Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 1.767
Filtrer
1.
Nat Commun ; 15(1): 5752, 2024 Jul 09.
Article de Anglais | MEDLINE | ID: mdl-38982135

RÉSUMÉ

The early-life organ development and maturation shape the fundamental blueprint for later-life phenotype. However, a multi-organ proteome atlas from infancy to adulthood is currently not available. Herein, we present a comprehensive proteomic analysis of ten mouse organs (brain, heart, lung, liver, kidney, spleen, stomach, intestine, muscle and skin) at three crucial developmental stages (1-, 4- and 8-weeks after birth) acquired using data-independent acquisition mass spectrometry. We detect and quantify 11,533 protein groups across the ten organs and obtain 115 age-related differentially expressed protein groups that are co-expressed in all organs from infancy to adulthood. We find that spliceosome proteins prevalently play crucial regulatory roles in the early-life development of multiple organs, and detect organ-specific expression patterns and sexual dimorphism. This multi-organ proteome atlas provides a fundamental resource for understanding the molecular mechanisms underlying early-life organ development and maturation.


Sujet(s)
Protéome , Protéomique , Animaux , Protéome/métabolisme , Souris , Femelle , Mâle , Protéomique/méthodes , Rein/métabolisme , Rein/croissance et développement , Splicéosomes/métabolisme , Spécificité d'organe , Souris de lignée C57BL , Encéphale/métabolisme , Encéphale/croissance et développement , Foie/métabolisme , Poumon/métabolisme , Poumon/croissance et développement , Régulation de l'expression des gènes au cours du développement , Caractères sexuels , Rate/métabolisme , Rate/croissance et développement
2.
Nat Commun ; 15(1): 6348, 2024 Jul 27.
Article de Anglais | MEDLINE | ID: mdl-39068178

RÉSUMÉ

The spliceosome executes pre-mRNA splicing through four sequential stages: assembly, activation, catalysis, and disassembly. Activation of the spliceosome, namely remodeling of the pre-catalytic spliceosome (B complex) into the activated spliceosome (Bact complex) and the catalytically activated spliceosome (B* complex), involves major flux of protein components and structural rearrangements. Relying on a splicing inhibitor, we have captured six intermediate states between the B and B* complexes: pre-Bact, Bact-I, Bact-II, Bact-III, Bact-IV, and post-Bact. Their cryo-EM structures, together with an improved structure of the catalytic step I spliceosome (C complex), reveal how the catalytic center matures around the internal stem loop of U6 snRNA, how the branch site approaches 5'-splice site, how the RNA helicase PRP2 rearranges to bind pre-mRNA, and how U2 snRNP undergoes remarkable movement to facilitate activation. We identify a previously unrecognized key role of PRP2 in spliceosome activation. Our study recapitulates a molecular choreography of the human spliceosome during its catalytic activation.


Sujet(s)
Cryomicroscopie électronique , Précurseurs des ARN , Épissage des ARN , Petit ARN nucléaire , Splicéosomes , Splicéosomes/métabolisme , Humains , Précurseurs des ARN/métabolisme , Précurseurs des ARN/génétique , Petit ARN nucléaire/métabolisme , Petites ribonucléoprotéines nucléaires U2/métabolisme , Petites ribonucléoprotéines nucléaires U2/génétique , Modèles moléculaires , DEAD-box RNA helicases/métabolisme , DEAD-box RNA helicases/génétique , Domaine catalytique
3.
Wiley Interdiscip Rev RNA ; 15(4): e1866, 2024.
Article de Anglais | MEDLINE | ID: mdl-38972853

RÉSUMÉ

Pre-mRNA splicing, the removal of introns and ligation of flanking exons, is a crucial step in eukaryotic gene expression. The spliceosome, a macromolecular complex made up of five small nuclear RNAs (snRNAs) and dozens of proteins, assembles on introns via a complex pathway before catalyzing the two transesterification reactions necessary for splicing. All of these steps have the potential to be highly regulated to ensure correct mRNA isoform production for proper cellular function. While Saccharomyces cerevisiae (yeast) has a limited set of intron-containing genes, many of these genes are highly expressed, resulting in a large number of transcripts in a cell being spliced. As a result, splicing regulation is of critical importance for yeast. Just as in humans, yeast splicing can be influenced by protein components of the splicing machinery, structures and properties of the pre-mRNA itself, or by the action of trans-acting factors. It is likely that further analysis of the mechanisms and pathways of splicing regulation in yeast can reveal general principles applicable to other eukaryotes. This article is categorized under: RNA Processing > Splicing Mechanisms RNA Processing > Splicing Regulation/Alternative Splicing.


Sujet(s)
Précurseurs des ARN , Épissage des ARN , Saccharomyces cerevisiae , Splicéosomes , Saccharomyces cerevisiae/génétique , Saccharomyces cerevisiae/métabolisme , Splicéosomes/métabolisme , Splicéosomes/génétique , Précurseurs des ARN/génétique , Précurseurs des ARN/métabolisme , Protéines de Saccharomyces cerevisiae/métabolisme , Protéines de Saccharomyces cerevisiae/génétique
4.
BMC Biol ; 22(1): 153, 2024 Jul 10.
Article de Anglais | MEDLINE | ID: mdl-38982460

RÉSUMÉ

Pre-mRNA splicing is a significant step for post-transcriptional modifications and functions in a wide range of physiological processes in plants. Human NHP2L binds to U4 snRNA during spliceosome assembly; it is involved in RNA splicing and mediates the development of human tumors. However, no ortholog has yet been identified in plants. Therefore, we report At4g12600 encoding the ortholog NHP2L protein, and AtSNU13 associates with the component of the spliceosome complex; the atsnu13 mutant showed compromised resistance in disease resistance, indicating that AtSNU13 is a positive regulator of plant immunity. Compared to wild-type plants, the atsnu13 mutation resulted in altered splicing patterns for defense-related genes and decreased expression of defense-related genes, such as RBOHD and ALD1. Further investigation shows that AtSNU13 promotes the interaction between U4/U6.U5 tri-snRNP-specific 27 K and the motif in target mRNAs to regulate the RNA splicing. Our study highlights the role of AtSNU13 in regulating plant immunity by affecting the pre-mRNA splicing of defense-related genes.


Sujet(s)
Protéines d'Arabidopsis , Arabidopsis , Immunité des plantes , Précurseurs des ARN , Épissage des ARN , Arabidopsis/génétique , Arabidopsis/immunologie , Protéines d'Arabidopsis/génétique , Protéines d'Arabidopsis/métabolisme , Régulation de l'expression des gènes végétaux , Maladies des plantes/génétique , Maladies des plantes/immunologie , Immunité des plantes/génétique , Précurseurs des ARN/génétique , Précurseurs des ARN/métabolisme , Splicéosomes/métabolisme , Splicéosomes/génétique
6.
Protein Sci ; 33(8): e5117, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-39023093

RÉSUMÉ

In eukaryotes, pre-mRNA splicing is vital for RNA processing and orchestrated by the spliceosome, whose assembly starts with the interaction between U1-70K and SR proteins. Despite the significance of the U1-70K/SR interaction, the dynamic nature of the complex and the challenges in obtaining soluble U1-70K have impeded a comprehensive understanding of the interaction at the structural level for decades. We overcome the U1-70K solubility issues, enabling us to characterize the interaction between U1-70K and SRSF1, a representative SR protein. We unveil specific interactions: phosphorylated SRSF1 RS with U1-70K BAD1, and SRSF1 RRM1 with U1-70K RRM. The RS/BAD1 interaction plays a dominant role, whereas the interaction between the RRM domains further enhances the stability of the U1-70K/SRSF1 complex. The RRM interaction involves the C-terminal extension of U1-70K RRM and the conserved acid patches on SRSF1 RRM1 that is involved in SRSF1 phase separation. Our circular dichroism spectra reveal that BAD1 adapts an α-helical conformation and RS is intrinsically disordered. Intriguingly, BAD1 undergoes a conformation switch from α-helix to ß-strand and random coil upon RS binding. In addition to the regulatory mechanism via SRSF1 phosphorylation, the U1-70K/SRSF1 interaction is also regulated by U1-70K BAD1 phosphorylation. We find that U1-70K phosphorylation inhibits the U1-70K and SRSF1 interaction. Our structural findings are validated through in vitro splicing assays and in-cell saturated domain scanning using the CRISPR method, providing new insights into the intricate regulatory mechanisms of pre-mRNA splicing.


Sujet(s)
Petites ribonucléoprotéines nucléaires U1 , Facteurs d'épissage riches en sérine-arginine , Splicéosomes , Facteurs d'épissage riches en sérine-arginine/métabolisme , Facteurs d'épissage riches en sérine-arginine/composition chimique , Facteurs d'épissage riches en sérine-arginine/génétique , Phosphorylation , Splicéosomes/métabolisme , Splicéosomes/composition chimique , Humains , Petites ribonucléoprotéines nucléaires U1/métabolisme , Petites ribonucléoprotéines nucléaires U1/composition chimique , Petites ribonucléoprotéines nucléaires U1/génétique , Épissage des ARN , Liaison aux protéines , Précurseurs des ARN/métabolisme , Précurseurs des ARN/génétique , Précurseurs des ARN/composition chimique
8.
Plant Sci ; 347: 112199, 2024 Oct.
Article de Anglais | MEDLINE | ID: mdl-39038708

RÉSUMÉ

U6 snRNA is one of the uridine-rich non-coding RNAs, abundant and stable in various cells, function as core particles in the intron-lariat spliceosome (ILS) complex. The Increased Level of Polyploidy1-1D (ILP1) and NTC-related protein 1 (NTR1), two conserved disassembly factors of the ILS complex, facilitates the disintegration of the ILS complex after completing intron splicing. The functional impairment of ILP1 and NTR1 lead to increased U6 levels, while other snRNAs comprising the ILS complex remained unaffected. We revealed that ILP1 and NTR1 had no impact on the transcription, 3' end phosphate structure or oligo(U) tail of U6 snRNA. Moreover, we uncovered that the mutation of ILP1 and NTR1 resulted in the accumulation of ILS complexes, impeding the dissociation of U6 from splicing factors, leading to an extended half-life of U6 and ultimately causing an elevation in U6 snRNA levels. Our findings broaden the understanding of the functions of ILS disassembly factors ILP1 and NTR1, and providing insights into the dynamic disassembly between U6 and ILS.


Sujet(s)
Protéines d'Arabidopsis , Arabidopsis , Petit ARN nucléaire , Splicéosomes , Petit ARN nucléaire/métabolisme , Petit ARN nucléaire/génétique , Arabidopsis/métabolisme , Arabidopsis/génétique , Protéines d'Arabidopsis/métabolisme , Protéines d'Arabidopsis/génétique , Splicéosomes/métabolisme , Épissage des ARN , ARN des plantes/métabolisme , ARN des plantes/génétique , Stabilité de l'ARN/génétique
9.
mBio ; 15(8): e0153524, 2024 Aug 14.
Article de Anglais | MEDLINE | ID: mdl-38980041

RÉSUMÉ

At human body temperature, the fungal pathogen Candida albicans can transition from yeast to filamentous morphologies in response to host-relevant cues. Additionally, elevated temperatures encountered during febrile episodes can independently induce C. albicans filamentation. However, the underlying genetic pathways governing this developmental transition in response to elevated temperatures remain largely unexplored. Here, we conducted a functional genomic screen to unravel the genetic mechanisms orchestrating C. albicans filamentation specifically in response to elevated temperature, implicating 45% of genes associated with the spliceosome or pre-mRNA splicing in this process. Employing RNA-Seq to elucidate the relationship between mRNA splicing and filamentation, we identified greater levels of intron retention in filaments compared to yeast, which correlated with reduced expression of the affected genes. Intriguingly, homozygous deletion of a gene encoding a spliceosome component important for filamentation (PRP19) caused even greater levels of intron retention compared with wild type and displayed globally dysregulated gene expression. This suggests that intron retention is a mechanism for fine-tuning gene expression during filamentation, with perturbations of the spliceosome exacerbating this process and blocking filamentation. Overall, this study unveils a novel biological process governing C. albicans filamentation, providing new insights into the complex regulation of this key virulence trait.IMPORTANCEFungal pathogens such as Candida albicans can cause serious infections with high mortality rates in immunocompromised individuals. When C. albicans is grown at temperatures encountered during human febrile episodes, yeast cells undergo a transition to filamentous cells, and this process is key to its virulence. Here, we expanded our understanding of how C. albicans undergoes filamentation in response to elevated temperature and identified many genes involved in mRNA splicing that positively regulate filamentation. Through transcriptome analyses, we found that intron retention is a mechanism for fine-tuning gene expression in filaments, and perturbation of the spliceosome exacerbates intron retention and alters gene expression substantially, causing a block in filamentation. This work adds to the growing body of knowledge on the role of introns in fungi and provides new insights into the cellular processes that regulate a key virulence trait in C. albicans.


Sujet(s)
Candida albicans , Protéines fongiques , Régulation de l'expression des gènes fongiques , Splicéosomes , Candida albicans/génétique , Candida albicans/pathogénicité , Candida albicans/croissance et développement , Candida albicans/physiologie , Candida albicans/métabolisme , Splicéosomes/génétique , Splicéosomes/métabolisme , Humains , Protéines fongiques/génétique , Protéines fongiques/métabolisme , Morphogenèse/génétique , Épissage des ARN , Virulence , Hyphae/croissance et développement , Hyphae/génétique , Introns/génétique
10.
Mol Cell ; 84(14): 2618-2633.e10, 2024 Jul 25.
Article de Anglais | MEDLINE | ID: mdl-39025073

RÉSUMÉ

The twenty-three Fanconi anemia (FA) proteins cooperate in the FA/BRCA pathway to repair DNA interstrand cross-links (ICLs). The cell division cycle and apoptosis regulator 1 (CCAR1) protein is also a regulator of ICL repair, though its possible function in the FA/BRCA pathway remains unknown. Here, we demonstrate that CCAR1 plays a unique upstream role in the FA/BRCA pathway and is required for FANCA protein expression in human cells. Interestingly, CCAR1 co-immunoprecipitates with FANCA pre-mRNA and is required for FANCA mRNA processing. Loss of CCAR1 results in retention of a poison exon in the FANCA transcript, thereby leading to reduced FANCA protein expression. A unique domain of CCAR1, the EF hand domain, is required for interaction with the U2AF heterodimer of the spliceosome and for excision of the poison exon. Taken together, CCAR1 is a splicing modulator required for normal splicing of the FANCA mRNA and other mRNAs involved in various cellular pathways.


Sujet(s)
Protéines régulatrices de l'apoptose , Protéines du cycle cellulaire , Protéine du groupe de complémentation A de l'anémie de Fanconi , Anémie de Fanconi , Épissage des ARN , Facteur d'épissage U2AF , Humains , Protéine BRCA1/métabolisme , Protéine BRCA1/génétique , Protéine BRCA2/métabolisme , Protéine BRCA2/génétique , Réparation de l'ADN , Endodeoxyribonucleases , Exons , Anémie de Fanconi/génétique , Anémie de Fanconi/métabolisme , Protéine du groupe de complémentation A de l'anémie de Fanconi/génétique , Protéine du groupe de complémentation A de l'anémie de Fanconi/métabolisme , Cellules HEK293 , Cellules HeLa , Liaison aux protéines , Précurseurs des ARN/métabolisme , Précurseurs des ARN/génétique , ARN messager/génétique , ARN messager/métabolisme , Transduction du signal , Splicéosomes/métabolisme , Splicéosomes/génétique , Facteur d'épissage U2AF/métabolisme , Facteur d'épissage U2AF/génétique , Protéines du cycle cellulaire/génétique , Protéines du cycle cellulaire/métabolisme , Protéines régulatrices de l'apoptose/génétique , Protéines régulatrices de l'apoptose/métabolisme
11.
Mol Cell ; 84(15): 2949-2965.e10, 2024 Aug 08.
Article de Anglais | MEDLINE | ID: mdl-39053456

RÉSUMÉ

The eukaryotic nucleus has a highly organized structure. Although the spatiotemporal arrangement of spliceosomes on nascent RNA drives splicing, the nuclear architecture that directly supports this process remains unclear. Here, we show that RNA-binding proteins (RBPs) assembled on RNA form meshworks in human and mouse cells. Core and accessory RBPs in RNA splicing make two distinct meshworks adjacently but distinctly distributed throughout the nucleus. This is achieved by mutual exclusion dynamics between the charged and uncharged intrinsically disordered regions (IDRs) of RBPs. These two types of meshworks compete for spatial occupancy on pre-mRNA to regulate splicing. Furthermore, the optogenetic enhancement of the RBP meshwork causes aberrant splicing, particularly of genes involved in neurodegeneration. Genetic mutations associated with neurodegenerative diseases are often found in the IDRs of RBPs, and cells harboring these mutations exhibit impaired meshwork formation. Our results uncovered the spatial organization of RBP networks to drive RNA splicing.


Sujet(s)
Noyau de la cellule , Épissage des ARN , Protéines de liaison à l'ARN , Humains , Noyau de la cellule/métabolisme , Noyau de la cellule/génétique , Animaux , Protéines de liaison à l'ARN/métabolisme , Protéines de liaison à l'ARN/génétique , Souris , Précurseurs des ARN/métabolisme , Précurseurs des ARN/génétique , Mutation , Splicéosomes/métabolisme , Splicéosomes/génétique , Cellules HeLa , Cellules HEK293
12.
Nat Commun ; 15(1): 5237, 2024 Jun 19.
Article de Anglais | MEDLINE | ID: mdl-38898005

RÉSUMÉ

Ovarian cancer often develops resistance to conventional therapies, hampering their effectiveness. Here, using ex vivo paired ovarian cancer ascites obtained before and after chemotherapy and in vitro therapy-induced secretomes, we show that molecules secreted by ovarian cancer cells upon therapy promote cisplatin resistance and enhance DNA damage repair in recipient cancer cells. Even a short-term incubation of chemonaive ovarian cancer cells with therapy-induced secretomes induces changes resembling those that are observed in chemoresistant patient-derived tumor cells after long-term therapy. Using integrative omics techniques, we find that both ex vivo and in vitro therapy-induced secretomes are enriched with spliceosomal components, which relocalize from the nucleus to the cytoplasm and subsequently into the extracellular vesicles upon treatment. We demonstrate that these molecules substantially contribute to the phenotypic effects of therapy-induced secretomes. Thus, SNU13 and SYNCRIP spliceosomal proteins promote therapy resistance, while the exogenous U12 and U6atac snRNAs stimulate tumor growth. These findings demonstrate the significance of spliceosomal network perturbation during therapy and further highlight that extracellular signaling might be a key factor contributing to the emergence of ovarian cancer therapy resistance.


Sujet(s)
Cisplatine , Résistance aux médicaments antinéoplasiques , Tumeurs de l'ovaire , Splicéosomes , Femelle , Humains , Tumeurs de l'ovaire/métabolisme , Tumeurs de l'ovaire/anatomopathologie , Tumeurs de l'ovaire/génétique , Tumeurs de l'ovaire/traitement médicamenteux , Splicéosomes/métabolisme , Cisplatine/pharmacologie , Lignée cellulaire tumorale , Animaux , Souris , Vésicules extracellulaires/métabolisme , Survie cellulaire/effets des médicaments et des substances chimiques , Antinéoplasiques/pharmacologie , Petit ARN nucléaire/métabolisme , Petit ARN nucléaire/génétique , Réparation de l'ADN
13.
Cell ; 187(13): 3284-3302.e23, 2024 Jun 20.
Article de Anglais | MEDLINE | ID: mdl-38843832

RÉSUMÉ

The cleavage of zygotes generates totipotent blastomeres. In human 8-cell blastomeres, zygotic genome activation (ZGA) occurs to initiate the ontogenesis program. However, capturing and maintaining totipotency in human cells pose significant challenges. Here, we realize culturing human totipotent blastomere-like cells (hTBLCs). We find that splicing inhibition can transiently reprogram human pluripotent stem cells into ZGA-like cells (ZLCs), which subsequently transition into stable hTBLCs after long-term passaging. Distinct from reported 8-cell-like cells (8CLCs), both ZLCs and hTBLCs widely silence pluripotent genes. Interestingly, ZLCs activate a particular group of ZGA-specific genes, and hTBLCs are enriched with pre-ZGA-specific genes. During spontaneous differentiation, hTBLCs re-enter the intermediate ZLC stage and further generate epiblast (EPI)-, primitive endoderm (PrE)-, and trophectoderm (TE)-like lineages, effectively recapitulating human pre-implantation development. Possessing both embryonic and extraembryonic developmental potency, hTBLCs can autonomously generate blastocyst-like structures in vitro without external cell signaling. In summary, our study provides key criteria and insights into human cell totipotency.


Sujet(s)
Différenciation cellulaire , Splicéosomes , Animaux , Humains , Souris , Blastocyste/métabolisme , Blastocyste/cytologie , Blastomères/métabolisme , Blastomères/cytologie , Reprogrammation cellulaire , Développement embryonnaire/génétique , Feuillets embryonnaires/métabolisme , Feuillets embryonnaires/cytologie , Cellules souches pluripotentes/métabolisme , Cellules souches pluripotentes/cytologie , Épissage des ARN , Splicéosomes/métabolisme , Cellules souches totipotentes/métabolisme , Cellules souches totipotentes/cytologie , Zygote/métabolisme , Cellules cultivées , Modèles moléculaires , Structure tertiaire des protéines , Génome humain , Analyse sur cellule unique , Facteur-15 de croissance et de différenciation/composition chimique , Facteur-15 de croissance et de différenciation/génétique , Facteur-15 de croissance et de différenciation/métabolisme , Épigénomique , Lignage cellulaire
14.
Nat Commun ; 15(1): 4697, 2024 Jun 01.
Article de Anglais | MEDLINE | ID: mdl-38824128

RÉSUMÉ

Differentiation of male gametocytes into flagellated fertile male gametes relies on the assembly of axoneme, a major component of male development for mosquito transmission of the malaria parasite. RNA-binding protein (RBP)-mediated post-transcriptional regulation of mRNA plays important roles in eukaryotic sexual development, including the development of female Plasmodium. However, the role of RBP in defining the Plasmodium male transcriptome and its function in male gametogenesis remains incompletely understood. Here, we performed genome-wide screening for gender-specific RBPs and identified an undescribed male-specific RBP gene Rbpm1 in the Plasmodium. RBPm1 is localized in the nucleus of male gametocytes. RBPm1-deficient parasites fail to assemble the axoneme for male gametogenesis and thus mosquito transmission. RBPm1 interacts with the spliceosome E complex and regulates the splicing initiation of certain introns in a group of 26 axonemal genes. RBPm1 deficiency results in intron retention and protein loss of these axonemal genes. Intron deletion restores axonemal protein expression and partially rectifies axonemal defects in RBPm1-null gametocytes. Further splicing assays in both reporter and endogenous genes exhibit stringent recognition of the axonemal introns by RBPm1. The splicing activator RBPm1 and its target introns constitute an axonemal intron splicing program in the post-transcriptional regulation essential for Plasmodium male development.


Sujet(s)
Axonème , Introns , Protéines de protozoaire , Épissage des ARN , Protéines de liaison à l'ARN , Introns/génétique , Protéines de liaison à l'ARN/métabolisme , Protéines de liaison à l'ARN/génétique , Animaux , Protéines de protozoaire/génétique , Protéines de protozoaire/métabolisme , Mâle , Axonème/métabolisme , Femelle , Gamétogenèse/génétique , Splicéosomes/métabolisme , Splicéosomes/génétique , Plasmodium berghei/génétique , Plasmodium berghei/croissance et développement , Plasmodium berghei/métabolisme , Paludisme/parasitologie , Plasmodium/génétique , Plasmodium/métabolisme
15.
Nat Commun ; 15(1): 5209, 2024 Jun 18.
Article de Anglais | MEDLINE | ID: mdl-38890388

RÉSUMÉ

Despite the importance of spliceosome core components in cellular processes, their roles in cancer development, including hepatocellular carcinoma (HCC), remain poorly understood. In this study, we uncover a critical role for SmD2, a core component of the spliceosome machinery, in modulating DNA damage in HCC through its impact on BRCA1/FANC cassette exons and expression. Our findings reveal that SmD2 depletion sensitizes HCC cells to PARP inhibitors, expanding the potential therapeutic targets. We also demonstrate that SmD2 acetylation by p300 leads to its degradation, while HDAC2-mediated deacetylation stabilizes SmD2. Importantly, we show that the combination of Romidepsin and Olaparib exhibits significant therapeutic potential in multiple HCC models, highlighting the promise of targeting SmD2 acetylation and HDAC2 inhibition alongside PARP inhibitors for HCC treatment.


Sujet(s)
Carcinome hépatocellulaire , Exons , Tumeurs du foie , Phtalazines , Pipérazines , Inhibiteurs de poly(ADP-ribose) polymérases , Splicéosomes , Humains , Carcinome hépatocellulaire/traitement médicamenteux , Carcinome hépatocellulaire/génétique , Carcinome hépatocellulaire/métabolisme , Carcinome hépatocellulaire/anatomopathologie , Tumeurs du foie/traitement médicamenteux , Tumeurs du foie/génétique , Tumeurs du foie/métabolisme , Tumeurs du foie/anatomopathologie , Acétylation , Inhibiteurs de poly(ADP-ribose) polymérases/pharmacologie , Splicéosomes/métabolisme , Splicéosomes/effets des médicaments et des substances chimiques , Lignée cellulaire tumorale , Phtalazines/pharmacologie , Exons/génétique , Pipérazines/pharmacologie , Animaux , Protéine BRCA1/métabolisme , Protéine BRCA1/génétique , Depsipeptides/pharmacologie , Depsipeptides/usage thérapeutique , Souris , Altération de l'ADN/effets des médicaments et des substances chimiques , Régulation de l'expression des gènes tumoraux/effets des médicaments et des substances chimiques
16.
Nat Commun ; 15(1): 4980, 2024 Jun 19.
Article de Anglais | MEDLINE | ID: mdl-38898052

RÉSUMÉ

The self-splicing group II introns are bacterial and organellar ancestors of the nuclear spliceosome and retro-transposable elements of pharmacological and biotechnological importance. Integrating enzymatic, crystallographic, and simulation studies, we demonstrate how these introns recognize small molecules through their conserved active site. These RNA-binding small molecules selectively inhibit the two steps of splicing by adopting distinctive poses at different stages of catalysis, and by preventing crucial active site conformational changes that are essential for splicing progression. Our data exemplify the enormous power of RNA binders to mechanistically probe vital cellular pathways. Most importantly, by proving that the evolutionarily-conserved RNA core of splicing machines can recognize small molecules specifically, our work provides a solid basis for the rational design of splicing modulators not only against bacterial and organellar introns, but also against the human spliceosome, which is a validated drug target for the treatment of congenital diseases and cancers.


Sujet(s)
Domaine catalytique , Introns , Épissage des ARN , Splicéosomes , Épissage des ARN/effets des médicaments et des substances chimiques , Splicéosomes/métabolisme , Splicéosomes/effets des médicaments et des substances chimiques , Humains , Introns/génétique , Bibliothèques de petites molécules/pharmacologie , Bibliothèques de petites molécules/composition chimique
17.
Nat Commun ; 15(1): 5130, 2024 Jun 15.
Article de Anglais | MEDLINE | ID: mdl-38879536

RÉSUMÉ

Intron retention (IR) is the most common alternative splicing event in Arabidopsis. An increasing number of studies have demonstrated the major role of IR in gene expression regulation. The impacts of IR on plant growth and development and response to environments remain underexplored. Here, we found that IR functions directly in gene expression regulation on a genome-wide scale through the detainment of intron-retained transcripts (IRTs) in the nucleus. Nuclear-retained IRTs can be kept away from translation through this mechanism. COP1-dependent light modulation of the IRTs of light signaling genes, such as PIF4, RVE1, and ABA3, contribute to seedling morphological development in response to changing light conditions. Furthermore, light-induced IR changes are under the control of the spliceosome, and in part through COP1-dependent ubiquitination and degradation of DCS1, a plant-specific spliceosomal component. Our data suggest that light regulates the activity of the spliceosome and the consequent IRT nucleus detainment to modulate photomorphogenesis through COP1.


Sujet(s)
Protéines d'Arabidopsis , Arabidopsis , Noyau de la cellule , Régulation de l'expression des gènes végétaux , Introns , Lumière , Splicéosomes , Ubiquitin-protein ligases , Protéines d'Arabidopsis/génétique , Protéines d'Arabidopsis/métabolisme , Arabidopsis/génétique , Arabidopsis/croissance et développement , Arabidopsis/effets des radiations , Arabidopsis/métabolisme , Introns/génétique , Régulation de l'expression des gènes végétaux/effets des radiations , Splicéosomes/métabolisme , Ubiquitin-protein ligases/métabolisme , Ubiquitin-protein ligases/génétique , Noyau de la cellule/métabolisme , Plant/croissance et développement , Plant/génétique , Plant/effets des radiations , Plant/métabolisme , Épissage alternatif , Ubiquitination
18.
BMC Genomics ; 25(1): 649, 2024 Jun 28.
Article de Anglais | MEDLINE | ID: mdl-38943073

RÉSUMÉ

Despite the fact that introns mean an energy and time burden for eukaryotic cells, they play an irreplaceable role in the diversification and regulation of protein production. As a common feature of eukaryotic genomes, it has been reported that in protein-coding genes, the longest intron is usually one of the first introns. The goal of our work was to find a possible difference in the biological function of genes that fulfill this common feature compared to genes that do not. Data on the lengths of all introns in genes were extracted from the genomes of six vertebrates (human, mouse, koala, chicken, zebrafish and fugu) and two other model organisms (nematode worm and arabidopsis). We showed that more than 40% of protein-coding genes have the relative position of the longest intron located in the second or third tertile of all introns. Genes divided according to the relative position of the longest intron were found to be significantly increased in different KEGG pathways. Genes with the longest intron in the first tertile predominate in a range of pathways for amino acid and lipid metabolism, various signaling, cell junctions or ABC transporters. Genes with the longest intron in the second or third tertile show increased representation in pathways associated with the formation and function of the spliceosome and ribosomes. In the two groups of genes defined in this way, we further demonstrated the difference in the length of the longest introns and the distribution of their absolute positions. We also pointed out other characteristics, namely the positive correlation between the length of the longest intron and the sum of the lengths of all other introns in the gene and the preservation of the exact same absolute and relative position of the longest intron between orthologous genes.


Sujet(s)
Introns , Introns/génétique , Animaux , Humains , Arabidopsis/génétique , Splicéosomes/génétique , Splicéosomes/métabolisme
19.
Adv Sci (Weinh) ; 11(29): e2307804, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38837887

RÉSUMÉ

RNA splicing is crucial in the multilayer regulatory networks for gene expression, making functional interactions with DNA- and other RNA-processing machineries in the nucleus. However, these established couplings are all major spliceosome-related; whether the minor spliceosome is involved remains unclear. Here, through affinity purification using Drosophila lysates, an interaction is identified between the minor spliceosomal 65K/RNPC3 and ANKRD11, a cofactor of histone deacetylase 3 (HDAC3). Using a CRISPR/Cas9 system, Deletion strains are constructed and found that both Dm65KΔ/Δ and Dmankrd11Δ/Δ mutants have reduced histone deacetylation at Lys9 of histone H3 (H3K9) and Lys5 of histone H4 (H4K5) in their heads, exhibiting various neural-related defects. The 65K-ANKRD11 interaction is also conserved in human cells, and the HsANKRD11 middle-uncharacterized domain mediates Hs65K association with HDAC3. Cleavage under targets and tagmentation (CUT&Tag) assays revealed that HsANKRD11 is a bridging factor, which facilitates the synergistic common chromatin-binding of HDAC3 and Hs65K. Knockdown (KD) of HsANKRD11 simultaneously decreased their common binding, resulting in reduced deacetylation of nearby H3K9. Ultimately, this study demonstrates that expression changes of many genes caused by HsANKRD11-KD are due to the decreased common chromatin-binding of HDAC3 and Hs65K and subsequently reduced deacetylation of H3K9, illustrating a novel and conserved coupling mechanism that links the histone deacetylation with minor spliceosome for the regulation of gene expression.


Sujet(s)
Histone deacetylases , Histone , Histone deacetylases/métabolisme , Histone deacetylases/génétique , Histone/métabolisme , Histone/génétique , Humains , Animaux , Splicéosomes/métabolisme , Splicéosomes/génétique , Acétylation , Drosophila/génétique , Drosophila/métabolisme , Transcription génétique/génétique , Protéines de Drosophila/métabolisme , Protéines de Drosophila/génétique , Protéines de répression
20.
RNA ; 30(9): 1199-1212, 2024 Aug 16.
Article de Anglais | MEDLINE | ID: mdl-38876504

RÉSUMÉ

The spliceosome performs two consecutive transesterification reactions using one catalytic center, thus requiring its rearrangement between the two catalytic steps of splicing. The Prp16 ATPase facilitates exit from the first-step conformation of the catalytic center by destabilizing some interactions important for catalysis. To better understand rearrangements within the Saccharomyces cerevisiae catalytic center, we characterize factors that modulate the function of Prp16: Cwc2, N-terminal domain of Prp8, and U6-41AACAAU46 region. Alleles of these factors were identified through genetic screens for mutants that correct cs defects of prp16-302 alleles. Several of the identified U6, cwc2, and prp8 alleles are located in close proximity of each other in cryo-EM structures of the spliceosomal catalytic conformations. Cwc2 and U6 interact with the intron sequences in the first step, but they do not seem to contribute to the stability of the second-step catalytic center. On the other hand, the N-terminal segment of Prp8 not only affects intron positioning for the first step, but it also makes important contacts in the proximity of the active site for both the first and second steps of splicing. By identifying interactions important for the stability of catalytic conformations, our genetic analyses indirectly inform us about features of the transition-state conformation of the spliceosome.


Sujet(s)
Facteurs d'épissage des ARN , Épissage des ARN , Petit ARN nucléaire , Protéines de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Splicéosomes , Protéines de Saccharomyces cerevisiae/génétique , Protéines de Saccharomyces cerevisiae/métabolisme , Protéines de Saccharomyces cerevisiae/composition chimique , Petit ARN nucléaire/génétique , Petit ARN nucléaire/métabolisme , Petit ARN nucléaire/composition chimique , Saccharomyces cerevisiae/génétique , Saccharomyces cerevisiae/métabolisme , Splicéosomes/métabolisme , Splicéosomes/génétique , Facteurs d'épissage des ARN/métabolisme , Facteurs d'épissage des ARN/génétique , Facteurs d'épissage des ARN/composition chimique , Introns/génétique , Petites ribonucléoprotéines nucléaires U4-U6/métabolisme , Petites ribonucléoprotéines nucléaires U4-U6/génétique , Petites ribonucléoprotéines nucléaires U4-U6/composition chimique , Cryomicroscopie électronique , Mutation , Liaison aux protéines , Domaine catalytique , Allèles , DEAD-box RNA helicases/métabolisme , DEAD-box RNA helicases/génétique , DEAD-box RNA helicases/composition chimique , Adenosine triphosphatases/métabolisme , Adenosine triphosphatases/génétique , Adenosine triphosphatases/composition chimique , Protéines de liaison à l'ARN , Petites particules nucléaires ribonucléoprotéiques U5 , RNA helicases
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE