Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 174
Filtrer
1.
Lab Chip ; 24(15): 3718-3727, 2024 07 23.
Article de Anglais | MEDLINE | ID: mdl-38953554

RÉSUMÉ

The in vitro recapitulation of tumor microenvironment is of great interest to preclinical screening of drugs. Compared with culture of cell lines, tumor organ slices can better preserve the complex tumor architecture and phenotypic activity of native cells, but are limited by their exposure to fluid shear and gradual degradation under perfusion culture. Here, we established a decellularized liver matrix (DLM)-GelMA "sandwich" structure and a perfusion-based microfluidic platform to support long-term culture of tumor slices with excellent structural integrity and cell viability over 7 days. The DLM-GelMA was able to secrete cytokines and growth factors while providing shear protection to the tumor slice via the sandwich structure, leading to the preservation of the tumor microenvironment where immune cells (CD3, CD8, CD68), tumor-associated fibroblasts (α-SMA), and extracellular matrix components (collagen I, fibronectin) were well maintained. Furthermore, this chip presented anti-tumor efficacy at cisplatin (20 µM) on tumor patients, demonstrating our platform's efficacy to design patient-specific treatment regimens. Taken together, the successful development of this DLM-GelMA sandwich structure on the chip could faithfully reflect the tumor microenvironment and immune response, accelerating the screening process of drug molecules and providing insights for practical medicine.


Sujet(s)
Laboratoires sur puces , Microenvironnement tumoral , Humains , Microenvironnement tumoral/effets des médicaments et des substances chimiques , Antinéoplasiques/pharmacologie , Antinéoplasiques/composition chimique , Cisplatine/pharmacologie , Cisplatine/composition chimique , Tests de criblage d'agents antitumoraux/instrumentation , Animaux , Foie/métabolisme , Foie/anatomopathologie , Lignée cellulaire tumorale , Matrice extracellulaire/métabolisme
2.
Talanta ; 277: 126298, 2024 Sep 01.
Article de Anglais | MEDLINE | ID: mdl-38823330

RÉSUMÉ

Combination drug therapy represents an effective strategy for treating certain drug-resistant and intractable cancer cases. However, determining the optimal combination of drugs and dosages is challenging due to clonal diversity in patients' tumors and the lack of rapid drug sensitivity evaluation methods. Microfluidic technology offers promising solutions to this issue. In this study, we propose a versatile microfluidic chip platform capable of integrating all processes, including dilution, treatment, and detection, for in vitro drug sensitivity assays. This platform innovatively incorporates several modules, including automated discrete drug logarithmic concentration generation, on-chip cell perfusion culture, and parallel drug treatments of cancer cell models. Moreover, it is compatible with microplate readers or high-content imaging systems for swift detection and automated monitoring, simplifying on-chip drug evaluation. Proof of concept is demonstrated by assessing the in vitro potency of two drugs, cisplatin, and etoposide, against the lung adenocarcinoma A549 cell line, under both single-drug and combination treatment conditions. The findings reveal that, compared to conventional microplate approaches with static cultivation, this on-chip automated perfusion bioassays yield comparable IC50 values with lower variation and a 50 % reduction in drug preparation time. This versatile dilution-treatment-detection microfluidic platform offers a promising tool for rapid and precise drug assessments, facilitating in vitro drug sensitivity evaluation in personalized cancer chemotherapy.


Sujet(s)
Cisplatine , Tests de criblage d'agents antitumoraux , Étoposide , Laboratoires sur puces , Tumeurs du poumon , Humains , Tumeurs du poumon/traitement médicamenteux , Tumeurs du poumon/anatomopathologie , Étoposide/pharmacologie , Cisplatine/pharmacologie , Tests de criblage d'agents antitumoraux/instrumentation , Cellules A549 , Antinéoplasiques/pharmacologie , Protocoles de polychimiothérapie antinéoplasique/pharmacologie , Techniques d'analyse microfluidique/instrumentation
3.
Lab Chip ; 24(12): 3169-3182, 2024 06 11.
Article de Anglais | MEDLINE | ID: mdl-38804084

RÉSUMÉ

Despite recent advances in cancer treatment, refining therapeutic agents remains a critical task for oncologists. Precise evaluation of drug effectiveness necessitates the use of 3D cell culture instead of traditional 2D monolayers. Microfluidic platforms have enabled high-throughput drug screening with 3D models, but current viability assays for 3D cancer spheroids have limitations in reliability and cytotoxicity. This study introduces a deep learning model for non-destructive, label-free viability estimation based on phase-contrast images, providing a cost-effective, high-throughput solution for continuous spheroid monitoring in microfluidics. Microfluidic technology facilitated the creation of a high-throughput cancer spheroid platform with approximately 12 000 spheroids per chip for drug screening. Validation involved tests with eight conventional chemotherapeutic drugs, revealing a strong correlation between viability assessed via LIVE/DEAD staining and phase-contrast morphology. Extending the model's application to novel compounds and cell lines not in the training dataset yielded promising results, implying the potential for a universal viability estimation model. Experiments with an alternative microscopy setup supported the model's transferability across different laboratories. Using this method, we also tracked the dynamic changes in spheroid viability during the course of drug administration. In summary, this research integrates a robust platform with high-throughput microfluidic cancer spheroid assays and deep learning-based viability estimation, with broad applicability to various cell lines, compounds, and research settings.


Sujet(s)
Survie cellulaire , Apprentissage profond , Sphéroïdes de cellules , Humains , Sphéroïdes de cellules/effets des médicaments et des substances chimiques , Sphéroïdes de cellules/anatomopathologie , Survie cellulaire/effets des médicaments et des substances chimiques , Tests de criblage d'agents antitumoraux/instrumentation , Antinéoplasiques/pharmacologie , Lignée cellulaire tumorale , Techniques d'analyse microfluidique/instrumentation , Laboratoires sur puces
4.
Lab Chip ; 24(10): 2683-2699, 2024 05 14.
Article de Anglais | MEDLINE | ID: mdl-38651213

RÉSUMÉ

Cancer drug testing in animals is an extremely poor predictor of the drug's safety and efficacy observed in humans. Hence there is a pressing need for functional testing platforms that better predict traditional and immunotherapy responses in human, live tumor tissue or tissue constructs, and at the same time are compatible with the use of mouse tumor tissue to facilitate building more accurate disease models. Since many cancer drug actions rely on mechanisms that depend on the tumor microenvironment (TME), such platforms should also retain as much of the native TME as possible. Additionally, platforms based on miniaturization technologies are desirable to reduce animal use and sensitivity to human tissue scarcity. Present high-throughput testing platforms that have some of these features, e.g. based on patient-derived tumor organoids, require a growth step that alters the TME. On the other hand, microdissected tumors (µDTs) or "spheroids" that retain an intact TME have shown promising responses to immunomodulators acting on native immune cells. However, difficult tissue handling after microdissection has reduced the throughput of drug testing on µDTs, thereby constraining the inherent advantages of producing numerous TME-preserving units of tissue for drug testing. Here we demonstrate a microfluidic 96-well platform designed for drug treatment of hundreds of similarly-sized, cuboidal µDTs ("cuboids") produced from a single tumor sample. The platform organizes a monodisperse array of four cuboids per well in 384 hydrodynamic traps. The microfluidic device, entirely fabricated in thermoplastics, features 96 microvalves that fluidically isolate each well after the cuboid loading step for straightforward multi-drug testing. Since our platform makes the most of scarce tumor tissue, it can potentially be applied to human biopsies that preserve the human TME while minimizing animal testing.


Sujet(s)
Antinéoplasiques , Tests de criblage d'agents antitumoraux , Laboratoires sur puces , Humains , Animaux , Antinéoplasiques/pharmacologie , Tests de criblage d'agents antitumoraux/instrumentation , Souris , Microenvironnement tumoral/effets des médicaments et des substances chimiques , Techniques d'analyse microfluidique/instrumentation , Conception d'appareillage , Lignée cellulaire tumorale , Tumeurs/traitement médicamenteux
5.
J Mater Chem B ; 9(38): 7991-8002, 2021 10 06.
Article de Anglais | MEDLINE | ID: mdl-34611691

RÉSUMÉ

Lung cancer, mainly non-small cell lung cancer (NSCLC), has been a global health problem, leading to maximum cancer death. Across adenocarcinoma patients, significant genetic and phenotypic heterogeneity was identified as responsible for individual cancer drug resistance, driving an urgent need for individualized treatment. High expectation has been set on individualized treatment for better responses and extended survival. There are pressing needs for and significant advantages of testing dosages and drugs directly on patient-specific cancer cells for preclinical drug testing and personalized drug selection. Monitoring the drug response based on patient-derived cells (PDCs) is a step toward effective drug development and individualized treatment. Despite the dependence on optical labels, optical equipment, and other complex manual operation, we here report a multidimensional biosensor system to guide adenocarcinoma individualized treatment by integrating 2D and 3D PDC models and cellular impedance biosensors. The cellular impedance biosensors were applied to quantitate drug response in 2D and 3D environments. Compared with 2D plate culture, 3D cultured cells were found to show higher resistance to anti-cancer drugs. Cell-cell, cell-ECM, and mechanical interactions in the 3D environment led to stronger drug resistance. The in vivo results demonstrated the reliability of the multidimensional biosensor system. Cellular impedance biosensors allow a fast, non-invasive, and quantitative manner for preselected drug screening in individualized treatment. Considering the potential for good distinguishment of different anti-cancer drugs, our newly developed strategy may contribute to drug response prediction in individualized treatment and new drug development.


Sujet(s)
Adénocarcinome/traitement médicamenteux , Antinéoplasiques/usage thérapeutique , Techniques de biocapteur/méthodes , Tumeurs du poumon/traitement médicamenteux , Médecine de précision , Adénocarcinome/anatomopathologie , Animaux , Antinéoplasiques/pharmacologie , Techniques de biocapteur/instrumentation , Dérivés du biphényle/pharmacologie , Dérivés du biphényle/usage thérapeutique , Techniques de culture cellulaire , Mouvement cellulaire/effets des médicaments et des substances chimiques , Prolifération cellulaire/effets des médicaments et des substances chimiques , Résistance aux médicaments antinéoplasiques/effets des médicaments et des substances chimiques , Tests de criblage d'agents antitumoraux/instrumentation , Tests de criblage d'agents antitumoraux/méthodes , Humains , Lignanes/pharmacologie , Lignanes/usage thérapeutique , Tumeurs du poumon/anatomopathologie , Mâle , Souris , Souris nude , Pipéridines/pharmacologie , Pipéridines/usage thérapeutique , Quinazolines/pharmacologie , Quinazolines/usage thérapeutique , Cellules cancéreuses en culture
6.
ACS Appl Mater Interfaces ; 13(20): 23489-23501, 2021 May 26.
Article de Anglais | MEDLINE | ID: mdl-33983701

RÉSUMÉ

Cell-based high-throughput screening is a key step in the current disease-based research, drug development, and precision medicine. However, it is challenging to establish a rapid culture and screening platform for rare cells (patient-derived) due to the obvious differences between the traditional 2D cell model and the tumor microenvironment, as well as the lack of a low-consumption screening platform for low numbers of cells. Here, we developed an acoustic drop-assisted superhydrophilic-superhydrophobic microarray platform for the rapid culture and screening of a few cells. By employing hydrophilic and hydrophobic microarrays, we can automatically distribute the cell suspension into uniform droplets, and these cells can spontaneously form compact 3D cell spheroids within 36 h (similar to the microenvironment of tumors in vivo). By using the acoustic droplet ejection device, we can accurately inject a drug solution with a volume of ∼pL to ∼nL into the droplet, and the whole process can be completed within 20 ms (one print). By using three different cell lines (Caco-2, MCF-7, and HeLa) to optimize the platform, the culture and screening of five patients' colon cancer were subsequently realized. Using three conventional chemotherapeutics (5-fluorouracil, cetuximab, and panitumumab) of various concentrations, the best treatment was screened out and compared with the actual treatment effect of the patients, and the results were extremely similar. As a proof-of-concept application, we have proved that our platform can quickly cultivate patient samples and effectively screen the best treatment methods, highlighting its wide application in precision medicine, basic tumor research, and drug development.


Sujet(s)
Antinéoplasiques/pharmacologie , Tumeurs du côlon/anatomopathologie , Tests de criblage d'agents antitumoraux , Tests de criblage à haut débit , Analyse sur microréseau , Acoustique , Sujet âgé , Cellules Caco-2 , Survie cellulaire/effets des médicaments et des substances chimiques , Tests de criblage d'agents antitumoraux/instrumentation , Tests de criblage d'agents antitumoraux/méthodes , Femelle , Tests de criblage à haut débit/instrumentation , Tests de criblage à haut débit/méthodes , Humains , Interactions hydrophobes et hydrophiles , Analyse sur microréseau/instrumentation , Analyse sur microréseau/méthodes , Sphéroïdes de cellules , Cellules cancéreuses en culture
7.
Nat Commun ; 12(1): 2581, 2021 05 10.
Article de Anglais | MEDLINE | ID: mdl-33972544

RÉSUMÉ

While the potential of patient-derived organoids (PDOs) to predict patients' responses to anti-cancer treatments has been well recognized, the lengthy time and the low efficiency in establishing PDOs hamper the implementation of PDO-based drug sensitivity tests in clinics. We first adapt a mechanical sample processing method to generate lung cancer organoids (LCOs) from surgically resected and biopsy tumor tissues. The LCOs recapitulate the histological and genetic features of the parental tumors and have the potential to expand indefinitely. By employing an integrated superhydrophobic microwell array chip (InSMAR-chip), we demonstrate hundreds of LCOs, a number that can be generated from most of the samples at passage 0, are sufficient to produce clinically meaningful drug responses within a week. The results prove our one-week drug tests are in good agreement with patient-derived xenografts, genetic mutations of tumors, and clinical outcomes. The LCO model coupled with the microwell device provides a technically feasible means for predicting patient-specific drug responses in clinical settings.


Sujet(s)
Adénocarcinome/traitement médicamenteux , Antinéoplasiques/pharmacologie , Carcinome épidermoïde/traitement médicamenteux , Techniques de culture cellulaire/méthodes , Tests de criblage d'agents antitumoraux/méthodes , Tumeurs du poumon/traitement médicamenteux , Organoïdes/effets des médicaments et des substances chimiques , Adénocarcinome/génétique , Adénocarcinome/métabolisme , Adénocarcinome/anatomopathologie , Animaux , Carcinome épidermoïde/génétique , Carcinome épidermoïde/métabolisme , Carcinome épidermoïde/anatomopathologie , Cycle cellulaire/effets des médicaments et des substances chimiques , Lignée cellulaire tumorale , Prolifération cellulaire/effets des médicaments et des substances chimiques , Tests de criblage d'agents antitumoraux/instrumentation , Géfitinib/pharmacologie , Humains , Immunohistochimie , Tumeurs du poumon/génétique , Tumeurs du poumon/métabolisme , Tumeurs du poumon/anatomopathologie , Mâle , Souris , Souris de lignée NOD , Organoïdes/cytologie , Organoïdes/anatomopathologie , Préparations pharmaceutiques , Tests d'activité antitumorale sur modèle de xénogreffe
8.
Sci Rep ; 11(1): 372, 2021 01 11.
Article de Anglais | MEDLINE | ID: mdl-33431915

RÉSUMÉ

A series of stable and ready-to-use bioinks have been developed based on the xeno-free and tunable hydrogel (VitroGel) system. Cell laden scaffold fabrication with optimized polysaccharide-based inks demonstrated that Ink H4 and RGD modified Ink H4-RGD had excellent rheological properties. Both bioinks were printable with 25-40 kPa extrusion pressure, showed 90% cell viability, shear-thinning and rapid shear recovery properties making them feasible for extrusion bioprinting without UV curing or temperature adjustment. Ink H4-RGD showed printability between 20 and 37 °C and the scaffolds remained stable for 15 days at temperature of 37 °C. 3D printed non-small-cell lung cancer (NSCLC) patient derived xenograft cells (PDCs) showed rapid spheroid growth of size around 500 µm in diameter and tumor microenvironment formation within 7 days. IC50 values demonstrated higher resistance of 3D spheroids to docetaxel (DTX), doxorubicin (DOX) and erlotinib compared to 2D monolayers of NSCLC-PDX, wild type triple negative breast cancer (MDA-MB-231 WT) and lung adenocarcinoma (HCC-827) cells. Results of flow property, shape fidelity, scaffold stability and biocompatibility of H4-RGD suggest that this hydrogel could be considered for 3D cell bioprinting and also for in-vitro tumor microenvironment development for high throughput screening of various anti-cancer drugs.


Sujet(s)
Bio-impression/méthodes , Tests de criblage d'agents antitumoraux , Hydrogels/composition chimique , Tumeurs/anatomopathologie , Structures d'échafaudage tissulaires/composition chimique , Cellules A549 , Animaux , Carcinome pulmonaire non à petites cellules/anatomopathologie , Cellules cultivées , Tests de criblage d'agents antitumoraux/instrumentation , Tests de criblage d'agents antitumoraux/méthodes , Humains , Encre , Tumeurs du poumon/anatomopathologie , Test de matériaux , Souris , Souris de lignée NOD , Souris transgéniques , Modèles biologiques , Polyosides/composition chimique , Impression tridimensionnelle , Ingénierie tissulaire/méthodes , Microenvironnement tumoral/physiologie
9.
Nat Commun ; 11(1): 5271, 2020 10 19.
Article de Anglais | MEDLINE | ID: mdl-33077832

RÉSUMÉ

Three-dimensional (3D) cell culture technologies, such as organoids, are physiologically relevant models for basic and clinical applications. Automated microfluidics offers advantages in high-throughput and precision analysis of cells but is not yet compatible with organoids. Here, we present an automated, high-throughput, microfluidic 3D organoid culture and analysis system to facilitate preclinical research and personalized therapies. Our system provides combinatorial and dynamic drug treatments to hundreds of cultures and enables real-time analysis of organoids. We validate our system by performing individual, combinatorial, and sequential drug screens on human-derived pancreatic tumor organoids. We observe significant differences in the response of individual patient-based organoids to drug treatments and find that temporally-modified drug treatments can be more effective than constant-dose monotherapy or combination therapy in vitro. This integrated platform advances organoids models to screen and mirror real patient treatment courses with potential to facilitate treatment decisions for personalized therapy.


Sujet(s)
Antinéoplasiques/pharmacologie , Tests de criblage d'agents antitumoraux/méthodes , Microfluidique/méthodes , Organoïdes/effets des médicaments et des substances chimiques , Automatisation , Techniques de culture cellulaire , Tests de criblage d'agents antitumoraux/instrumentation , Humains , Microfluidique/instrumentation , Tumeurs du pancréas/traitement médicamenteux
10.
Drug Resist Updat ; 53: 100730, 2020 12.
Article de Anglais | MEDLINE | ID: mdl-33096284

RÉSUMÉ

New treatment options of acute myeloid leukemia (AML) are rapidly emerging. Pre-clinical models such as ex vivo cultures are extensively used towards the development of novel drugs and to study synergistic drug combinations, as well as to discover biomarkers for both drug response and anti-cancer drug resistance. Although these approaches empower efficient investigation of multiple drugs in a multitude of primary AML samples, their translational value and reproducibility are hampered by the lack of standardized methodologies and by culture system-specific behavior of AML cells and chemotherapeutic drugs. Moreover, distinct research questions require specific methods which rely on specific technical knowledge and skills. To address these aspects, we herein review commonly used culture techniques in light of diverse research questions. In addition, culture-dependent effects on drug resistance towards commonly used drugs in the treatment of AML are summarized including several pitfalls that may arise because of culture technique artifacts. The primary aim of the current review is to provide practical guidelines for ex vivo primary AML culture experimental design.


Sujet(s)
Antinéoplasiques/pharmacologie , Leucémie aigüe myéloïde/traitement médicamenteux , Culture de cellules primaires/méthodes , Plan de recherche/normes , Antinéoplasiques/usage thérapeutique , Moelle osseuse/anatomopathologie , Cryoconservation , Milieux de culture/composition chimique , Milieux de culture/normes , Résistance aux médicaments antinéoplasiques , Tests de criblage d'agents antitumoraux/instrumentation , Tests de criblage d'agents antitumoraux/méthodes , Tests de criblage d'agents antitumoraux/normes , Recommandations comme sujet , Humains , Leucémie aigüe myéloïde/sang , Leucémie aigüe myéloïde/anatomopathologie , Culture de cellules primaires/instrumentation , Culture de cellules primaires/normes , Reproductibilité des résultats , Cellules cancéreuses en culture
11.
Adv Clin Chem ; 99: 193-235, 2020.
Article de Anglais | MEDLINE | ID: mdl-32951637

RÉSUMÉ

Cancer is a heterogeneous disease that requires a multimodal approach to diagnose, manage and treat. A better understanding of the disease biology can lead to identification of novel diagnostic/prognostic biomarkers and the discovery of the novel therapeutics with the goal of improving patient outcomes. Employing advanced technologies can facilitate this, enabling better diagnostic and treatment for cancer patients. In this regard, microfluidic technology has emerged as a promising tool in the studies of cancer, including single cancer cell analysis, modeling angiogenesis and metastasis, drug screening and liquid biopsy. Microfluidic technologies have opened new ways to study tumors in the preclinical and clinical settings. In this chapter, we highlight novel application of this technology in area of fundamental, translational and clinical cancer research.


Sujet(s)
Techniques d'analyse microfluidique/méthodes , Tumeurs/anatomopathologie , Tumeurs/thérapie , Animaux , Mouvement cellulaire , Tests de criblage d'agents antitumoraux/instrumentation , Tests de criblage d'agents antitumoraux/méthodes , Conception d'appareillage , Humains , Techniques d'analyse microfluidique/instrumentation , Invasion tumorale/diagnostic , Invasion tumorale/anatomopathologie , Invasion tumorale/prévention et contrôle , Tumeurs/diagnostic , Néovascularisation pathologique/diagnostic , Néovascularisation pathologique/anatomopathologie , Néovascularisation pathologique/thérapie , Médecine de précision/instrumentation , Médecine de précision/méthodes , Analyse sur cellule unique/instrumentation , Analyse sur cellule unique/méthodes
12.
Int J Mol Sci ; 21(18)2020 Sep 16.
Article de Anglais | MEDLINE | ID: mdl-32948069

RÉSUMÉ

In the last decade, three-dimensional (3D) cell culture technology has gained a lot of interest due to its ability to better recapitulate the in vivo organization and microenvironment of in vitro cultured cancer cells. In particular, 3D tumor models have demonstrated several different characteristics compared with traditional two-dimensional (2D) cultures and have provided an interesting link between the latter and animal experiments. Indeed, 3D cell cultures represent a useful platform for the identification of the biological features of cancer cells as well as for the screening of novel antitumor agents. The present review is aimed at summarizing the most common 3D cell culture methods and applications, with a focus on prostate cancer modeling and drug discovery.


Sujet(s)
Adénocarcinome/anatomopathologie , Androgènes , Antinéoplasiques/pharmacologie , Techniques de culture cellulaire/méthodes , Découverte de médicament/méthodes , Tests de criblage d'agents antitumoraux/méthodes , Tumeurs hormonodépendantes/anatomopathologie , Tumeurs de la prostate/anatomopathologie , Adénocarcinome/traitement médicamenteux , Adénocarcinome/métabolisme , Animaux , Antinéoplasiques/usage thérapeutique , Techniques de culture cellulaire/instrumentation , Hypoxie cellulaire , Tests de criblage d'agents antitumoraux/instrumentation , Métabolisme énergétique , Transition épithélio-mésenchymateuse , Matrice extracellulaire/métabolisme , Humains , Inflammation , Mâle , Thérapie moléculaire ciblée , Monitorage immunologique , Métastase tumorale , Protéines tumorales/métabolisme , Tumeurs hormonodépendantes/traitement médicamenteux , Tumeurs hormonodépendantes/métabolisme , Cellules souches tumorales/cytologie , Cellules souches tumorales/effets des médicaments et des substances chimiques , Cellules souches tumorales/métabolisme , Néovascularisation pathologique/traitement médicamenteux , Oxydoréduction , Tumeurs de la prostate/traitement médicamenteux , Tumeurs de la prostate/métabolisme , Tumeurs de la prostate/thérapie , Sphéroïdes de cellules/effets des médicaments et des substances chimiques , Traitements en cours d'évaluation , Cellules cancéreuses en culture
13.
Biomed Microdevices ; 22(4): 70, 2020 09 22.
Article de Anglais | MEDLINE | ID: mdl-32960346

RÉSUMÉ

The advent of microfluidic technologies has enabled a better recapitulation of in vitro tumor model with higher biological relevance over conventional monolayer assays. This work built upon a microfluidic system that supported the spontaneous aggregate formation of tumoral cells under flow-induced dynamic physical forces in a confined microchamber without additional matrix materials. Our findings indicated that fluidic streams significantly modulated the biological and architectural features of human breast adenocarcinoma cell (MCF-7), human hepatocarcinoma cell (HepG2), and human cervix adenocarcinoma cell (HeLa) with cell-type-dependent variation. The microfluidic platform was further integrated with a fluorescence detection and imaging system, allowing for non-invasive monitoring of cellular accumulation and spatial distribution of a chemotherapeutic agent, doxorubicin (DOX). The cytotoxic effects of DOX of various concentrations were determined and compared in MCF-7 cells in conventional two-dimensional (2D) static and microfluidic culture conditions. Dose-dependent response to DOX was noticed in both cultures, whereas tumor micronodules grown in microfluidic devices demonstrated significantly lower sensitivity to DOX at increased concentration. Our platform owns promising potentials as a universal modality for bridging traditional 2D cell cultures and in vivo experimentation for preclinical anticancer drug screening.


Sujet(s)
Antinéoplasiques/pharmacologie , Doxorubicine/pharmacologie , Tests de criblage d'agents antitumoraux/instrumentation , Laboratoires sur puces , Cellules HeLa , Humains , Cellules MCF-7
14.
Biochem Biophys Res Commun ; 529(2): 162-168, 2020 08 20.
Article de Anglais | MEDLINE | ID: mdl-32703405

RÉSUMÉ

Glioblastoma multiforme (GBM) is a deadly type of brain cancer. There is a need to identify novel therapies for GBM as current treatments only marginally increase survival. Modelling the complexity of cancerous tissues using 3D bioprinted constructs serves as a novel approach for preclinical testing of anticancer drugs. A novel small molecule antagonist of the cell adhesion molecule, N-cadherin (NCAD), (S)-1-(3,4-Dichlorophenoxy)-3-(4-((S)-2-hydroxy-3-(4-methoxyphenoxy)propylamino)piperidin-1-yl)propan-2-ol has shown promise as an anticancer agent. This study investigated the influence of this antagonist on GBM cells bioprinted with astrocytes into 3D constructs. The NCAD antagonist prevented spheroid formation and induced cell death in the 3D model. This is the first demonstration that an NCAD antagonist can cause GBM cell death.


Sujet(s)
Antinéoplasiques/pharmacologie , Bio-impression/instrumentation , Tumeurs du cerveau/traitement médicamenteux , Cadhérines/antagonistes et inhibiteurs , Techniques de coculture/instrumentation , Glioblastome/traitement médicamenteux , Antigènes CD , Mort cellulaire/effets des médicaments et des substances chimiques , Lignée cellulaire tumorale , Tests de criblage d'agents antitumoraux/instrumentation , Conception d'appareillage , Humains
15.
Biotechnol Bioeng ; 117(7): 2262-2278, 2020 07.
Article de Anglais | MEDLINE | ID: mdl-32297971

RÉSUMÉ

Despite recent advances in breast cancer treatment, drug resistance frequently presents as a challenge, contributing to a higher risk of relapse and decreased overall survival rate. It is now generally recognized that the extracellular matrix and cellular heterogeneity of the tumor microenvironment influences the cancer cells' ultimate fate. Therefore, strategies employed to examine mechanisms of drug resistance must take microenvironmental influences, as well as genetic mutations, into account. This review discusses three-dimensional (3D) in vitro model systems which incorporate microenvironmental influences to study mechanisms of drug resistance in breast cancer. These bioengineered models include spheroid-based models, biomaterial-based models such as polymeric scaffolds and hydrogels, and microfluidic chip-based models. The advantages of these model systems over traditionally studied two-dimensional tissue culture polystyrene are examined. Additionally, the applicability of such 3D models for studying the impact of tumor microenvironment signals on drug response and/or resistance is discussed. Finally, the potential of such models for use in the development of strategies to combat drug resistance and determine the most promising treatment regimen is explored.


Sujet(s)
Antinéoplasiques/pharmacologie , Tumeurs du sein/traitement médicamenteux , Résistance aux médicaments antinéoplasiques , Tests de criblage d'agents antitumoraux/méthodes , Animaux , Matériaux biocompatibles/composition chimique , Techniques de culture cellulaire/instrumentation , Techniques de culture cellulaire/méthodes , Tests de criblage d'agents antitumoraux/instrumentation , Femelle , Humains , Laboratoires sur puces , Sphéroïdes de cellules/cytologie , Sphéroïdes de cellules/effets des médicaments et des substances chimiques , Structures d'échafaudage tissulaires/composition chimique , Cellules cancéreuses en culture , Microenvironnement tumoral/effets des médicaments et des substances chimiques
16.
Methods Enzymol ; 632: 479-502, 2020.
Article de Anglais | MEDLINE | ID: mdl-32000911

RÉSUMÉ

Understanding the interactions between immune and cancer cells occurring within the tumor microenvironment is a prerequisite for successful and personalized anti-cancer therapies. Microfluidic devices, coupled to advanced microscopy systems and automated analytical tools, can represent an innovative approach for high-throughput investigations on immune cell-cancer interactions. In order to study such interactions and to evaluate how therapeutic agents can affect this crosstalk, we employed two ad hoc fabricated microfluidic platforms reproducing advanced 2D or 3D tumor immune microenvironments. In the first type of chip, we confronted the capacity of tumor cells embedded in Matrigel containing one drug or Matrigel containing a combination of two drugs to attract differentially immune cells, by fluorescence microscopy analyses. In the second chip, we investigated the migratory/interaction response of naïve immune cells to danger signals emanated from tumor cells treated with an immunogenic drug, by time-lapse microscopy and automated tracking analysis. We demonstrate that microfluidic platforms and their associated high-throughput computed analyses can represent versatile and smart systems to: (i) monitor and quantify the recruitment and interactions of the immune cells with cancer in a controlled environment, (ii) evaluate the immunogenic effects of anti-cancer therapeutic agents and (iii) evaluate the immunogenic efficacy of combinatorial regimens with respect to single agents.


Sujet(s)
Communication cellulaire , Laboratoires sur puces , Tumeurs/immunologie , Microenvironnement tumoral , Animaux , Antinéoplasiques immunologiques/pharmacologie , Communication cellulaire/effets des médicaments et des substances chimiques , Lignée cellulaire tumorale , Tests de criblage d'agents antitumoraux/instrumentation , Tests de criblage d'agents antitumoraux/méthodes , Conception d'appareillage , Femelle , Humains , Souris , Souris de lignée C57BL , Techniques d'analyse microfluidique/instrumentation , Techniques d'analyse microfluidique/méthodes , Tumeurs/traitement médicamenteux , Microenvironnement tumoral/effets des médicaments et des substances chimiques
17.
Anal Chem ; 92(4): 3095-3102, 2020 02 18.
Article de Anglais | MEDLINE | ID: mdl-31965790

RÉSUMÉ

Cancer cell migration is often guided by cell protrusions, whose formation and activity involve subcellular localization of mitochondria. However, the role of subcellular mitochondrial trafficking during cell protrusion generation is not well-understood amidst a lack of quantitative data. Here, we present a high-throughput microfluidic platform that enables the quantitative, single-cell precision analysis of cell protrusion formation during cell migration that is regulated by subcellular mitochondrial trafficking. Gene expression profiling of the isolated cell protrusions suggested that mitochondria were found in high numbers within cell protrusions, a finding validated by mitochondrial staining. Quantitative analysis revealed that the formation of cell protrusions could be effectively suppressed by inhibiting subcellular mitochondrial trafficking. We further demonstrated that rapid screening of mitochondria-specific therapeutic drugs to evaluate their effects on cell protrusion formation with single-cell precision could be achieved in the microfluidic platform, which could have clinical utility in the development of new anticancer agents.


Sujet(s)
Évolution de la maladie , Tests de criblage d'agents antitumoraux/instrumentation , Laboratoires sur puces , Mitochondries/effets des médicaments et des substances chimiques , Mitochondries/métabolisme , Analyse sur cellule unique/instrumentation , Lignée cellulaire tumorale , Mouvement cellulaire/effets des médicaments et des substances chimiques , Humains
18.
Surgery ; 167(1): 197-203, 2020 01.
Article de Anglais | MEDLINE | ID: mdl-31543319

RÉSUMÉ

BACKGROUND: As patient-derived xenografts and other preclinical models of neuroendocrine tumors for testing personalized therapeutics are lacking, we have developed a perfused, 3D bioreactor model to culture tumor surrogates from patient-derived neuroendocrine tumors. This work evaluates the duration of surrogate culture and surrogate response to a novel antibody-drug conjugate. METHODS: Twenty-seven patient-derived neuroendocrine tumors were cultured. Histologic sections of a pancreatic neuroendocrine tumor xenograft (BON-1) tumor were assessed for SSTR2 expression before tumor implantation into 2 bioreactors. One surrogate was treated with an antibody-drug conjugate composed of an anti-mitotic Monomethyl auristatin-E linked to a somatostatin receptor 2 antibody. Viability and therapeutic response were assessed by pre-imaging incubation with IR-783 and the RealTime-Glo AnnexinV Apoptosis and Necrosis Assay (Promega Corporation, Madison, WI) over 6 days. A primary human pancreatic neuroendocrine tumor was evaluated similarly. RESULTS: Mean surrogate growth duration was 34.8 days. Treated BON-1 surrogates exhibited less proliferation (1.2 vs 1.9-fold) and greater apoptosis (1.5 vs 1.1-fold) than controls, whereas treated patient-derived neuroendocrine tumor bioreactors exhibited greater degrees of apoptosis (13- vs 9-fold) and necrosis (2.5- vs 1.6-fold). CONCLUSION: Patient-derived neuroendocrine tumor surrogates can be cultured reliably within the bioreactor. This model can be used to evaluate the efficacy of antibody-guided chemotherapy ex vivo and may be useful for predicting clinical responses.


Sujet(s)
Bioréacteurs , Tests de criblage d'agents antitumoraux/instrumentation , Immunoconjugués/pharmacologie , Tumeurs neuroendocrines/traitement médicamenteux , Tumeurs du pancréas/traitement médicamenteux , Culture de cellules primaires/instrumentation , Animaux , Antinéoplasiques immunologiques/pharmacologie , Antinéoplasiques immunologiques/usage thérapeutique , Apoptose/effets des médicaments et des substances chimiques , Prolifération cellulaire/effets des médicaments et des substances chimiques , Tests de criblage d'agents antitumoraux/méthodes , Humains , Immunoconjugués/usage thérapeutique , Mâle , Souris , Thérapie moléculaire ciblée/méthodes , Tumeurs neuroendocrines/anatomopathologie , Oligopeptides/pharmacologie , Oligopeptides/usage thérapeutique , Tumeurs du pancréas/anatomopathologie , Culture de cellules primaires/méthodes , Récepteur somatostatine/antagonistes et inhibiteurs , Reproductibilité des résultats , Cellules cancéreuses en culture
19.
Mol Biol Rep ; 47(1): 97-109, 2020 Jan.
Article de Anglais | MEDLINE | ID: mdl-31583566

RÉSUMÉ

Breast cancer is one of the most common cancer types among women in which early tumor invasion leads to metastases and death. EpCAM (epithelial cellular adhesion molecule) and HER2 (human epidermal growth factor receptor 2) are two main circulating tumor cell (CTC) subsets in HER2+ breast cancer patients. In this regard, the main aim of this study is to develop and characterize a three-dimensional (3D) breast cancer tumor model composed of CTC subsets to evaluate new therapeutic strategies and drugs. For this reason, EpCAM(+) and HER2(+) sub-populations were isolated from different cell lines to establish 3D tumor model that mimics in situ (in vivo) more closely than two-dimensional (2D) models. EpCAM(+)/HER2(+) cells had a high proliferation rate and low tendency to attach to the surface in comparison with parental MDA-MB-453 cells as CTC subsets. Aggressive breast cancer subpopulations cultured in 3D porous chitosan scaffold had enhanced cell-cell and cell-matrix interactions compared to 2D cultured cells and these 3D models showed more aggressive morphology and behavior, expressed higher levels of pluripotency marker genes, Nanog, Sox2 and Oct4. For the verification of the 3D model, the effects of doxorubicin which is a chemotherapeutic agent used in breast cancer treatment were examined and increased drug resistance was determined in 3D cultures. The 3D tumor model comprising EpCAM(+)/HER2(+) CTC subsets developed in this study has a promising potential to be used for investigation of an aggressive CTC microenvironment in vitro that mimics in vivo characteristics to test new drug candidates against CTCs.


Sujet(s)
Tumeurs du sein/anatomopathologie , Modèles biologiques , Cellules tumorales circulantes/anatomopathologie , Techniques de culture de tissus/méthodes , Structures d'échafaudage tissulaires , Marqueurs biologiques tumoraux/génétique , Tumeurs du sein/génétique , Tumeurs du sein/métabolisme , Lignée cellulaire tumorale , Tests de criblage d'agents antitumoraux/instrumentation , Tests de criblage d'agents antitumoraux/méthodes , Molécule d'adhérence des cellules épithéliales/génétique , Molécule d'adhérence des cellules épithéliales/métabolisme , Femelle , Humains , Cellules MCF-7 , Invasion tumorale , Cellules tumorales circulantes/métabolisme , Récepteur ErbB-2/génétique , Récepteur ErbB-2/métabolisme , Sphéroïdes de cellules/métabolisme , Sphéroïdes de cellules/anatomopathologie , Structures d'échafaudage tissulaires/composition chimique , Microenvironnement tumoral/génétique
20.
SLAS Technol ; 25(1): 82-87, 2020 02.
Article de Anglais | MEDLINE | ID: mdl-31381466

RÉSUMÉ

Typography-like templates for polydimethylsiloxane (PDMS) microfluidic chips using a fused deposition modeling (FDM) three-dimensional (3D) printer are presented. This rapid and fast proposed scheme did not require complicated photolithographic fabrication facilities and could deliver resolutions of ~100 µm. Polylactic acid (PLA) was adopted as the material to generate the 3D-printed units, which were then carefully assembled on a glass substrate using a heat-melt-curd strategy. This craft of bonding offers a cost-effective way to design and modify the templates of microfluidic channels, thus reducing the processing time of microfluidic chips. Finally, a flexible microfluidic chip to be employed for cell-based drug screening was developed based on the modularized 3D-printed templates. The lithography-free, typography-like, 3D-printed templates create a modularized fabrication process and promote the prevalence of integrated microfluidic systems with minimal requirements and improved efficiency.


Sujet(s)
Polydiméthylsiloxanes , Tests de criblage d'agents antitumoraux/instrumentation , Techniques d'analyse microfluidique/instrumentation , Polyesters , Impression tridimensionnelle , Cellules A549 , Cisplatine , Humains
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE