Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 7.886
Filtrer
2.
Fluids Barriers CNS ; 21(1): 74, 2024 Sep 17.
Article de Anglais | MEDLINE | ID: mdl-39289695

RÉSUMÉ

BACKGROUND: The most crucial area to focus on when thinking of novel pathways for drug delivery into the CNS is the blood brain barrier (BBB). A number of nanoparticulate formulations have been shown in earlier research to target receptors at the BBB and transport therapeutics into the CNS. However, no mechanism for CNS entrance and movement throughout the CNS parenchyma has been proposed yet. Here, the truncated mini low-density lipoprotein receptor-related protein 1 mLRP1_DIV* was presented as blood to brain transport carrier, exemplified by antibodies and immunoliposomes using a systematic approach to screen the receptor and its ligands' route across endothelial cells in vitro. METHODS: The use of mLRP1_DIV* as liposomal carrier into the CNS was validated based on internalization and transport assays across an in vitro model of the BBB using hcMEC/D3 and bEnd.3 cells. Trafficking routes of mLRP1_DIV* and corresponding cargo across endothelial cells were analyzed using immunofluorescence. Modulation of γ-secretase activity by immunoliposomes loaded with the γ-secretase modulator BB25 was investigated in co-cultures of bEnd.3 mLRP1_DIV* cells and CHO cells overexpressing human amyloid precursor protein (APP) and presenilin 1 (PSEN1). RESULTS: We showed that while expressed in vitro, mLRP1_DIV* transports both, antibodies and functionalized immunoliposomes from luminal to basolateral side across an in vitro model of the BBB, followed by their mLRP1_DIV* dependent release of the cargo. Importantly, functionalized liposomes loaded with the γ-secretase modulator BB25 were demonstrated to effectively reduce toxic Aß42 peptide levels after mLRP1_DIV* mediated transport across a co-cultured endothelial monolayer. CONCLUSION: Together, the data strongly suggest mLRP1_DIV* as a promising tool for drug delivery into the CNS, as it allows a straight transport of cargo from luminal to abluminal side across an endothelial monolayer and it's release into brain parenchyma in vitro, where it exhibits its intended therapeutic effect.


Sujet(s)
Barrière hémato-encéphalique , Cricetulus , Protéine-1 apparentée au récepteur des LDL , Barrière hémato-encéphalique/métabolisme , Barrière hémato-encéphalique/effets des médicaments et des substances chimiques , Protéine-1 apparentée au récepteur des LDL/métabolisme , Animaux , Humains , Cellules CHO , Cellules endothéliales/métabolisme , Liposomes , Transport biologique/physiologie , Amyloid precursor protein secretases/métabolisme , Transport des protéines/physiologie , Transport des protéines/effets des médicaments et des substances chimiques , Souris , Techniques de coculture
3.
Dis Model Mech ; 17(9)2024 Sep 01.
Article de Anglais | MEDLINE | ID: mdl-39139065

RÉSUMÉ

Being a vital cellular process, coat protein complex II (COPII) vesicle trafficking has been found to play a crucial role in liver metabolism. However, its functions and the underlying mechanisms in systemic metabolic homeostasis have not been fully understood. Here, with a newly identified gene trap zebrafish line (sec31anju221), we show that compromised COPII vesicle trafficking leads to biphasic abnormal hepatic metabolism. During the larval stage, deficiency of COPII-mediated trafficking leads to activation of the unfolded protein response and the development of hepatic steatosis. By using epistasis analysis, we found that the eIF2α-ATF4 pathway serves as the primary effector for liver steatosis. In adult sec31anju221 fish, the hepatosteatosis was reversed and the phenotype switched to glycogenic hepatopathy. Proteomic profiling and biochemical assays indicate that sec31anju221 fish are in a state of hypothyroidism. Moreover, our study shows that thyroid hormone treatment alleviates the metabolic defects. This study provides insights into processes of liver diseases associated with vesicle trafficking impairments and expands our understanding of the pathological interplay between thyroid and liver.


Sujet(s)
Vésicules COP , Foie , Protéines de poisson-zèbre , Danio zébré , Animaux , Danio zébré/métabolisme , Vésicules COP/métabolisme , Protéines de poisson-zèbre/métabolisme , Protéines de poisson-zèbre/génétique , Foie/métabolisme , Foie/anatomopathologie , Stéatose hépatique/anatomopathologie , Stéatose hépatique/métabolisme , Glycogène/métabolisme , Maladies du foie/métabolisme , Maladies du foie/anatomopathologie , Réponse aux protéines mal repliées/effets des médicaments et des substances chimiques , Hormones thyroïdiennes/métabolisme , Facteur de transcription ATF-4/métabolisme , Facteur-2 d'initiation eucaryote/métabolisme , Transport des protéines/effets des médicaments et des substances chimiques , Larve/métabolisme , Hypothyroïdie/anatomopathologie , Hypothyroïdie/métabolisme , Transduction du signal
4.
Nutrients ; 16(14)2024 Jul 09.
Article de Anglais | MEDLINE | ID: mdl-39064624

RÉSUMÉ

Diabetes mellitus is a spreading global pandemic. Type 2 diabetes mellitus (T2DM) is the predominant form of diabetes, in which a reduction in blood glucose uptake is caused by impaired glucose transporter 4 (GLUT4) translocation to the plasma membrane in adipose and muscle cells. Antihyperglycemic drugs play a pivotal role in ameliorating diabetes symptoms but often are associated with side effects. Hence, novel antidiabetic compounds and nutraceutical candidates are urgently needed. Phytogenic therapy can support the prevention and amelioration of impaired glucose homeostasis. Using total internal reflection fluorescence microscopy (TIRFM), 772 plant extracts of an open-access plant extract library were screened for their GLUT4 translocation activation potential, resulting in 9% positive hits. Based on commercial interest and TIRFM assay-based GLUT4 translocation activation, some of these extracts were selected, and their blood glucose-reducing effects in ovo were investigated using a modified hen's egg test (Gluc-HET). To identify the active plant part, some of the available candidate plants were prepared in-house from blossoms, leaves, stems, or roots and tested. Acacia catechu (catechu), Pulmonaria officinalis (lungwort), Mentha spicata (spearmint), and Saponaria officinalis (common soapwort) revealed their potentials as antidiabetic nutraceuticals, with common soapwort containing GLUT4 translocation-activating saponarin.


Sujet(s)
Transporteur de glucose de type 4 , Hypoglycémiants , Insuline , Microscopie de fluorescence , Extraits de plantes , Extraits de plantes/pharmacologie , Transporteur de glucose de type 4/métabolisme , Hypoglycémiants/pharmacologie , Animaux , Insuline/métabolisme , Souris , Glycémie/effets des médicaments et des substances chimiques , Glycémie/métabolisme , Diabète de type 2/traitement médicamenteux , Humains , Transport des protéines/effets des médicaments et des substances chimiques
5.
Biomolecules ; 14(7)2024 Jun 27.
Article de Anglais | MEDLINE | ID: mdl-39062478

RÉSUMÉ

ACE2, part of the angiotensin-converting enzyme family and the renin-angiotensin-aldosterone system (RAAS), plays vital roles in cardiovascular and renal functions. It is also the primary receptor for SARS-CoV-2, enabling its entry into cells. This project aimed to study ACE2's cellular trafficking and maturation to the cell surface and assess the impact of various drugs and compounds on these processes. We used cellular and biochemical analyses to evaluate these compounds as potential leads for COVID-19 therapeutics. Our screening assay focused on ACE2 maturation levels and subcellular localization with and without drug treatments. Results showed that ACE2 maturation is generally fast and robust, with certain drugs having a mild impact. Out of twenty-three tested compounds, eight significantly reduced ACE2 maturation levels, and three caused approximately 20% decreases. Screening trafficking inhibitors revealed significant effects from most molecular modulators of protein trafficking, mild effects from most proposed COVID-19 drugs, and no effects from statins. This study noted that manipulating ACE2 levels could be beneficial or harmful, depending on the context. Thus, using this approach to uncover leads for COVID-19 therapeutics requires a thorough understanding ACE2's biogenesis and biology.


Sujet(s)
Angiotensin-converting enzyme 2 , Traitements médicamenteux de la COVID-19 , Transport des protéines , SARS-CoV-2 , Angiotensin-converting enzyme 2/métabolisme , Humains , SARS-CoV-2/effets des médicaments et des substances chimiques , SARS-CoV-2/métabolisme , Transport des protéines/effets des médicaments et des substances chimiques , Antiviraux/pharmacologie , COVID-19/virologie , COVID-19/métabolisme , Cellules HEK293 , Évaluation préclinique de médicament
6.
J Cell Sci ; 137(15)2024 08 01.
Article de Anglais | MEDLINE | ID: mdl-39016685

RÉSUMÉ

Neurofibromatosis type 1, a genetic disorder caused by pathogenic germline variations in NF1, predisposes individuals to the development of tumors, including cutaneous and plexiform neurofibromas (CNs and PNs), optic gliomas, astrocytomas, juvenile myelomonocytic leukemia, high-grade gliomas and malignant peripheral nerve sheath tumors (MPNSTs), which are chemotherapy- and radiation-resistant sarcomas with poor survival. Loss of NF1 also occurs in sporadic tumors, such as glioblastoma (GBM), melanoma, breast, ovarian and lung cancers. We performed a high-throughput screen for compounds that were synthetic lethal with NF1 loss, which identified several leads, including the small molecule Y102. Treatment of cells with Y102 perturbed autophagy, mitophagy and lysosome positioning in NF1-deficient cells. A dual proteomics approach identified BLOC-one-related complex (BORC), which is required for lysosome positioning and trafficking, as a potential target of Y102. Knockdown of a BORC subunit using siRNA recapitulated the phenotypes observed with Y102 treatment. Our findings demonstrate that BORC might be a promising therapeutic target for NF1-deficient tumors.


Sujet(s)
Lysosomes , Neurofibromine-1 , Humains , Lysosomes/métabolisme , Neurofibromine-1/génétique , Neurofibromine-1/métabolisme , Neurofibromatose de type 1/métabolisme , Neurofibromatose de type 1/génétique , Neurofibromatose de type 1/anatomopathologie , Autophagie/effets des médicaments et des substances chimiques , Mutations synthétiques létales , Transport des protéines/effets des médicaments et des substances chimiques
7.
Cell Rep ; 43(8): 114516, 2024 Aug 27.
Article de Anglais | MEDLINE | ID: mdl-39024103

RÉSUMÉ

Despite its significance, the role of lipid metabolism in NLRP3 inflammasome remains elusive. Here, we reveal a critical role for fatty acid synthase (FASN) in NLRP3 inflammasome activation. We demonstrate that pharmacological or genetic depletion of FASN dampens NLRP3 activation in primary mouse and human macrophages and in mice. This disruption in NLRP3 activation is contingent upon FASN activity. Accordingly, abolishing cellular palmitoylation, a post-translational modification in which the FASN product palmitate is reversibly conjugated to cysteine residues of target proteins, blunts inflammasome signaling. Correspondingly, an acyl-biotin exchange assay corroborated NLRP3 palmitoylation. Mechanistically, Toll-like receptor (TLR) ligation introduces palmitoylation at NLRP3 Cys898, permitting NLRP3 translocation to dispersed trans-Golgi network (dTGN) vesicles, the site of inflammasome assembly, upon NLRP3 activation. Accordingly, the NLRP3 Cys898 mutant exhibits reduced palmitoylation, limited translocation to the dTGN compartment, and diminished inflammasome activation. These results underscore mechanistic insights through which lipid metabolism licenses NLRP3 inflammasome assembly and activation.


Sujet(s)
Inflammasomes , Lipoylation , Protéine-3 de la famille des NLR contenant un domaine pyrine , Protéine-3 de la famille des NLR contenant un domaine pyrine/métabolisme , Inflammasomes/métabolisme , Animaux , Humains , Souris , Souris de lignée C57BL , Acides gras/métabolisme , Macrophages/métabolisme , Fatty acid synthase type I/métabolisme , Fatty acid synthase type I/génétique , Réseau trans-golgien/métabolisme , Transport des protéines/effets des médicaments et des substances chimiques
8.
Int J Mol Sci ; 25(11)2024 May 30.
Article de Anglais | MEDLINE | ID: mdl-38892215

RÉSUMÉ

In our previous study, two oleanane-type pentacyclic triterpenoids (oleanolic acid and maslinic acid) were reported to affect the N-glycosylation and intracellular trafficking of intercellular adhesion molecule-1 (ICAM-1). The present study was aimed at investigating the structure-activity relationship of 13 oleanane-type natural triterpenoids with respect to the nuclear factor κB (NF-κB) signaling pathway and the expression, intracellular trafficking, and N-glycosylation of the ICAM-1 protein in human lung adenocarcinoma A549 cells. Hederagenin, echinocystic acid, erythrodiol, and maslinic acid, which all possess two hydroxyl groups, decreased the viability of A549 cells. Celastrol and pristimerin, both of which possess an α,ß-unsaturated carbonyl group, decreased cell viability but more strongly inhibited the interleukin-1α-induced NF-κB signaling pathway. Oleanolic acid, moronic acid, and glycyrrhetinic acid interfered with N-glycosylation without affecting the cell surface expression of the ICAM-1 protein. In contrast, α-boswellic acid and maslinic acid interfered with the N-glycosylation of the ICAM-1 protein, which resulted in the accumulation of high-mannose-type N-glycans. Among the oleanane-type triterpenoids tested, α-boswellic acid and maslinic acid uniquely interfered with the intracellular trafficking and N-glycosylation of glycoproteins.


Sujet(s)
Molécule-1 d'adhérence intercellulaire , Facteur de transcription NF-kappa B , Acide oléanolique , Triterpènes pentacycliques , Transport des protéines , Triterpènes , Humains , Molécule-1 d'adhérence intercellulaire/métabolisme , Glycosylation , Facteur de transcription NF-kappa B/métabolisme , Relation structure-activité , Acide oléanolique/pharmacologie , Acide oléanolique/analogues et dérivés , Acide oléanolique/composition chimique , Cellules A549 , Transport des protéines/effets des médicaments et des substances chimiques , Triterpènes pentacycliques/pharmacologie , Triterpènes pentacycliques/composition chimique , Triterpènes/pharmacologie , Triterpènes/composition chimique , Transduction du signal/effets des médicaments et des substances chimiques , Survie cellulaire/effets des médicaments et des substances chimiques
9.
Immunopharmacol Immunotoxicol ; 46(4): 482-495, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38862214

RÉSUMÉ

OBJECTIVE: Our research aimed to investigate the therapeutic effects of Tubastatin-A, a glucocorticoid receptor (GR) mitochondrial translocation inhibitor, and mitoquinone (MitoQ), an antioxidant, on attenuating dexamethasone (DEX)-induced macrophage apoptosis. METHODS: We treated RAW264.7 macrophages with different combinations of DEX and either Tubastatin-A or MitoQ. Parameters such as mitochondrial GR translocation, mitochondrial reactive oxygen species levels, mitochondrial membrane potential, mitochondrial permeability transition pore opening, cytochrome C efflux to the cytosol, and apoptosis were subsequently evaluated in the different treatment groups via qRT-PCR, western blotting, and immunofluorescence assays. RESULTS: DEX intervention increased the translocation of GRs into the mitochondria, while reducing the expression of the mitochondrial gene MT-CO1 and the activity of mitochondrial respiratory chain complex IV in macrophages. In addition, DEX administration increased mtROS levels, mitochondrial permeability transition pore opening, and mitochondrial cytochrome C release in macrophages, which promoted their apoptosis. We found that Tubastatin-A inhibited mitochondrial GR translocation and reversed the DEX-induced increase in GR levels within the mitochondria. Furthermore, Tubastatin-A mitigated various mitochondrial changes induced by DEX, including reducing the efflux of mitochondrial cytochrome C and inhibiting macrophage apoptosis. Similarly, MitoQ exerted its effects on macrophage apoptosis by reducing mtROS levels through the mitochondrial pathway. CONCLUSIONS: The DEX-mediated translocation of GR into mitochondria disrupts the mitochondrial function of macrophages, which induces their apoptosis. By inhibiting mitochondrial translocation of GR and reducing mtROS levels, Tubastatin-A and MitoQ can effectively attenuate macrophage apoptosis, which has clinical implications for reducing the notable side effects associated with glucocorticoid use.


Sujet(s)
Apoptose , Dexaméthasone , Glucocorticoïdes , Macrophages , Mitochondries , Récepteurs aux glucocorticoïdes , Récepteurs aux glucocorticoïdes/métabolisme , Animaux , Souris , Apoptose/effets des médicaments et des substances chimiques , Cellules RAW 264.7 , Mitochondries/effets des médicaments et des substances chimiques , Mitochondries/métabolisme , Macrophages/effets des médicaments et des substances chimiques , Macrophages/métabolisme , Dexaméthasone/pharmacologie , Glucocorticoïdes/pharmacologie , Transport des protéines/effets des médicaments et des substances chimiques , Espèces réactives de l'oxygène/métabolisme , Ubiquinones/pharmacologie , Ubiquinones/analogues et dérivés , Potentiel de membrane mitochondriale/effets des médicaments et des substances chimiques , Composés organiques du phosphore
10.
Eur J Pharmacol ; 978: 176771, 2024 Sep 05.
Article de Anglais | MEDLINE | ID: mdl-38925289

RÉSUMÉ

The CFTR modulator Trikafta has markedly improved lung disease for Cystic Fibrosis (CF) patients carrying the common delta F508 (F508del-CFTR) CFTR mutation. F508del-CFTR results in an apical trafficking defect and loss of function in CFTR-expressing epithelial cells. However, Trikafta has not resulted in improved gastrointestinal function in CF patients. A humanized mouse model of F508del-CFTR was recently generated to evaluate CFTR modulators and other compounds to treat human F508del-CFTR CF intestinal disease. Short-term (4 h) treatment of rats with Dexamethasone (Dex) potently activates serum glucocorticoid kinase 1 (SGK1) and increases CFTR apical traffic and ion transport in the native intestine. This study examined CFTR localization and ion transport in intestinal segments from humanized F508del-CFTR mice following treatment with Dex in the presence/absence of Trikafta. Dex treatment improved apical CFTR localization and function but was inconsistent along intestinal segments. Combined treatment with Dex and Trikafta was superior to Dex alone but inconsistently improved CFTR localization and function. These data suggest further optimization of humanized CF mouse models will be necessary to test the efficacy of compounds to treat human CF intestinal disease.


Sujet(s)
Protéine CFTR , Dexaméthasone , Animaux , Protéine CFTR/génétique , Protéine CFTR/métabolisme , Protéine CFTR/déficit , Humains , Souris , Dexaméthasone/pharmacologie , Protein-Serine-Threonine Kinases/métabolisme , Protein-Serine-Threonine Kinases/génétique , Protein-Serine-Threonine Kinases/déficit , Muqueuse intestinale/métabolisme , Muqueuse intestinale/effets des médicaments et des substances chimiques , Intestins/effets des médicaments et des substances chimiques , Mucoviscidose/traitement médicamenteux , Mucoviscidose/métabolisme , Mucoviscidose/génétique , Activation enzymatique/effets des médicaments et des substances chimiques , Transport des protéines/effets des médicaments et des substances chimiques , Mutation , Mâle , Indoles , Benzodioxoles
11.
JCI Insight ; 9(10)2024 May 07.
Article de Anglais | MEDLINE | ID: mdl-38713534

RÉSUMÉ

The homeostasis of IgG is maintained by the neonatal Fc receptor, FcRn. Consequently, antagonism of FcRn to reduce endogenous IgG levels is an emerging strategy for treating antibody-mediated autoimmune disorders using either FcRn-specific antibodies or an engineered Fc fragment. For certain FcRn-specific antibodies, this approach has resulted in reductions in the levels of serum albumin, the other major ligand transported by FcRn. Cellular and molecular analyses of a panel of FcRn antagonists have been carried out to elucidate the mechanisms leading to their differential effects on albumin homeostasis. These analyses have identified 2 processes underlying decreases in albumin levels during FcRn blockade: increased degradation of FcRn and competition between antagonist and albumin for FcRn binding. These findings have potential implications for the design of drugs to modulate FcRn function.


Sujet(s)
Antigènes d'histocompatibilité de classe I , Récepteur Fc , Récepteur Fc/métabolisme , Antigènes d'histocompatibilité de classe I/métabolisme , Humains , Immunoglobuline G/métabolisme , Animaux , Transport des protéines/effets des médicaments et des substances chimiques , Sérumalbumine/métabolisme , Souris , Liaison aux protéines
12.
Biochem Biophys Res Commun ; 716: 149991, 2024 Jul 05.
Article de Anglais | MEDLINE | ID: mdl-38704888

RÉSUMÉ

Cholera toxin (Ctx) is a major virulence factor produced by Vibrio cholerae that can cause gastrointestinal diseases, including severe watery diarrhea and dehydration, in humans. Ctx binds to target cells through multivalent interactions between its B-subunit pentamer and the receptor ganglioside GM1 present on the cell surface. Here, we identified a series of tetravalent peptides that specifically bind to the receptor-binding region of the B-subunit pentamer using affinity-based screening of multivalent random-peptide libraries. These tetravalent peptides efficiently inhibited not only the cell-elongation phenotype but also the elevated cAMP levels, both of which are induced by Ctx treatment in CHO cells or a human colon carcinoma cell line (Caco-2 cells), respectively. Importantly, one of these peptides, NRR-tet, which was highly efficient in these two activities, markedly inhibited fluid accumulation in the mouse ileum caused by the direct injection of Ctx. In consistent, NRR-tet reduced the extensive Ctx-induced damage of the intestinal villi. After NRR-tet bound to Ctx, the complex was incorporated into the cultured epithelial cells and accumulated in the recycling endosome, affecting the retrograde transport of Ctx from the endosome to the Golgi, which is an essential process for Ctx to exert its toxicity in cells. Thus, NRR-tet may be a novel type of therapeutic agent against cholera, which induces the aberrant transport of Ctx in the intestinal epithelial cells, detoxifying the toxin.


Sujet(s)
Toxine cholérique , Cricetulus , Toxine cholérique/métabolisme , Humains , Animaux , Souris , Cellules CHO , Cellules Caco-2 , Peptides/pharmacologie , Peptides/métabolisme , Peptides/composition chimique , Transport des protéines/effets des médicaments et des substances chimiques , Choléra/traitement médicamenteux , Choléra/métabolisme , Muqueuse intestinale/métabolisme , Muqueuse intestinale/effets des médicaments et des substances chimiques
13.
Nat Commun ; 15(1): 3978, 2024 May 10.
Article de Anglais | MEDLINE | ID: mdl-38729926

RÉSUMÉ

A key mechanism employed by plants to adapt to salinity stress involves maintaining ion homeostasis via the actions of ion transporters. While the function of cation transporters in maintaining ion homeostasis in plants has been extensively studied, little is known about the roles of their anion counterparts in this process. Here, we describe a mechanism of salt adaptation in plants. We characterized the chloride channel (CLC) gene AtCLCf, whose expression is regulated by WRKY transcription factor under salt stress in Arabidopsis thaliana. Loss-of-function atclcf seedlings show increased sensitivity to salt, whereas AtCLCf overexpression confers enhanced resistance to salt stress. Salt stress induces the translocation of GFP-AtCLCf fusion protein to the plasma membrane (PM). Blocking AtCLCf translocation using the exocytosis inhibitor brefeldin-A or mutating the small GTPase gene AtRABA1b/BEX5 (RAS GENES FROM RAT BRAINA1b homolog) increases salt sensitivity in plants. Electrophysiology and liposome-based assays confirm the Cl-/H+ antiport function of AtCLCf. Therefore, we have uncovered a mechanism of plant adaptation to salt stress involving the NaCl-induced translocation of AtCLCf to the PM, thus facilitating Cl- removal at the roots, and increasing the plant's salinity tolerance.


Sujet(s)
Protéines d'Arabidopsis , Arabidopsis , Membrane cellulaire , Canaux chlorure , Appareil de Golgi , Stress salin , Arabidopsis/génétique , Arabidopsis/métabolisme , Arabidopsis/physiologie , Arabidopsis/effets des médicaments et des substances chimiques , Membrane cellulaire/métabolisme , Protéines d'Arabidopsis/métabolisme , Protéines d'Arabidopsis/génétique , Appareil de Golgi/métabolisme , Canaux chlorure/métabolisme , Canaux chlorure/génétique , Régulation de l'expression des gènes végétaux , Transport des protéines/effets des médicaments et des substances chimiques , Tolérance au sel/génétique , Chlorure de sodium/pharmacologie , Végétaux génétiquement modifiés
14.
Am J Physiol Cell Physiol ; 327(1): C74-C96, 2024 Jul 01.
Article de Anglais | MEDLINE | ID: mdl-38738303

RÉSUMÉ

Activation of incretin receptors by their cognate agonist augments sustained cAMP generation both from the plasma membrane as well as from the endosome. To address the functional outcome of this spatiotemporal signaling, we developed a nonacylated glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) receptor dual agonist I-M-150847 that reduced receptor internalization following activation of the incretin receptors. The incretin receptor dual agonist I-M-150847 was developed by replacing the tryptophan cage of exendin-4 tyrosine substituted at the amino terminus with the C-terminal undecapeptide sequence of oxyntomodulin that placed lysine 30 of I-M-150847 in frame with the corresponding lysine residue of GIP. The peptide I-M-150847 is a partial agonist of GLP-1R and GIPR; however, the receptors, upon activation by I-M-150847, undergo reduced internalization that promotes agonist-mediated iterative cAMP signaling and augments glucose-stimulated insulin exocytosis in pancreatic ß cells. Chronic administration of I-M-150847 improved glycemic control, enhanced insulin sensitivity, and provided profound weight loss in diet-induced obese (DIO) mice. Our results demonstrated that despite being a partial agonist, I-M-150847, by reducing the receptor internalization upon activation, enhanced the incretin effect and reversed obesity.NEW & NOTEWORTHY Replacement of the tryptophan cage (Trp-cage) with the C-terminal oxyntomodulin undecapeptide along with the tyrosine substitution at the amino terminus converts the selective glucagon-like peptide-1 receptor (GLP-1R) agonist exendin-4 to a novel GLP-1R and GIPR dual agonist I-M-150847. Reduced internalization of incretin receptors upon activation by the GLP-1R and GIPR dual agonist I-M-150847 promotes iterative receptor signaling that enhances the incretin effect and reverses obesity.


Sujet(s)
Récepteur du peptide-1 similaire au glucagon , Incrétines , Souris de lignée C57BL , Obésité , Animaux , Obésité/métabolisme , Obésité/traitement médicamenteux , Récepteur du peptide-1 similaire au glucagon/agonistes , Récepteur du peptide-1 similaire au glucagon/métabolisme , Souris , Mâle , Incrétines/pharmacologie , Incrétines/métabolisme , Transport des protéines/effets des médicaments et des substances chimiques , Régulation de la glycémie/méthodes , Souris obèse , Récepteur hormone gastrointestinale/agonistes , Récepteur hormone gastrointestinale/métabolisme , Cellules à insuline/métabolisme , Cellules à insuline/effets des médicaments et des substances chimiques , Humains , Alimentation riche en graisse/effets indésirables , Glycémie/métabolisme , Glycémie/effets des médicaments et des substances chimiques , Insuline/métabolisme , Exénatide/pharmacologie , Transduction du signal/effets des médicaments et des substances chimiques , AMP cyclique/métabolisme
15.
Nature ; 630(8016): 429-436, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38811738

RÉSUMÉ

Infections caused by Gram-negative pathogens are increasingly prevalent and are typically treated with broad-spectrum antibiotics, resulting in disruption of the gut microbiome and susceptibility to secondary infections1-3. There is a critical need for antibiotics that are selective both for Gram-negative bacteria over Gram-positive bacteria, as well as for pathogenic bacteria over commensal bacteria. Here we report the design and discovery of lolamicin, a Gram-negative-specific antibiotic targeting the lipoprotein transport system. Lolamicin has activity against a panel of more than 130 multidrug-resistant clinical isolates, shows efficacy in multiple mouse models of acute pneumonia and septicaemia infection, and spares the gut microbiome in mice, preventing secondary infection with Clostridioides difficile. The selective killing of pathogenic Gram-negative bacteria by lolamicin is a consequence of low sequence homology for the target in pathogenic bacteria versus commensals; this doubly selective strategy can be a blueprint for the development of other microbiome-sparing antibiotics.


Sujet(s)
Antibactériens , Découverte de médicament , Microbiome gastro-intestinal , Bactéries à Gram négatif , Infections bactériennes à Gram négatif , Symbiose , Animaux , Femelle , Humains , Mâle , Souris , Antibactériens/pharmacologie , Antibactériens/usage thérapeutique , Lignée cellulaire , Clostridioides difficile/effets des médicaments et des substances chimiques , Infections à Clostridium/microbiologie , Infections à Clostridium/traitement médicamenteux , Modèles animaux de maladie humaine , Conception de médicament , Multirésistance bactérienne aux médicaments , Microbiome gastro-intestinal/effets des médicaments et des substances chimiques , Bactéries à Gram négatif/effets des médicaments et des substances chimiques , Infections bactériennes à Gram négatif/traitement médicamenteux , Infections bactériennes à Gram négatif/microbiologie , Lipoprotéines/métabolisme , Souris de lignée C57BL , Transport des protéines/effets des médicaments et des substances chimiques , Sepsie/microbiologie , Sepsie/traitement médicamenteux , Spécificité du substrat , Symbiose/effets des médicaments et des substances chimiques
16.
Am J Physiol Cell Physiol ; 326(6): C1769-C1775, 2024 06 01.
Article de Anglais | MEDLINE | ID: mdl-38682238

RÉSUMÉ

We recently demonstrated that acute oral ketone monoester intake induces a stimulation of postprandial myofibrillar protein synthesis rates comparable to that elicited following the ingestion of 10 g whey protein or their coingestion. The present investigation aimed to determine the acute effects of ingesting a ketone monoester, whey protein, or their coingestion on mechanistic target of rapamycin (mTOR)-related protein-protein colocalization and intracellular trafficking in human skeletal muscle. In a randomized, double-blind, parallel group design, 36 healthy recreationally active young males (age: 24.2 ± 4.1 yr) ingested either: 1) 0.36 g·kg-1 bodyweight of the ketone monoester (R)-3-hydroxybutyl (R)-3-hydroxybutyrate (KET), 2) 10 g whey protein (PRO), or 3) the combination of both (KET + PRO). Muscle biopsies were obtained in the overnight postabsorptive state (basal conditions), and at 120 and 300 min in the postprandial period for immunofluorescence assessment of protein translocation and colocalization of mTOR-related signaling molecules. All treatments resulted in a significant (Interaction: P < 0.0001) decrease in tuberous sclerosis complex 2 (TSC2)-Ras homolog enriched in brain (Rheb) colocalization at 120 min versus basal; however, the decrease was sustained at 300 min versus basal (P < 0.0001) only in KET + PRO. PRO and KET + PRO increased (Interaction: P < 0.0001) mTOR-Rheb colocalization at 120 min versus basal; however, KET + PRO resulted in a sustained increase in mTOR-Rheb colocalization at 300 min that was greater than KET and PRO. Treatment intake increased mTOR-wheat germ agglutinin (WGA) colocalization at 120 and 300 min (Time: P = 0.0031), suggesting translocation toward the fiber periphery. These findings demonstrate that ketone monoester intake can influence the spatial mechanisms involved in the regulation of mTORC1 in human skeletal muscle.NEW & NOTEWORTHY We explored the effects of a ketone monoester (KET), whey protein (PRO), or their coingestion (KET + PRO) on mTOR-related protein-protein colocalization and intracellular trafficking in human muscle. All treatments decreased TSC2-Rheb colocalization at 120 minutes; however, KET + PRO sustained the decrease at 300 min. Only PRO and KET + PRO increased mTOR-Rheb colocalization; however, the increase at 300 min was greater in KET + PRO. Treatment intake increased mTOR-WGA colocalization, suggesting translocation to the fiber periphery. Ketone bodies influence the spatial regulation of mTOR.


Sujet(s)
Muscles squelettiques , Transport des protéines , Sérine-thréonine kinases TOR , Protéines de lactosérum , Humains , Protéines de lactosérum/métabolisme , Protéines de lactosérum/pharmacologie , Protéines de lactosérum/administration et posologie , Mâle , Sérine-thréonine kinases TOR/métabolisme , Jeune adulte , Adulte , Muscles squelettiques/métabolisme , Muscles squelettiques/effets des médicaments et des substances chimiques , Transport des protéines/effets des médicaments et des substances chimiques , Méthode en double aveugle , Acide 3-hydroxy-butyrique/pharmacologie , Acide 3-hydroxy-butyrique/métabolisme , Période post-prandiale , Cétones/métabolisme , Protéines du muscle/métabolisme
17.
J Biol Chem ; 300(6): 107327, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38679330

RÉSUMÉ

Normal receptor tyrosine kinases (RTKs) need to reach the plasma membrane (PM) for ligand-induced activation, whereas its cancer-causing mutants can be activated before reaching the PM in organelles, such as the Golgi/trans-Golgi network (TGN). Inhibitors of protein export from the endoplasmic reticulum (ER), such as brefeldin A (BFA) and 2-methylcoprophilinamide (M-COPA), can suppress the activation of mutant RTKs in cancer cells, suggesting that RTK mutants cannot initiate signaling in the ER. BFA and M-COPA block the function of ADP-ribosylation factors (ARFs) that play a crucial role in ER-Golgi protein trafficking. However, among ARF family proteins, the specific ARFs inhibited by BFA or M-COPA, that is, the ARFs involved in RTKs transport from the ER, remain unclear. In this study, we showed that M-COPA blocked the export of not only KIT but also PDGFRA/EGFR/MET RTKs from the ER. ER-retained RTKs could not fully transduce anti-apoptotic signals, thereby leading to cancer cell apoptosis. Moreover, a single knockdown of ARF1, ARF3, ARF4, ARF5, or ARF6 could not block ER export of RTKs, indicating that BFA/M-COPA treatment cannot be mimicked by the knockdown of only one ARF member. Interestingly, simultaneous transfection of ARF1, ARF4, and ARF5 siRNAs mirrored the effect of BFA/M-COPA treatment. Consistent with these results, in vitro pulldown assays showed that BFA/M-COPA blocked the function of ARF1, ARF4, and ARF5. Taken together, these results suggest that BFA/M-COPA targets at least ARF1, ARF4, and ARF5; in other words, RTKs require the simultaneous activation of ARF1, ARF4, and ARF5 for their ER export.


Sujet(s)
Facteur-1 d'ADP-ribosylation , Facteurs d'ADP-ribosylation , Bréfeldine A , Réticulum endoplasmique , Transport des protéines , Humains , Facteurs d'ADP-ribosylation/métabolisme , Facteurs d'ADP-ribosylation/génétique , Réticulum endoplasmique/métabolisme , Facteur-1 d'ADP-ribosylation/métabolisme , Facteur-1 d'ADP-ribosylation/génétique , Bréfeldine A/pharmacologie , Transport des protéines/effets des médicaments et des substances chimiques , Récepteurs ErbB/métabolisme , Récepteurs ErbB/génétique , Cellules HeLa
18.
Mol Cell Endocrinol ; 590: 112254, 2024 Sep 01.
Article de Anglais | MEDLINE | ID: mdl-38677465

RÉSUMÉ

During insulin resistance, the heart undergoes a metabolic shift in which fatty acids (FA) account for roughly about 99% of the ATP production. This metabolic shift is indicative of impaired glucose metabolism. A shift in FA metabolism with impaired glucose tolerance can increase reactive oxygen species (ROS), lipotoxicity, and mitochondrial dysfunction, ultimately leading to cardiomyopathy. Thyroid hormones (TH) may improve the glucose intolerance by increasing glucose reabsorption and metabolism in peripheral tissues, but little is known on its effects on cardiac tissue during insulin resistance. In the present study, insulin resistant Otsuka Long Evans Tokushima Fatty (OLETF) rats were used to assess the effects of exogenous thyroxine (T4) on glucose metabolism in cardiac tissue. Rats were assigned to four groups: (1) lean, Long Evans Tokushima Otsuka (LETO; n=6), (2) LETO + T4 (8 µg/100 g BM/d × 5 wks; n = 7), (3) untreated OLETF (n = 6), and (4) OLETF + T4 (8 µg/100 g BM/d × 5 wks; n = 7). T4 increased GLUT4 gene expression by 85% in OLETF and increased GLUT4 protein translocation to the membrane by 294%. Additionally, T4 increased p-AS160 by 285%, phosphofructokinase-1 (PFK-1) mRNA, the rate limiting step in glycolysis, by 98% and hexokinase II by 64% in OLETF. T4 decreased both CPT2 mRNA and protein expression in OLETF. The results suggest that exogenous T4 has the potential to increase glucose uptake and metabolism while simultaneously reducing fatty acid transport in the heart of insulin resistant rats. Thus, L-thyroxine may have therapeutic value to help correct the impaired substrate metabolism associated with diabetic cardiomyopathy.


Sujet(s)
Transporteur de glucose de type 4 , Insulinorésistance , Myocarde , Thyroxine , Animaux , Mâle , Rats , Acides gras/métabolisme , Glucose/métabolisme , Transporteur de glucose de type 4/métabolisme , Transporteur de glucose de type 4/génétique , Myocarde/métabolisme , Transport des protéines/effets des médicaments et des substances chimiques , Rats de lignée OLETF , Thyroxine/administration et posologie
19.
Mol Neurobiol ; 61(8): 6045-6059, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38267753

RÉSUMÉ

Surface trafficking of AMPA receptors (AMPARs) is one of the important mechanisms mediating synaptic plasticity which is essential for cognitive functions such as learning and memory. Spastin, as a novel binding partner for the AMPAR, has been reported to regulate AMPAR surface expression and synaptic function. Additionally, Spastin undergoes two posttranslational modifications, phosphorylation and SUMOylation, both of which are crucial for synaptic function. However, gaps exist in our knowledge of how Spastin phosphorylation cross-talks with its SUMOylation in the regulation of AMPAR surface expression and synaptic function. Here, we reported that deSUMOylation of Spastin at Lys427 increased the surface level of AMPAR GluA2 subunit, the amplitude and frequency of miniature excitatory synaptic currents (mEPSC), and facilitated the morphological maturation of dendritic spines in cultured hippocampal neurons. Further studies demonstrated that Spastin phosphorylation at Ser210 further increased the enhancement of GluA2 surface expression and synaptic function by deSUMOylated Spastin, while dephosphorylation had the opposite effect. Simultaneously, deSUMOylation at Lys427 significantly increased the promoting effect of Spastin phosphorylation on synaptic function. In conclusion, our study suggests that cooperative interactions between phosphorylated and deSUMOylated Spastin are novel pathways to enhance synaptic function.


Sujet(s)
Hippocampe , Récepteur de l'AMPA , Synapses , Récepteur de l'AMPA/métabolisme , Animaux , Phosphorylation , Synapses/métabolisme , Hippocampe/métabolisme , Épines dendritiques/métabolisme , Sérine/métabolisme , Sumoylation , Neurones/métabolisme , Humains , Potentiels post-synaptiques excitateurs/effets des médicaments et des substances chimiques , Potentiels post-synaptiques excitateurs/physiologie , Cellules cultivées , Rat Sprague-Dawley , Cellules HEK293 , Membrane cellulaire/métabolisme , Transport des protéines/effets des médicaments et des substances chimiques , Rats
20.
Nature ; 626(8000): 874-880, 2024 Feb.
Article de Anglais | MEDLINE | ID: mdl-38297121

RÉSUMÉ

Stress response pathways detect and alleviate adverse conditions to safeguard cell and tissue homeostasis, yet their prolonged activation induces apoptosis and disrupts organismal health1-3. How stress responses are turned off at the right time and place remains poorly understood. Here we report a ubiquitin-dependent mechanism that silences the cellular response to mitochondrial protein import stress. Crucial to this process is the silencing factor of the integrated stress response (SIFI), a large E3 ligase complex mutated in ataxia and in early-onset dementia that degrades both unimported mitochondrial precursors and stress response components. By recognizing bifunctional substrate motifs that equally encode protein localization and stability, the SIFI complex turns off a general stress response after a specific stress event has been resolved. Pharmacological stress response silencing sustains cell survival even if stress resolution failed, which underscores the importance of signal termination and provides a roadmap for treating neurodegenerative diseases caused by mitochondrial import defects.


Sujet(s)
Mitochondries , Protéines mitochondriales , Mutation , Maladies neurodégénératives , Stress physiologique , Ubiquitin-protein ligases , Apoptose/effets des médicaments et des substances chimiques , Ataxie/génétique , Survie cellulaire/effets des médicaments et des substances chimiques , Démence/génétique , Mitochondries/génétique , Mitochondries/métabolisme , Mitochondries/anatomopathologie , Protéines mitochondriales/composition chimique , Protéines mitochondriales/métabolisme , Complexes multiprotéiques/antagonistes et inhibiteurs , Complexes multiprotéiques/génétique , Complexes multiprotéiques/métabolisme , Maladies neurodégénératives/génétique , Maladies neurodégénératives/métabolisme , Maladies neurodégénératives/anatomopathologie , Stabilité protéique/effets des médicaments et des substances chimiques , Transport des protéines/effets des médicaments et des substances chimiques , Protéolyse/effets des médicaments et des substances chimiques , Stress physiologique/effets des médicaments et des substances chimiques , Ubiquitine/métabolisme , Ubiquitin-protein ligases/antagonistes et inhibiteurs , Ubiquitin-protein ligases/génétique , Ubiquitin-protein ligases/métabolisme , Ubiquitination/effets des médicaments et des substances chimiques
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE