Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 6 de 6
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
J Neurosci ; 38(44): 9579-9599, 2018 10 31.
Article de Anglais | MEDLINE | ID: mdl-30232223

RÉSUMÉ

We created a neural-specific conditional murine glut3 (Slc2A3) deletion (glut3flox/flox/nestin-Cre+) to examine the effect of a lack of Glut3 on neurodevelopment. Compared with age-matched glut3flox/flox = WT and heterozygotes (glut3flox/+/nestin-Cre+), we found that a >90% reduction in male and female brain Glut3 occurred by postnatal day 15 (PN15) in glut3flox/flox/nestin-Cre+ This genetic manipulation caused a diminution in brain weight and cortical thickness at PN15, a reduced number of dendritic spines, and fewer ultrasonic vocalizations. Patch-clamp recordings of cortical pyramidal neurons revealed increased frequency of bicuculline-induced paroxysmal discharges as well as reduced latency, attesting to a functional synaptic and cortical hyperexcitability. Concomitant stunting with lower glucose concentrations despite increased milk intake shortened the lifespan, failing rescue by a ketogenic diet. This led to creating glut3flox/flox/CaMK2α-Cre+ mice lacking Glut3 in the adult male limbic system. These mice had normal lifespan, displayed reduced IPSCs in cortical pyramidal neurons, less anxiety/fear, and lowered spatial memory and motor abilities but heightened exploratory and social responses. These distinct postnatal and adult phenotypes, based upon whether glut3 gene is globally or restrictively absent, have implications for humans who carry copy number variations and present with neurodevelopmental disorders.SIGNIFICANCE STATEMENT Lack of the key brain-specific glucose transporter 3 gene found in neurons during early postnatal life results in significant stunting, a reduction in dendritic spines found on neuronal processes and brain size, heightened neuronal excitability, along with a shortened lifespan. When occurring in the adult and limited to the limbic system alone, lack of this gene in neurons reduces the fear of spatial exploration and socialization but does not affect the lifespan. These features are distinct heralding differences between postnatal and adult phenotypes based upon whether the same gene is globally or restrictively lacking. These findings have implications for humans who carry copy number variations pertinent to this gene and have been described to present with neurodevelopmental disorders.


Sujet(s)
Encéphale/métabolisme , Comportement d'exploration/physiologie , Délétion de gène , Transporteur de glucose de type 3/déficit , Transporteur de glucose de type 3/génétique , Phénotype , Facteurs âges , Animaux , Animaux nouveau-nés , Encéphale/anatomopathologie , Épines dendritiques/génétique , Épines dendritiques/métabolisme , Épines dendritiques/anatomopathologie , Femelle , Souris , Souris de lignée C57BL , Souris knockout , Grossesse , Isoformes de protéines/déficit , Isoformes de protéines/génétique
2.
Arterioscler Thromb Vasc Biol ; 37(9): 1628-1639, 2017 09.
Article de Anglais | MEDLINE | ID: mdl-28663252

RÉSUMÉ

OBJECTIVE: On activation, platelets increase glucose uptake, glycolysis, and glucose oxidation and consume stored glycogen. This correlation between glucose metabolism and platelet function is not well understood and even less is known about the role of glucose metabolism on platelet function in vivo. For glucose to enter a cell, it must be transported through glucose transporters. Here we evaluate the contribution of GLUT3 (glucose transporter 3) to platelet function to better understand glucose metabolism in platelets. APPROACH AND RESULTS: Platelet-specific knockout of GLUT3 was generated by crossing mice harboring GLUT3 floxed allele to a PF4 (platelet factor 4)-driven Cre recombinase. In platelets, GLUT3 is localized primarily on α-granule membranes and under basal conditions facilitates glucose uptake into α-granules to be used for glycolysis. After activation, platelets degranulate and GLUT3 translocates to the plasma membrane, which is responsible for activation-mediated increased glucose uptake. In vivo, loss of GLUT3 in platelets increased survival in a collagen/epinephrine model of pulmonary embolism, and in a K/BxN model of autoimmune inflammatory disease, platelet-specific GLUT3 knockout mice display decreased disease progression. Mechanistically, loss of GLUT3 decreased platelet degranulation, spreading, and clot retraction. Decreased α-granule degranulation is due in part to an impaired ability of GLUT3 to potentiate exocytosis. CONCLUSIONS: GLUT3-mediated glucose utilization and glycogenolysis in platelets promotes α-granule release, platelet activation, and postactivation functions.


Sujet(s)
Glycémie/métabolisme , Plaquettes/métabolisme , Dégranulation cellulaire , Granulations cytoplasmiques/métabolisme , Transporteur de glucose de type 3/sang , Activation plaquettaire , Animaux , Arthrite expérimentale/sang , Arthrite expérimentale/génétique , Arthrite expérimentale/prévention et contrôle , Exocytose , Génotype , Transporteur de glucose de type 3/déficit , Transporteur de glucose de type 3/génétique , Glycogénolyse , Glycolyse , Humains , Mâle , Souris de lignée C57BL , Souris knockout , Phénotype , Transport des protéines , Embolie pulmonaire/sang , Embolie pulmonaire/génétique , Transduction du signal , Facteurs temps
3.
Brain Res ; 1384: 15-22, 2011 Apr 12.
Article de Anglais | MEDLINE | ID: mdl-21316350

RÉSUMÉ

Mouse brain expresses three principal glucose transporters. Glut1 is an endothelial marker and is the principal glucose transporter of the blood-brain barrier. Glut3 and Glut6 are expressed in glial cells and neural cells. A mouse line with a null allele for Glut3 has been developed. The Glut3(-/-) genotype is intrauterine lethal by 7days post-coitis, but the heterozygous (Glut3(+/-)) littermate survives, exhibiting rapid post-natal weight gain, but no seizures or other behavioral aberrations. At 12weeks of age, brain uptake of tail vein-injected ((3))H-2-deoxy glucose in Glut3(+/-) mice was not different from Glut3(+/+) littermates, despite 50% less Glut3 protein expression in the brain. The brain uptake of injected ((18))F-2-fluoro-2-deoxy glucose was similarly not different from Glut3(+/-) littermates in the total amount, time course, or brain imaging in the Glut3(+/-) mice. Glut1 and Glut6 protein expressions evaluated by immunoblots were not affected by the diminished Glut3 expression in the Glut3(+/-) mice. We conclude that a 50% decrease in Glut3 is not limiting for the uptake of glucose into the mouse brain, since Glut3 haploinsufficiency does not impair brain glucose uptake or utilization.


Sujet(s)
Encéphale/métabolisme , Transporteur de glucose de type 3/déficit , Glucose/métabolisme , Analyse de variance , Animaux , Glycémie/génétique , Encéphale/imagerie diagnostique , Désoxyglucose/métabolisme , Femelle , Fluorodésoxyglucose F18/pharmacocinétique , Privation alimentaire/physiologie , Régulation de l'expression des gènes/génétique , Transporteur de glucose de type 1/génétique , Transporteur de glucose de type 1/métabolisme , Transporteur de glucose de type 3/génétique , Mâle , Souris , Souris de lignée C57BL , Souris knockout , Tomographie par émission de positons/méthodes , Tomographie par émission monophotonique/méthodes , Tritium/métabolisme
4.
Mol Psychiatry ; 15(3): 286-99, 2010 Mar.
Article de Anglais | MEDLINE | ID: mdl-19506559

RÉSUMÉ

Neuronal glucose transporter (GLUT) isoform 3 deficiency in null heterozygous mice led to abnormal spatial learning and working memory but normal acquisition and retrieval during contextual conditioning, abnormal cognitive flexibility with intact gross motor ability, electroencephalographic seizures, perturbed social behavior with reduced vocalization and stereotypies at low frequency. This phenotypic expression is unique as it combines the neurobehavioral with the epileptiform characteristics of autism spectrum disorders. This clinical presentation occurred despite metabolic adaptations consisting of an increase in microvascular/glial GLUT1, neuronal GLUT8 and monocarboxylate transporter isoform 2 concentrations, with minimal to no change in brain glucose uptake but an increase in lactate uptake. Neuron-specific glucose deficiency has a negative impact on neurodevelopment interfering with functional competence. This is the first description of GLUT3 deficiency that forms a possible novel genetic mechanism for pervasive developmental disorders, such as the neuropsychiatric autism spectrum disorders, requiring further investigation in humans.


Sujet(s)
Comportement animal/physiologie , Troubles généralisés du développement de l'enfant/métabolisme , Transporteur de glucose de type 1/génétique , Transporteur de glucose de type 3/déficit , Animaux , Animaux nouveau-nés/croissance et développement , Animaux nouveau-nés/métabolisme , Encéphale/croissance et développement , Encéphale/métabolisme , Molécules d'adhérence cellulaire neuronale/métabolisme , Enfant , Troubles généralisés du développement de l'enfant/génétique , Désoxyglucose/métabolisme , Modèles animaux de maladie humaine , Transporteur de glucose de type 1/métabolisme , Transporteur de glucose de type 3/génétique , Humains , Acide lactique/métabolisme , Protéines membranaires/métabolisme , Souris , Souris de lignée C57BL , Souris knockout , Transporteurs d'acides monocarboxyliques/génétique , Transporteurs d'acides monocarboxyliques/métabolisme , Protéines de tissu nerveux/métabolisme , Crises épileptiques/génétique , Vocalisation animale/physiologie
5.
Am J Physiol Endocrinol Metab ; 292(5): E1241-55, 2007 May.
Article de Anglais | MEDLINE | ID: mdl-17213475

RÉSUMÉ

Glucose transporter isoform-3 (GLUT3) is the trophoblastic facilitative glucose transporter. To investigate the role of this isoform in embryonic development, we created a novel GLUT3-null mouse and observed arrested early embryonic development and loss at neurulation stage when both alleles were mutated. This loss occurred despite the presence of other related isoforms, particularly GLUT1. In contrast, when a single allele was mutated, despite increased embryonic cell apoptosis, adaptive changes in the subcellular localization of GLUT3 and GLUT1 in the preimplantation embryo led to postimplantation survival. This survival was compromised by decreased GLUT3-mediated transplacental glucose transport, causing late-gestation fetal growth restriction. This yielded young male and female adults demonstrating catch-up growth, with normal basal glucose, insulin, insulin-like growth factor-I and IGF-binding protein-3 concentrations, fat and lean mass, and glucose and insulin tolerance. We conclude that GLUT3 mutations cause a gene dose-dependent early pregnancy loss or late-gestation fetal growth restriction despite the presence of embryonic and placental GLUT1 and a compensatory increase in system A amino acid placental transport. This critical life-sustaining functional role for GLUT3 in embryonic development provides the basis for investigating the existence of human GLUT3 mutations with similar consequences during early pregnancy.


Sujet(s)
Avortement spontané/génétique , Développement embryonnaire/génétique , Transporteur de glucose de type 3/déficit , Transporteur de glucose de type 3/génétique , Animaux , Animaux nouveau-nés , Blastocyste/métabolisme , Blastocyste/physiologie , Glycémie/métabolisme , Composition corporelle/physiologie , Cellules souches embryonnaires/métabolisme , Cellules souches embryonnaires/physiologie , Femelle , Hyperglycémie provoquée , Transporteur de glucose de type 3/métabolisme , Immunohistochimie , Insuline/sang , Protéine-3 de liaison aux IGF/sang , Facteur de croissance IGF-I/métabolisme , Mâle , Souris , Souris de lignée C57BL , Souris knockout , Mutation , Placenta/anatomie et histologie , Placenta/métabolisme , Placenta/physiologie , Grossesse , ARN messager/biosynthèse , ARN messager/génétique , RT-PCR
6.
Med Hypotheses ; 65(6): 1076-81, 2005.
Article de Anglais | MEDLINE | ID: mdl-16125330

RÉSUMÉ

The largely empirical dopamine theory has limited value in clarifying the pathogenesis of schizophrenia, due to its inability to explain consistent imaging findings, such as cortical grey matter loss, reduced frontal and thalamic activity, and, reduced D1 receptor load. Furthermore, the most effective drug for treating positive and negative symptoms - clozapine - has minimal dopaminergic activity. We present an alternative hypothesis centring on presumed deficits in membrane bound glucose transporter proteins GLUT 1 and GLUT 3, either in absolute numbers or functional capacity. In situations of high demand, intracellular hypoglycaemia in neurones and astrocytes will produce acute symptoms of misperceptions, misinterpretations, anxiety and irritability - the usual features of prodromal and first onset schizophrenia. Furthermore, reduced glucose uptake will disrupt production of glutamate--functionally similar to the schizophrenia-like syndrome produced by PCP, a glutamate antagonist. In the longer term, reduced neuronal growth and poor synaptic contacts will produce chronic cognitive difficulties and perpetuate acute symptoms. A backlog effect due to reduced brain uptake of glucose would produce systemic hyperglycaemia observed in drug nai ve subjects. Rat studies have shown that clozapine and similar compounds block GLUT proteins in the brain and peripherally, more so than selective dopamine blockers. By blocking GLUT proteins, clozapine would break malfunctioning circuits, resulting in the disappearance of cognitive and perceptual symptoms. Unfortunately, these drugs would also raise systemic glucose levels, increasing the risk of diabetes, as observed in longer term studies of clozapine in particular. We summarise potentially useful research strategies, including studying the genotype of GLUT proteins with respect to schizophrenia phenotypes, activation studies involving fMRI using deoxyglucose as a substrate, and investigating clinical features of schizophrenic patients prior to and following treatment for co-existing diabetes.


Sujet(s)
Encéphale/métabolisme , Transporteur de glucose de type 1/déficit , Transporteur de glucose de type 3/déficit , Glucose/métabolisme , Modèles neurologiques , Neurones/métabolisme , Schizophrénie/métabolisme , Schizophrénie/anatomopathologie , Encéphale/anatomopathologie , Essais cliniques comme sujet , Médecine factuelle , Humains
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE