue-specificity mechanism. We used patient induced pluripotent stem cells-derived cells, carrying the heterozygous PRPF8 c.6926 A > C (p.H2309P) mutation to demonstrate retinal-specific endophenotypes comprising photoreceptor loss, apical-basal polarity and ciliary defects. Comprehensive molecular, transcriptomic, and proteomic analyses revealed a role of the PRPF8/Brr2 regulation in 5'-splice site (5'SS) selection by spliceosomes, for which disruption impaired alternative splicing and weak/suboptimal 5'SS selection, and enhanced cryptic splicing, predominantly in ciliary and retinal-specific transcripts. Altered splicing efficiency, nuclear speckles organisation, and PRPF8 interaction with U6 snRNA, caused accumulation of active spliceosomes and poly(A)+ mRNAs in unique splicing clusters located at the nuclear periphery of photoreceptors. Collectively these elucidate the role of PRPF8/Brr2 regulatory mechanisms in splicing and the molecular basis of retinal disease, informing therapeutic approaches.


Sujet(s)
Sites d'épissage d'ARN , Rétinite pigmentaire , Splicéosomes , Humains , Splicéosomes/génétique , Splicéosomes/métabolisme , Protéomique , Épissage des ARN/génétique , Épissage alternatif/génétique , Petit ARN nucléaire/génétique , Petit ARN nucléaire/métabolisme , ARN messager/métabolisme , Mutation , Helicase/métabolisme , Protéines de liaison à l'ARN/métabolisme
14.
Mol Syst Biol ; 20(6): 676-701, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38664594

RÉSUMÉ

Splice-switching oligonucleotides (SSOs) are antisense compounds that act directly on pre-mRNA to modulate alternative splicing (AS). This study demonstrates the value that artificial intelligence/machine learning (AI/ML) provides for the identification of functional, verifiable, and therapeutic SSOs. We trained XGboost tree models using splicing factor (SF) pre-mRNA binding profiles and spliceosome assembly information to identify modulatory SSO binding sites on pre-mRNA. Using Shapley and out-of-bag analyses we also predicted the identity of specific SFs whose binding to pre-mRNA is blocked by SSOs. This step adds considerable transparency to AI/ML-driven drug discovery and informs biological insights useful in further validation steps. We applied this approach to previously established functional SSOs to retrospectively identify the SFs likely to regulate those events. We then took a prospective validation approach using a novel target in triple negative breast cancer (TNBC), NEDD4L exon 13 (NEDD4Le13). Targeting NEDD4Le13 with an AI/ML-designed SSO decreased the proliferative and migratory behavior of TNBC cells via downregulation of the TGFß pathway. Overall, this study illustrates the ability of AI/ML to extract actionable insights from RNA-seq data.


Sujet(s)
Épissage alternatif , Intelligence artificielle , Apprentissage machine , Tumeurs du sein triple-négatives , Humains , Tumeurs du sein triple-négatives/génétique , Lignée cellulaire tumorale , Ubiquitine protéine ligases NEDD4/génétique , Ubiquitine protéine ligases NEDD4/métabolisme , Précurseurs des ARN/génétique , Précurseurs des ARN/métabolisme , Prolifération cellulaire/effets des médicaments et des substances chimiques , Prolifération cellulaire/génétique , Facteurs d'épissage des ARN/génétique , Facteurs d'épissage des ARN/métabolisme , Oligonucléotides antisens/génétique , Mouvement cellulaire/génétique , Splicéosomes/métabolisme , Splicéosomes/génétique , Oligonucléotides/génétique , Femelle
15.
Leuk Res ; 141: 107500, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38636413

RÉSUMÉ

Mutations in spliceosome genes (SRSF2, SF3B1, U2AF1, ZRSR2) correlate with inferior outcomes in patients treated with intensive chemotherapy for Acute Myeloid Leukemia. However, their prognostic impact in patients treated with less intensive protocols is not well known. This study aimed to evaluate the impact of Spliceosome mutations in patients treated with Venetoclax and Azacitidine for newly diagnosed AML. 117 patients treated in 3 different hospitals were included in the analysis. 34 harbored a mutation in at least one of the spliceosome genes (splice-mut cohort). K/NRAS mutations were more frequent in the splice-mut cohort (47% vs 19%, p=0.0022). Response rates did not differ between splice-mut and splice-wt cohorts. With a median follow-up of 15 months, splice mutations were associated with a lower 18-month LFS (p=0.0045). When analyzing splice mutations separately, we found SRSF2 mutations to be associated with poorer outcomes (p=0.034 and p=0.037 for OS and LFS respectively). This negative prognostic impact remained true in our multivariate analysis. We believe this finding should warrant further studies aimed at overcoming this negative impact.


Sujet(s)
Protocoles de polychimiothérapie antinéoplasique , Leucémie aigüe myéloïde , Mutation , Facteurs d'épissage riches en sérine-arginine , Humains , Facteurs d'épissage riches en sérine-arginine/génétique , Leucémie aigüe myéloïde/génétique , Leucémie aigüe myéloïde/traitement médicamenteux , Leucémie aigüe myéloïde/mortalité , Mâle , Femelle , Adulte d'âge moyen , Pronostic , Sujet âgé , Adulte , Protocoles de polychimiothérapie antinéoplasique/usage thérapeutique , Sujet âgé de 80 ans ou plus , Composés hétérocycliques bicycliques/usage thérapeutique , Composés hétérocycliques bicycliques/administration et posologie , Azacitidine/usage thérapeutique , Azacitidine/administration et posologie , Jeune adulte , Splicéosomes/génétique , Sulfonamides
16.
Int J Mol Sci ; 25(8)2024 Apr 10.
Article de Anglais | MEDLINE | ID: mdl-38673778

RÉSUMÉ

Pre-mRNA splicing plays a key role in the regulation of gene expression. Recent discoveries suggest that defects in pre-mRNA splicing, resulting from the dysfunction of certain splicing factors, can impact the expression of genes crucial for genome surveillance mechanisms, including those involved in cellular response to DNA damage. In this study, we analyzed how cells with a non-functional spliceosome-associated Gpl1-Gih35-Wdr83 complex respond to DNA damage. Additionally, we investigated the role of this complex in regulating the splicing of factors involved in DNA damage repair. Our findings reveal that the deletion of any component within the Gpl1-Gih35-Wdr83 complex leads to a significant accumulation of unspliced pre-mRNAs of DNA repair factors. Consequently, mutant cells lacking this complex exhibit increased sensitivity to DNA-damaging agents. These results highlight the importance of the Gpl1-Gih35-Wdr83 complex in regulating the expression of DNA repair factors, thereby protecting the stability of the genome following DNA damage.


Sujet(s)
Altération de l'ADN , Réparation de l'ADN , Facteurs d'épissage des ARN , Épissage des ARN , Altération de l'ADN/génétique , Réparation de l'ADN/génétique , Régulation de l'expression des gènes fongiques , Précurseurs des ARN/génétique , Précurseurs des ARN/métabolisme , Facteurs d'épissage des ARN/métabolisme , Facteurs d'épissage des ARN/génétique , Schizosaccharomyces/génétique , Schizosaccharomyces/métabolisme , Protéines de Schizosaccharomyces pombe/génétique , Protéines de Schizosaccharomyces pombe/métabolisme , Splicéosomes/métabolisme , Splicéosomes/génétique , Complexes multiprotéiques/génétique , Complexes multiprotéiques/métabolisme
17.
RNA ; 30(7): 824-838, 2024 Jun 17.
Article de Anglais | MEDLINE | ID: mdl-38575347

RÉSUMÉ

Forkhead box P3 (FOXP3) is the master fate-determining transcription factor in regulatory T (Treg) cells and is essential for their development, function, and homeostasis. Mutations in FOXP3 cause immunodysregulation polyendocrinopathy enteropathy X-linked (IPEX) syndrome, and aberrant expression of FOXP3 has been implicated in other diseases such as multiple sclerosis and cancer. We previously demonstrated that pre-mRNA splicing of FOXP3 RNAs is highly sensitive to levels of DExD-box polypeptide 39B (DDX39B), and here we investigate the mechanism of this sensitivity. FOXP3 introns have cytidine (C)-rich/uridine (U)-poor polypyrimidine (py) tracts that are responsible for their inefficient splicing and confer sensitivity to DDX39B. We show that there is a deficiency in the assembly of commitment complexes (CCs) on FOXP3 introns, which is consistent with the lower affinity of U2AF2 for C-rich/U-poor py tracts. Our data indicate an even stronger effect on the conversion of CCs to pre-spliceosomes. We propose that this is due to an altered conformation that U2AF2 adopts when it binds to C-rich/U-poor py tracts and that this conformation has a lower affinity for DDX39B. As a consequence, CCs assembled on FOXP3 introns are defective in recruiting DDX39B, and this leads to the inefficient assembly of pre-spliceosome complexes.


Sujet(s)
DEAD-box RNA helicases , Facteurs de transcription Forkhead , Introns , Épissage des ARN , Splicéosomes , DEAD-box RNA helicases/génétique , DEAD-box RNA helicases/métabolisme , Humains , Facteurs de transcription Forkhead/génétique , Facteurs de transcription Forkhead/métabolisme , Splicéosomes/métabolisme , Splicéosomes/génétique , Précurseurs des ARN/génétique , Précurseurs des ARN/métabolisme
18.
J Phys Chem Lett ; 15(13): 3502-3508, 2024 Apr 04.
Article de Anglais | MEDLINE | ID: mdl-38517341

RÉSUMÉ

RNA ATPases/helicases remodel substrate RNA-protein complexes in distinct ways. The different RNA ATPases/helicases, taking part in the spliceosome complex, reshape the RNA/RNA-protein contacts to enable premature-mRNA splicing. Among them, the bad response to refrigeration 2 (Brr2) helicase promotes U4/U6 small nuclear (sn)RNA unwinding via ATP-driven translocation of the U4 snRNA strand, thus playing a pivotal role during the activation, catalytic, and disassembly phases of splicing. The plastic Brr2 architecture consists of an enzymatically active N-terminal cassette (N-cassette) and a structurally similar but inactive C-terminal cassette (C-cassette). The C-cassette, along with other allosteric effectors and regulators, tightly and timely controls Brr2's function via an elusive mechanism. Here, microsecond-long molecular dynamics simulations, dynamical network theory, and community network analysis are combined to elucidate how allosteric effectors/regulators modulate the Brr2 function. We unexpectedly reveal that U4 snRNA itself acts as an allosteric regulator, amplifying the cross-talk of distal Brr2 domains and triggering a conformational reorganization of the protein. Our findings offer fundamental understanding into Brr2's mechanism of action and broaden our knowledge on the sophisticated regulatory mechanisms by which spliceosome ATPases/helicases control gene expression. This includes their allosteric regulation exerted by client RNA strands, a mechanism that may be broadly applicable to other RNA-dependent ATPases/helicases.


Sujet(s)
Petites ribonucléoprotéines nucléaires , Splicéosomes , Humains , Adenosine triphosphatases/métabolisme , Petites ribonucléoprotéines nucléaires U4-U6/composition chimique , Petites ribonucléoprotéines nucléaires U4-U6/génétique , Petites ribonucléoprotéines nucléaires U4-U6/métabolisme , ARN/métabolisme , RNA helicases/composition chimique , RNA helicases/génétique , RNA helicases/métabolisme , Splicéosomes/génétique , Splicéosomes/métabolisme , Petites ribonucléoprotéines nucléaires/métabolisme
19.
Int J Parasitol ; 54(6): 257-266, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38452964

RÉSUMÉ

Trichomonas vaginalis is a medically important protozoan parasite, and a deep-branching, evolutionarily divergent unicellular eukaryote that has conserved several key features of eukaryotic gene expression. Trichomonas vaginalis possesses a metazoan/plant-like capping apparatus, mRNAs with a cap 1 structure and spliceosomes containing the five small nuclear RNAs (snRNAs). However, in contrast to metazoan and plant snRNAs, the structurally conserved T. vaginalis snRNAs were initially identified as lacking the canonical guanosine cap nucleotide. To explain this unusual condition, we sought to investigate transcriptional and processing features of the spliceosomal snRNAs in this protist. Here, we show that T. vaginalis spliceosomal snRNA genes mostly lack typical eukaryotic promoters. In contrast to other eukaryotes, the putative TATA box in the T. vaginalis U6 snRNA gene was found to be dispensable for transcription or RNA polymerase selectivity. Moreover, U6 transcription in T. vaginalis was virtually insensitive to tagetitoxin compared with other cellular transcripts produced by the same RNA polymerase III. Most important and unexpected, snRNA transcription in T. vaginalis appears to bypass capping as we show that these transcripts retain their original 5'-triphosphate groups. In conclusion, transcription and processing of spliceosomal snRNAs in T. vaginalis deviate considerably from the conventional rules of other eukaryotes.


Sujet(s)
Petit ARN nucléaire , Splicéosomes , Transcription génétique , Trichomonas vaginalis , Petit ARN nucléaire/génétique , Petit ARN nucléaire/métabolisme , Trichomonas vaginalis/génétique , Trichomonas vaginalis/métabolisme , Splicéosomes/métabolisme , Splicéosomes/génétique , Maturation post-transcriptionnelle des ARN , ARN des protozoaires/métabolisme , ARN des protozoaires/génétique , Animaux
20.
Nucleic Acids Res ; 52(7): 4037-4052, 2024 Apr 24.
Article de Anglais | MEDLINE | ID: mdl-38499487

RÉSUMÉ

Here, we identify RBM41 as a novel unique protein component of the minor spliceosome. RBM41 has no previously recognized cellular function but has been identified as a paralog of U11/U12-65K, a known unique component of the U11/U12 di-snRNP. Both proteins use their highly similar C-terminal RRMs to bind to 3'-terminal stem-loops in U12 and U6atac snRNAs with comparable affinity. Our BioID data indicate that the unique N-terminal domain of RBM41 is necessary for its association with complexes containing DHX8, an RNA helicase, which in the major spliceosome drives the release of mature mRNA from the spliceosome. Consistently, we show that RBM41 associates with excised U12-type intron lariats, is present in the U12 mono-snRNP, and is enriched in Cajal bodies, together suggesting that RBM41 functions in the post-splicing steps of the minor spliceosome assembly/disassembly cycle. This contrasts with U11/U12-65K, which uses its N-terminal region to interact with U11 snRNP during intron recognition. Finally, while RBM41 knockout cells are viable, they show alterations in U12-type 3' splice site usage. Together, our results highlight the role of the 3'-terminal stem-loop of U12 snRNA as a dynamic binding platform for the U11/U12-65K and RBM41 proteins, which function at distinct stages of the assembly/disassembly cycle.


Sujet(s)
DEAD-box RNA helicases , Facteurs d'épissage des ARN , Petit ARN nucléaire , Protéines de liaison à l'ARN , Petites ribonucléoprotéines nucléaires , Splicéosomes , Splicéosomes/métabolisme , Splicéosomes/génétique , Petites ribonucléoprotéines nucléaires/métabolisme , Petites ribonucléoprotéines nucléaires/génétique , Petites ribonucléoprotéines nucléaires/composition chimique , Protéines de liaison à l'ARN/métabolisme , Protéines de liaison à l'ARN/génétique , Protéines de liaison à l'ARN/composition chimique , Humains , Petit ARN nucléaire/métabolisme , Petit ARN nucléaire/génétique , Petit ARN nucléaire/composition chimique , DEAD-box RNA helicases/métabolisme , DEAD-box RNA helicases/génétique , Épissage des ARN , Introns/génétique , Cellules HeLa , Liaison aux protéines , Corps de Cajal/métabolisme , Cellules HEK293
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...