Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 2.423
Filtrer
1.
Technol Cancer Res Treat ; 23: 15330338241282080, 2024.
Article de Anglais | MEDLINE | ID: mdl-39360506

RÉSUMÉ

BACKGROUND: Abnormal mitochondrial pyruvate carrier 1 (MPC1) expression plays a key role in tumor metabolic reprogramming and progression. Understanding its significance in non-small cell lung cancer (NSCLC) is crucial for identifying therapeutic targets. METHODS: TIMER 2.0 was utilized to assess the expression of MPC1 in both normal and cancer tissues in pan-cancer. Overall survival (OS) differences between high and low MPC1 expression were analyzed in NSCLC using the Cancer Genome Atlas (TCGA) datasets. We also examined the expression of MPC1 in NSCLC cell lines using western blotting and quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). In addition, the tissue samples and clinical information of 80 patients with NSCLC from our hospital were collected. Immunohistochemistry (IHC) was used to assess MPC1 expression, and OS was evaluated using Kaplan-Meier curves and the log-rank test. Univariate and multivariate Cox regression analyses were conducted to evaluate the prognostic values of the clinical characteristics and MPC1expression. RESULTS: Analysis of public databases suggested that MPC1 was downregulated in NSCLC compared to that in normal lung tissue and predicted poor prognosis. In addition, the expression of MPC1 in NSCLC cell lines was lower than that in human bronchial epithelial (HBE) cells at both protein and mRNA levels. Further clinical analysis suggested that MPC1 expression was correlated with age, tumor T stage, and TNM stage. Kaplan-Meier analysis revealed that NSCLC patients with high MPC1 expression had a better prognosis, particularly in lung adenocarcinoma (LUAD), whereas no survival benefit was observed in lung squamous cell carcinoma (LUSC). Univariate and multivariate analyses suggested that MPC1 was an independent prognostic factor for patients with NSCLC. CONCLUSIONS: MPC1 is poorly expressed in NSCLC, particularly in LUAD, which predicts a poor prognosis and may serve as an independent prognostic factor. Further studies on MPC1 may reveal new targets for the treatment of NSCLC.


Sujet(s)
Marqueurs biologiques tumoraux , Carcinome pulmonaire non à petites cellules , Estimation de Kaplan-Meier , Tumeurs du poumon , Protéines de transport de la membrane mitochondriale , Transporteurs d'acides monocarboxyliques , Humains , Carcinome pulmonaire non à petites cellules/génétique , Carcinome pulmonaire non à petites cellules/métabolisme , Carcinome pulmonaire non à petites cellules/anatomopathologie , Carcinome pulmonaire non à petites cellules/mortalité , Transporteurs d'acides monocarboxyliques/génétique , Transporteurs d'acides monocarboxyliques/métabolisme , Pronostic , Marqueurs biologiques tumoraux/génétique , Marqueurs biologiques tumoraux/métabolisme , Femelle , Mâle , Protéines de transport de la membrane mitochondriale/génétique , Protéines de transport de la membrane mitochondriale/métabolisme , Tumeurs du poumon/génétique , Tumeurs du poumon/métabolisme , Tumeurs du poumon/anatomopathologie , Tumeurs du poumon/mortalité , Adulte d'âge moyen , Lignée cellulaire tumorale , Régulation de l'expression des gènes tumoraux , Sujet âgé , Immunohistochimie , Stadification tumorale
2.
Front Immunol ; 15: 1483400, 2024.
Article de Anglais | MEDLINE | ID: mdl-39372401

RÉSUMÉ

Lactate significantly impacts immune cell function in sepsis and septic shock, transcending its traditional view as just a metabolic byproduct. This review summarizes the role of lactate as a biomarker and its influence on immune cell dynamics, emphasizing its critical role in modulating immune responses during sepsis. Mechanistically, key lactate transporters like MCT1, MCT4, and the receptor GPR81 are crucial in mediating these effects. HIF-1α also plays a significant role in lactate-driven immune modulation. Additionally, lactate affects immune cell function through post-translational modifications such as lactylation, acetylation, and phosphorylation, which alter enzyme activities and protein functions. These interactions between lactate and immune cells are central to understanding sepsis-associated immune dysregulation, offering insights that can guide future research and improve therapeutic strategies to enhance patient outcomes.


Sujet(s)
Acide lactique , Transporteurs d'acides monocarboxyliques , Sepsie , Humains , Sepsie/immunologie , Sepsie/métabolisme , Acide lactique/métabolisme , Animaux , Transporteurs d'acides monocarboxyliques/métabolisme , Transporteurs d'acides monocarboxyliques/immunologie , Marqueurs biologiques , Récepteurs couplés aux protéines G/métabolisme , Récepteurs couplés aux protéines G/immunologie , Sous-unité alpha du facteur-1 induit par l'hypoxie/métabolisme , Sous-unité alpha du facteur-1 induit par l'hypoxie/immunologie , Maturation post-traductionnelle des protéines , Protéines du muscle/métabolisme , Protéines du muscle/immunologie , Symporteurs/métabolisme , Symporteurs/immunologie
3.
Nutrients ; 16(17)2024 Aug 24.
Article de Anglais | MEDLINE | ID: mdl-39275149

RÉSUMÉ

Recent studies suggest that lactate intake has a positive effect on glycogen recovery after exercise. However, it is important to verify the effect of lactate supplementation alone and the timing of glycogen recovery. Therefore, in this study, we aimed to examine the effect of lactate supplementation immediately after exercise on glycogen recovery in mice liver and skeletal muscle at 1, 3, and 5 h after exercise. Mice were randomly divided into the sedentary, exercise-only, lactate, and saline-treated groups. mRNA expression and activation of glycogen synthesis and lactate transport-related factors in the liver and skeletal muscle were assessed using real-time polymerase chain reaction. Skeletal muscle glycogen concentration showed an increasing trend in the lactate group compared with that in the control group at 3 and 5 h after post-supplementation. Additionally, exogenous lactate supplementation significantly increased the expression of core glycogen synthesis enzymes, lactate transporters, and pyruvate dehydrogenase E1 alpha 1 in the skeletal muscles. Conversely, glycogen synthesis, lactate transport, and glycogen oxidation to acetyl-CoA were not significantly affected in the liver by exogenous lactate supplementation. Overall, these results suggest that post-exercise lactate supplement enables glycogen synthesis and recovery in skeletal muscles.


Sujet(s)
Glycogène , Acide lactique , Foie , Conditionnement physique d'animal , Animaux , Glycogène/métabolisme , Acide lactique/métabolisme , Conditionnement physique d'animal/physiologie , Mâle , Foie/métabolisme , Foie/effets des médicaments et des substances chimiques , Souris , Muscles squelettiques/métabolisme , Muscles squelettiques/effets des médicaments et des substances chimiques , Souris de lignée C57BL , Transporteurs d'acides monocarboxyliques/métabolisme
4.
Int J Biol Sci ; 20(11): 4551-4565, 2024.
Article de Anglais | MEDLINE | ID: mdl-39247825

RÉSUMÉ

Cisplatin, a chemotherapeutic drug, can result in acute kidney injury (AKI). Currently, there are no effective prevention methods. An incomplete understanding of the pathogenesis of AKI is a major barrier to the development of effective therapies. Metabolism reprogramming shift to glycolysis was involved in AKI pathogenesis. Glycolysis results in the pyruvate production. The mitochondrial pyruvate carrier (MPC) conveys cytosol pyruvate into mitochondria, promoting the tricarboxylic acid cycle. In this current study, we found a reduction in MPC2 expression in mice and cultured HK2 cells with cisplatin-induced AKI. MPC2 overexpression attenuated cisplatin-mediated nephrotoxicity both in vitro and in vivo via restoring pyruvate metabolism and mitochondrial function. Knockdown of MPC2 reversed this effect. Furthermore, artemether, an MPC2 potential activator, could mitigate AKI via regulating MPC2-mediated pyruvate metabolism. Our findings revealed that MPC2-pyruvate metabolism axis was a promising strategy to alleviate AKI induced by cisplatin.


Sujet(s)
Atteinte rénale aigüe , Cisplatine , Mitochondries , Atteinte rénale aigüe/métabolisme , Animaux , Mitochondries/métabolisme , Mitochondries/effets des médicaments et des substances chimiques , Souris , Cisplatine/effets indésirables , Humains , Mâle , Acide pyruvique/métabolisme , Transporteurs d'acides monocarboxyliques/métabolisme , Souris de lignée C57BL , Lignée cellulaire , Protéines de transport de la membrane mitochondriale/métabolisme
5.
Cells ; 13(18)2024 Sep 20.
Article de Anglais | MEDLINE | ID: mdl-39329766

RÉSUMÉ

Human monocarboxylate transporters (hMCTs) belong to the solute carrier 16 (SLC16) family of proteins and are responsible for the bi-directional transport of various metabolites, including monocarboxylates, hormones, and aromatic amino acids. Hence, the metabolic role of hMCTs is undisputable, as they are directly involved in providing nutrients for oxidation and gluconeogenesis as well as participate in circulation of iodothyronines. However, due to the difficulty in obtaining suitable amounts of stable hMCT samples, the structural information available for these transporters is limited, hindering the development of effective therapeutics. Here we provide a straightforward, cost-effective strategy for the overproduction of hMCTs using a whole-cell Saccharomyces cerevisiae-based system. Our results indicate that this platform is able to provide three hMCTs, i.e., hMCT1 and hMCT4 (monocarboxylate transporters), and hMCT10 (an aromatic amino acid transporter). hMCT1 and hMCT10 are recovered in the quantity and quality required for downstream structural and functional characterization. Overall, our findings demonstrate the suitability of this platform to deliver physiologically relevant membrane proteins for biophysical studies.


Sujet(s)
Transporteurs d'acides monocarboxyliques , Saccharomyces cerevisiae , Saccharomyces cerevisiae/métabolisme , Saccharomyces cerevisiae/génétique , Transporteurs d'acides monocarboxyliques/métabolisme , Transporteurs d'acides monocarboxyliques/génétique , Humains , Symporteurs/métabolisme , Symporteurs/génétique
6.
Int J Biol Sci ; 20(11): 4341-4363, 2024.
Article de Anglais | MEDLINE | ID: mdl-39247822

RÉSUMÉ

Macrophages are the most abundant alternative immune cells in the tumor microenvironment (TME). The cross-talk between macrophages and tumor cells provides an important shelter for the occurrence and development of tumors. As an important information transfer medium, exosomes play an important role in intercellular communication. Nonetheless, how exosomal lncRNAs coordinate the communication between tumor cells and immune cells in hepatocellular carcinoma (HCC) is incompletely understood. We found that HCC exosomes-derived antisense RNA of SLC16A1(SLC16A1-AS1) promoted the malignant progression of HCC by regulating macrophage M2-type polarization. Mechanistically, the HCC exosomal SLC16A1-AS1 enhanced mRNA stabilization of SLC16A1 in macrophage by promoting the interaction between 3' untranslated regions (3'UTR) of SLC16A1 mRNA and heterogeneous nuclear ribonucleoprotein A1 (HNRNPA1). As a lactate transporter, SLC16A1 accelerated lactate influx and then activated c-Raf/ERK signaling to induce M2 polarization of macrophages. Reciprocally, M2 macrophages secreted IL-6 to activate STAT3 and then induce METTL3 transcription in HCC cells, which increasing m6A methylation and stabilization of SLC16A1-AS1. In turn, the reciprocal SLC16A1-AS1/IL-6 signaling between HCC cells and M2 macrophages promoted the proliferation, invasion and glycolysis of HCC cells. Our study highlights that exosomal SLC16A1-AS1 acts as a signaling message that induces lactate-mediated M2 polarization of macrophages, and implies that SLC16A1-AS1 might be an applicable target for therapeutic treatment of HCC.


Sujet(s)
Carcinome hépatocellulaire , Exosomes , Tumeurs du foie , Macrophages , Transporteurs d'acides monocarboxyliques , Animaux , Humains , Souris , Carcinome hépatocellulaire/métabolisme , Carcinome hépatocellulaire/anatomopathologie , Carcinome hépatocellulaire/génétique , Lignée cellulaire tumorale , Évolution de la maladie , Exosomes/métabolisme , Tumeurs du foie/métabolisme , Tumeurs du foie/anatomopathologie , Tumeurs du foie/génétique , Macrophages/métabolisme , Transporteurs d'acides monocarboxyliques/métabolisme , Transporteurs d'acides monocarboxyliques/génétique , ARN long non codant/métabolisme , ARN long non codant/génétique , Microenvironnement tumoral
7.
Biochem Biophys Res Commun ; 733: 150709, 2024 Nov 12.
Article de Anglais | MEDLINE | ID: mdl-39303526

RÉSUMÉ

SLC16A3/monocarboxylate transporter 4 (MCT4) regulates intracellular lactate transport and is highly expressed in many tumors, indicating poor prognosis. It may be related to inducing hypoxia, apoptosis and other mechanisms, but the study of MCT4 in HCC is far from complete. In this study, we first analyzed the expression of SLC16A3 in HCC tumor and non-tumor tissue samples based on TCGA data and immunohistochemistry. Subsequently, the effects of SLC16A3 expression on cell proliferation and invasion were analyzed using hepatocellular carcinoma (HCC) lines, and Western blot (WB) analysis was performed to explore the changes in pathway proteins and ferroptosis proteins. Finally, the drug sensitivity was tested by CCK8 kit. We found that SLC16A3 was significantly upregulated in tumor tissues, and was significantly correlated with TNM stage, histological grade, and macrovascular invasion. TCGA data and WB analysis showed that the high expression of SLC16A3 induced hypoxia, and knockdown could reverse hypoxia and inhibit ERK phosphorylation, thus limiting the malignant behavior of HCC cells. Moreover, knockdown of SLC16A3 significantly increased the level of lipid peroxidation and reactive oxygen species (ROS), while the expressions of GPX4, DHODH and SLC7A11 were inhibited. The expression of SLC16A3 affected the sensitivity of HCC cells to chemotherapy and targeted drugs, and RNA sequencing data suggested that the expression level influenced tumor microenvironment and response to immunotherapy. So, we draw a conclude that SLC16A3 is associated with poor prognosis of HCC. Inhibition of SLC16A3 expression is a potential therapeutic target for HCC.


Sujet(s)
Carcinome hépatocellulaire , Ferroptose , Acide lactique , Tumeurs du foie , Transporteurs d'acides monocarboxyliques , Humains , Carcinome hépatocellulaire/métabolisme , Carcinome hépatocellulaire/génétique , Carcinome hépatocellulaire/anatomopathologie , Ferroptose/génétique , Tumeurs du foie/métabolisme , Tumeurs du foie/génétique , Tumeurs du foie/anatomopathologie , Transporteurs d'acides monocarboxyliques/métabolisme , Transporteurs d'acides monocarboxyliques/génétique , Lignée cellulaire tumorale , Acide lactique/métabolisme , Techniques de knock-down de gènes , Prolifération cellulaire , Mâle , Femelle , Adulte d'âge moyen , Régulation de l'expression des gènes tumoraux , Espèces réactives de l'oxygène/métabolisme , Symporteurs
8.
Theranostics ; 14(14): 5662-5681, 2024.
Article de Anglais | MEDLINE | ID: mdl-39310103

RÉSUMÉ

Rationale: Spinal cord injury (SCI)-induced vascular damage causes ischemia and hypoxia at the injury site, which, in turn, leads to profound metabolic disruptions. The effects of these metabolic alterations on neural tissue remodeling and functional recovery have yet to be elucidated. The current study aimed to investigate the consequences of the SCI-induced hypoxic environment at the epicenter of the injury. Methods: This study employed metabolomics to assess changes in energy metabolism after SCI. The use of a lactate sensor identified lactate shuttle between endothelial cells (ECs) and neurons. Reanalysis of single-cell RNA sequencing data demonstrated reduced MCT1 expression in ECs after SCI. Additionally, an adeno-associated virus (AAV) overexpressing MCT1 was utilized to elucidate its role in endothelial-neuronal interactions, tissue repair, and functional recovery. Results: The findings revealed markedly decreased monocarboxylate transporter 1 (MCT1) expression that facilitates lactate delivery to neurons to support their energy metabolism in ECs post-SCI. This decreased expression of MCT1 disrupts lactate transport to neurons, resulting in a metabolic imbalance that impedes axonal regeneration. Strikingly, our results suggested that administering adeno-associated virus specifically to ECs to restore MCT1 expression enhances axonal regeneration and improves functional recovery in SCI mice. These findings indicate a novel link between lactate shuttling from endothelial cells to neurons following SCI and subsequent neural functional recovery. Conclusion: In summary, the current study highlights a novel metabolic pathway for therapeutic interventions in the treatment of SCI. Additionally, our findings indicate the potential benefits of targeting lactate transport mechanisms in recovery from SCI.


Sujet(s)
Axones , Cellules endothéliales , Acide lactique , Transporteurs d'acides monocarboxyliques , Traumatismes de la moelle épinière , Symporteurs , Traumatismes de la moelle épinière/métabolisme , Animaux , Transporteurs d'acides monocarboxyliques/métabolisme , Transporteurs d'acides monocarboxyliques/génétique , Cellules endothéliales/métabolisme , Acide lactique/métabolisme , Souris , Axones/métabolisme , Symporteurs/métabolisme , Symporteurs/génétique , Récupération fonctionnelle/physiologie , Dependovirus/génétique , Régénération nerveuse , Neurones/métabolisme , Métabolisme énergétique , Souris de lignée C57BL , Femelle , Modèles animaux de maladie humaine , Humains
9.
Science ; 385(6711): eabm6131, 2024 Aug 23.
Article de Anglais | MEDLINE | ID: mdl-39172838

RÉSUMÉ

Impaired cerebral glucose metabolism is a pathologic feature of Alzheimer's disease (AD), with recent proteomic studies highlighting disrupted glial metabolism in AD. We report that inhibition of indoleamine-2,3-dioxygenase 1 (IDO1), which metabolizes tryptophan to kynurenine (KYN), rescues hippocampal memory function in mouse preclinical models of AD by restoring astrocyte metabolism. Activation of astrocytic IDO1 by amyloid ß and tau oligomers increases KYN and suppresses glycolysis in an aryl hydrocarbon receptor-dependent manner. In amyloid and tau models, IDO1 inhibition improves hippocampal glucose metabolism and rescues hippocampal long-term potentiation in a monocarboxylate transporter-dependent manner. In astrocytic and neuronal cocultures from AD subjects, IDO1 inhibition improved astrocytic production of lactate and uptake by neurons. Thus, IDO1 inhibitors presently developed for cancer might be repurposed for treatment of AD.


Sujet(s)
Maladie d'Alzheimer , Peptides bêta-amyloïdes , Astrocytes , Glucose , Glycolyse , Hippocampe , Indoleamine-pyrrole 2,3,-dioxygenase , Cynurénine , Neurones , Animaux , Humains , Mâle , Souris , Maladie d'Alzheimer/métabolisme , Maladie d'Alzheimer/traitement médicamenteux , Peptides bêta-amyloïdes/métabolisme , Astrocytes/métabolisme , Cognition/effets des médicaments et des substances chimiques , Modèles animaux de maladie humaine , Glucose/métabolisme , Glycolyse/effets des médicaments et des substances chimiques , Hippocampe/métabolisme , Indoleamine-pyrrole 2,3,-dioxygenase/antagonistes et inhibiteurs , Indoleamine-pyrrole 2,3,-dioxygenase/métabolisme , Cynurénine/métabolisme , Acide lactique/métabolisme , Potentialisation à long terme , Mémoire/effets des médicaments et des substances chimiques , Transporteurs d'acides monocarboxyliques/métabolisme , Neurones/métabolisme , Récepteurs à hydrocarbure aromatique/métabolisme , Protéines tau/métabolisme , Tryptophane/métabolisme
10.
Exp Dermatol ; 33(8): e15165, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-39171634

RÉSUMÉ

Phenylalanine is a crucial amino acid in the process of melanogenesis. However, the exact mechanism by which it is transported into melanocytes has not been disclosed. The aim of this study was to identify and examine the key transporters that are responsible for phenylalanine transportation and evaluate their significance in melanogenesis. The amino acid transporter SLC16A10 was found to be up-regulated in both melasma (GSE72140) and sun-exposed skin (GSE67098). The protein levels of SLC16A10 were proportional to the melanin content in melanocytic nevi, indicating that SLC16A10 was related to melanogenesis. After SLC16A10 overexpression, melanin increased significantly in MNT1 cells. Meanwhile, the expression of melanogenesis-related proteins such as TYR and TYRP1 increased, while their RNA levels did not change. Transcriptomics data indicated that SLC16A10 can enhance the function of ribosome. Furthermore, targeted metabolomics data and ELISA results demonstrated SLC16A10 mainly affected the transport of phenylalanine into the cells. Then, phenylalanine was added to the cell culture medium after SLC16A10 overexpression, melanin synthesis in cells furtherly increased, which verified that SLC16A10 enhances melanogenesis by promoting the uptake of phenylalanine. Finally, we found that SLC16A10 expression increased after UVB irradiation. Knockdown SLC16A10 reduced UVB-induced melanin production and phenylalanine uptake by cells. In summary, SLC16A10 enhances melanogenesis by promoting the uptake of phenylalanine, and upregulation SLC16A10 is likely responsible for the UVB-induced hyperpigmentation as well.


Sujet(s)
Mélanocytes , Melanogenesis , Phénylalanine , Humains , Transport biologique , Mélanocytes/métabolisme , Melanogenesis/physiologie , Transporteurs d'acides monocarboxyliques/métabolisme , Transporteurs d'acides monocarboxyliques/génétique , Naevus pigmentaire/métabolisme , Naevus pigmentaire/génétique , Phénylalanine/métabolisme , Régulation positive
11.
Am J Physiol Lung Cell Mol Physiol ; 327(4): L439-L451, 2024 Oct 01.
Article de Anglais | MEDLINE | ID: mdl-39104320

RÉSUMÉ

In pulmonary hypertension (PHTN), a metabolic shift to aerobic glycolysis promotes a hyperproliferative, apoptosis-resistant phenotype in pulmonary arterial smooth muscle cells (PASMCs). Enhanced glycolysis induces extracellular acidosis, which can activate proton-sensing membrane receptors and ion channels. We previously reported that activation of the proton-gated cation channel acid-sensing ion channel 1a (ASIC1a) contributes to the development of hypoxic PHTN. Therefore, we hypothesize that enhanced glycolysis and subsequent acidification of the PASMC extracellular microenvironment activate ASIC1a in hypoxic PHTN. We observed decreased oxygen consumption rate and increased extracellular acidification rate in PASMCs from chronic hypoxia (CH)-induced PHTN rats, indicating a shift to aerobic glycolysis. In addition, we found that intracellular alkalization and extracellular acidification occur in PASMCs following CH and in vitro hypoxia, which were prevented by the inhibition of glycolysis with 2-deoxy-d-glucose (2-DG). Inhibiting H+ transport/secretion through carbonic anhydrases, Na+/H+ exchanger 1, or vacuolar-type H+-ATPase did not prevent this pH shift following hypoxia. Although the putative monocarboxylate transporter 1 (MCT1) and -4 (MCT4) inhibitor syrosingopine prevented the pH shift, the specific MCT1 inhibitor AZD3965 and/or the MCT4 inhibitor VB124 were without effect, suggesting that syrosingopine targets the glycolytic pathway independent of H+ export. Furthermore, 2-DG and syrosingopine prevented enhanced ASIC1a-mediated store-operated Ca2+ entry in PASMCs from CH rats. These data suggest that multiple H+ transport mechanisms contribute to extracellular acidosis and that inhibiting glycolysis-rather than specific H+ transporters-more effectively prevents extracellular acidification and ASIC1a activation. Together, these data reveal a novel pathological relationship between glycolysis and ASIC1a activation in hypoxic PHTN.NEW & NOTEWORTHY In pulmonary hypertension, a metabolic shift to aerobic glycolysis drives a hyperproliferative, apoptosis-resistant phenotype in pulmonary arterial smooth muscle cells. We demonstrate that this enhanced glycolysis induces extracellular acidosis and activates the proton-gated ion channel, acid-sensing ion channel 1a (ASIC1a). Although multiple H+ transport/secretion mechanisms are upregulated in PHTN and likely contribute to extracellular acidosis, inhibiting glycolysis with 2-deoxy-d-glucose or syrosingopine effectively prevents extracellular acidification and ASIC1a activation, revealing a promising therapeutic avenue.


Sujet(s)
Canaux ioniques sensibles à l'acidité , Glycolyse , Hypertension pulmonaire , Hypoxie , Myocytes du muscle lisse , Artère pulmonaire , Animaux , Canaux ioniques sensibles à l'acidité/métabolisme , Glycolyse/effets des médicaments et des substances chimiques , Hypertension pulmonaire/métabolisme , Hypertension pulmonaire/anatomopathologie , Hypoxie/métabolisme , Rats , Mâle , Artère pulmonaire/métabolisme , Artère pulmonaire/anatomopathologie , Myocytes du muscle lisse/métabolisme , Myocytes du muscle lisse/anatomopathologie , Échangeur-1 de sodium-hydrogène/métabolisme , Concentration en ions d'hydrogène , Rat Sprague-Dawley , Transporteurs d'acides monocarboxyliques/métabolisme , Transporteurs d'acides monocarboxyliques/antagonistes et inhibiteurs , Acidose/métabolisme , Acidose/anatomopathologie , Symporteurs
12.
Bioorg Med Chem Lett ; 112: 129923, 2024 Nov 01.
Article de Anglais | MEDLINE | ID: mdl-39134097

RÉSUMÉ

Mitochondrial pyruvate carrier (MPC) inhibitors promote the development of hair follicle stem cells without affecting normal cells, which is promising for the treatment of hair loss. Herein, a series of cyano-cinnamate derivatives of UK-5099 were designed and synthesized. All these new compounds have been tested for their ability to promote cellular lactate production in vitro. Compound 4i (LA content:0.322 µmol/106cell) showed better cellular lactate production activity than UK-5099 (LA content:0.185 µmol/106cell). Further compound 4i was also tested on shaved mice by topical treatment and promoted obvious hair growth on mice.


Sujet(s)
Cinnamates , Conception de médicament , Animaux , Souris , Cinnamates/pharmacologie , Cinnamates/composition chimique , Cinnamates/synthèse chimique , Relation structure-activité , Structure moléculaire , Humains , Transporteurs d'acides monocarboxyliques/antagonistes et inhibiteurs , Transporteurs d'acides monocarboxyliques/métabolisme , Relation dose-effet des médicaments , Acide lactique/composition chimique , Acide lactique/synthèse chimique , Protéines de transport de la membrane mitochondriale/métabolisme , Protéines de transport de la membrane mitochondriale/antagonistes et inhibiteurs , Mitochondries/effets des médicaments et des substances chimiques , Mitochondries/métabolisme
13.
Mol Metab ; 88: 102005, 2024 Oct.
Article de Anglais | MEDLINE | ID: mdl-39137831

RÉSUMÉ

OBJECTIVE: The mitochondrial pyruvate carrier (MPC) occupies a critical node in intermediary metabolism, prompting interest in its utility as a therapeutic target for the treatment of obesity and cardiometabolic disease. Dysregulated nutrient metabolism in adipose tissue is a prominent feature of obesity pathophysiology, yet the functional role of adipose MPC has not been explored. We investigated whether the MPC shapes the adaptation of adipose tissue to dietary stress in female and male mice. METHODS: The impact of pharmacological and genetic disruption of the MPC on mitochondrial pathways of triglyceride assembly (lipogenesis and glyceroneogenesis) was assessed in 3T3L1 adipocytes and murine adipose explants, combined with analyses of adipose MPC expression in metabolically compromised humans. Whole-body and adipose-specific glucose metabolism were subsequently investigated in male and female mice lacking adipocyte MPC1 (Mpc1AD-/-) and fed either standard chow, high-fat western style, or high-sucrose lipid restricted diets for 24 weeks, using a combination of radiolabeled tracers and GC/MS metabolomics. RESULTS: Treatment with UK5099 or siMPC1 impaired the synthesis of lipids and glycerol-3-phosphate from pyruvate and blunted triglyceride accumulation in 3T3L1 adipocytes, whilst MPC expression in human adipose tissue was negatively correlated with indices of whole-body and adipose tissue metabolic dysfunction. Mature adipose explants from Mpc1AD-/- mice were intrinsically incapable of incorporating pyruvate into triglycerides. In vivo, MPC deletion restricted the incorporation of circulating glucose into adipose triglycerides, but only in female mice fed a zero fat diet, and this associated with sex-specific reductions in tricarboxylic acid cycle pool sizes and compensatory transcriptional changes in lipogenic and glycerol metabolism pathways. However, whole-body adiposity and metabolic health were preserved in Mpc1AD-/- mice regardless of sex, even under conditions of zero dietary fat. CONCLUSIONS: These findings highlight the greater capacity for mitochondrially driven triglyceride assembly in adipose from female versus male mice and expose a reliance upon MPC-gated metabolism for glucose partitioning in female adipose under conditions of dietary lipid restriction.


Sujet(s)
Adipocytes , Tissu adipeux , Glucose , Protéines de transport de la membrane mitochondriale , Transporteurs d'acides monocarboxyliques , Triglycéride , Animaux , Femelle , Souris , Mâle , Glucose/métabolisme , Tissu adipeux/métabolisme , Humains , Protéines de transport de la membrane mitochondriale/métabolisme , Protéines de transport de la membrane mitochondriale/génétique , Transporteurs d'acides monocarboxyliques/métabolisme , Transporteurs d'acides monocarboxyliques/génétique , Triglycéride/métabolisme , Adipocytes/métabolisme , Cellules 3T3-L1 , Obésité/métabolisme , Souris de lignée C57BL , Mitochondries/métabolisme , Acide pyruvique/métabolisme , Lipogenèse , Alimentation riche en graisse/effets indésirables , Souris knockout , Transporteurs d'anions/métabolisme , Transporteurs d'anions/génétique , Acrylates
14.
Neurobiol Dis ; 200: 106621, 2024 Oct 01.
Article de Anglais | MEDLINE | ID: mdl-39097035

RÉSUMÉ

Allan-Herndon-Dudley syndrome (AHDS) is a rare X-linked disorder that causes severe neurological damage, for which there is no effective treatment. AHDS is due to inactivating mutations in the thyroid hormone transporter MCT8 that impair the entry of thyroid hormones into the brain, resulting in cerebral hypothyroidism. However, the pathophysiology of AHDS is still not fully understood and this is essential to develop therapeutic strategies. Based on evidence suggesting that thyroid hormone deficit leads to alterations in astroglial cells, including gliosis, in this work, we have evaluated astroglial impairments in MCT8 deficiency by means of magnetic resonance imaging, histological, ultrastructural, and immunohistochemical techniques, and by mining available RNA sequencing outputs. Apparent diffusion coefficient (ADC) imaging values obtained from magnetic resonance imaging showed changes indicative of alterations in brain cytoarchitecture in MCT8-deficient patients (n = 11) compared to control subjects (n = 11). Astroglial alterations were confirmed by immunohistochemistry against astroglial markers in autopsy brain samples of an 11-year-old and a 30th gestational week MCT8-deficient subjects in comparison to brain samples from control subjects at similar ages. These findings were validated and further explored in a mouse model of AHDS. Our findings confirm changes in all the astroglial populations of the cerebral cortex in MCT8 deficiency that impact astrocytic metabolic and mitochondrial cellular respiration functions. These impairments arise early in brain development and persist at adult stages, revealing an abnormal distribution, density, morphology of cortical astrocytes, along with altered transcriptome, compatible with an astrogliosis-like phenotype at adult stages. We conclude that astrocytes are potential novel therapeutic targets in AHDS, and we propose ADC imaging as a tool to monitor the progression of neurological impairments and potential effects of treatments in MCT8 deficiency.


Sujet(s)
Astrocytes , Encéphale , Transporteurs d'acides monocarboxyliques , Hypotonie musculaire , Symporteurs , Hormones thyroïdiennes , Astrocytes/métabolisme , Astrocytes/anatomopathologie , Animaux , Souris , Humains , Transporteurs d'acides monocarboxyliques/métabolisme , Transporteurs d'acides monocarboxyliques/génétique , Mâle , Encéphale/métabolisme , Encéphale/anatomopathologie , Hormones thyroïdiennes/métabolisme , Enfant , Symporteurs/métabolisme , Symporteurs/génétique , Hypotonie musculaire/métabolisme , Hypotonie musculaire/génétique , Hypotonie musculaire/anatomopathologie , Retard mental lié à l'X/génétique , Retard mental lié à l'X/métabolisme , Retard mental lié à l'X/anatomopathologie , Femelle , Adulte , Imagerie par résonance magnétique/méthodes , Amyotrophie
15.
Biochim Biophys Acta Rev Cancer ; 1879(5): 189164, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-39096976

RÉSUMÉ

As a solid tumor with high glycolytic activity, hepatocellular carcinoma (HCC) produces excess lactic acid and increases extracellular acidity, thus forming a unique immunosuppressive microenvironment. L-lactate dehydrogenase (LDH) and monocarboxylate transporters (MCTs) play a very important role in glycolysis. LDH is the key enzyme for lactic acid (LA) production, and MCT is responsible for the cellular import and export of LA. The synergistic effect of the two promotes the formation of an extracellular acidic microenvironment. In the acidic microenvironment of HCC, LA can not only promote the proliferation, survival, transport and angiogenesis of tumor cells but also have a strong impact on immune cells, ultimately leading to an inhibitory immune microenvironment. This article reviews the role of LA in HCC, especially its effect on immune cells, summarizes the progress of LDH and MCT-related drugs, and highlights the potential of immunotherapy targeting lactate combined with HCC.


Sujet(s)
Carcinome hépatocellulaire , Acide lactique , Tumeurs du foie , Transporteurs d'acides monocarboxyliques , Microenvironnement tumoral , Carcinome hépatocellulaire/anatomopathologie , Carcinome hépatocellulaire/immunologie , Humains , Tumeurs du foie/anatomopathologie , Tumeurs du foie/immunologie , Acide lactique/métabolisme , Transporteurs d'acides monocarboxyliques/métabolisme , L-Lactate dehydrogenase/métabolisme , Animaux , Glycolyse
16.
Int J Biol Macromol ; 277(Pt 3): 134482, 2024 Oct.
Article de Anglais | MEDLINE | ID: mdl-39102921

RÉSUMÉ

Decreased collagen synthesis by fibroblasts is a key aspect of skin aging. Poly-L-Lactic Acid (PLLA) is a bioabsorbable material that can release lactate continuously, stimulating endogenous collagen synthesis in the skin. Herein, this study aimed to investigate the impact of PLLA-released lactate on collagen production in fibroblasts for skin rejuvenation. Human fibroblasts were exposed to varying concentrations of PLLA in vitro, while PLLA was injected into the back skin of aged mice in vivo. Safety and efficacy of PLLA on collagen synthesis and skin rejuvenation were evaluated through Calcein-AM/PI staining, EdU proliferation assay, and analysis of collagen I and collagen III expression in fibroblasts using western blotting and immunofluorescence. To elucidate the underlying mechanisms, lactate contents in cell-free supernatant and cell lysates from PLLA-treated fibroblasts, as well as total lysine lactylation (Pan Kla) levels were measured. Additionally, we found that fibroblasts can uptake extracellular lactate released from PLLA through monocarboxylate transporter-1 (MCT1) to facilitate latent-transforming growth factor beta-binding protein 1 (LTBP1) lactylation at lysine 752 (K752) via a KAT8-dependent mechanism, then increases the protein levels of collagen I and collagen III in fibroblasts. Overall, this study highlights a valuable insight into lactylation modification of non-histone protein for skin rejuvenation.


Sujet(s)
Fibroblastes , Rajeunissement , Peau , Animaux , Humains , Souris , Prolifération cellulaire/effets des médicaments et des substances chimiques , Collagène/métabolisme , Collagène/biosynthèse , Fibroblastes/métabolisme , Fibroblastes/effets des médicaments et des substances chimiques , Histone acetyltransferases/métabolisme , Acide lactique/métabolisme , Lysine/métabolisme , Transporteurs d'acides monocarboxyliques/métabolisme , Polyesters/composition chimique , Peau/métabolisme , Peau/effets des médicaments et des substances chimiques , Vieillissement de la peau/effets des médicaments et des substances chimiques , Symporteurs/métabolisme
17.
Int J Mol Sci ; 25(16)2024 Aug 06.
Article de Anglais | MEDLINE | ID: mdl-39201272

RÉSUMÉ

Primary congenital hypothyroidism is easily diagnosed on the basis of elevated plasma levels of thyroid-stimulating hormone (TSH). In contrast, in the rare disorders of thyroid hormone resistance, TSH and, in mild cases, also thyroid hormone levels are within the normal range. Thyroid hormone resistance is caused by defects in hormone metabolism, transport, or receptor activation and can have the same serious consequences for child development as congenital hypothyroidism. A total of n = 23,522 data points from a large cohort of children and young adults were used to generate normal values and sex-specific percentiles for the ratio of free triiodothyronine (T3) to free thyroxine (T4), the fT3/fT4 ratio. The aim was to determine whether individuals with developmental delay and genetically confirmed thyroid hormone resistance, carrying defects in Monocarboxylate Transporter 8 (MCT8), Thyroid Hormone Receptor alpha (THRα), and Selenocysteine Insertion Sequence-Binding Protein 2 (SECISBP2), had abnormal fT3/fT4 ratios. Indeed, we were able to demonstrate a clear separation of patient values for the fT3/fT4 ratio from normal and pathological controls (e.g., children with severe cerebral palsy). We therefore recommend using the fT3/fT4 ratio as a readily available screening parameter in children with developmental delay for the identification of thyroid hormone resistance syndromes. The fT3/fT4 ratio can be easily plotted on centile charts using our free online tool, which accepts various SI and non-SI units for fT3, fT4, and TSH.


Sujet(s)
Incapacités de développement , Thyroxine , Tri-iodothyronine , Humains , Femelle , Incapacités de développement/diagnostic , Incapacités de développement/sang , Mâle , Enfant , Thyroxine/sang , Nourrisson , Enfant d'âge préscolaire , Tri-iodothyronine/sang , Adolescent , Adulte , Nouveau-né , Diagnostic différentiel , Valeurs de référence , Jeune adulte , Hypothyroïdie congénitale/diagnostic , Hypothyroïdie congénitale/sang , Transporteurs d'acides monocarboxyliques/génétique , Transporteurs d'acides monocarboxyliques/métabolisme , Symporteurs/génétique
18.
Biomed Pharmacother ; 179: 117345, 2024 Oct.
Article de Anglais | MEDLINE | ID: mdl-39208667

RÉSUMÉ

This study investigates the protective effects of propofol on the myocardium by inhibiting the expression of SLC16A13 through in vivo animal experiments, while also exploring its mechanism in ferroptosis to provide new strategies for preventing perioperative myocardial ischemia-reperfusion injury. We randomly divided 30 rats into three groups (n=10 each): sham surgery group, ischemia-reperfusion (I/R) group, and propofol pretreatment group. The results showed that compared with the sham surgery group, the I/R group had a significant decrease in cardiac function and an increase in infarct size. Propofol pretreatment effectively alleviated the damage caused by ischemia-reperfusion (I/R). In the next phase of the study, we administered the PPARα agonist GW7647 to artificially increase the expression of SLC16A13. Fifty rats were randomly divided into five groups (n=10 each), with the GW7647 pretreatment group and propofol+GW7647 pretreatment group added based on the previous three groups. Afterwards, we validated the in vivo results using H9C2 and further explored the mechanism by which propofol inhibits ferroptosis. The study found that L-lactic acid in myocardial tissue of the GW7647 group was further increased compared to the I/R group, and the degree of ferroptosis was aggravated. In addition, upregulation of SLC16A13 significantly inhibited the phosphorylation of AMPK, weakened the protective mechanism of AMPK, and exacerbated cardiac damage. However, propofol pretreatment can effectively inhibit the expression of SLC16A13, maintain normal myocardial cell morphology, and protect cardiac function. These results indicate that propofol inhibits the expression of SLC16A13, alleviates myocardial cell ferroptosis via the AMPK/GPX4 pathway, and reverses damage caused by myocardial ischemia-reperfusion.


Sujet(s)
AMP-Activated Protein Kinases , Ferroptose , Transporteurs d'acides monocarboxyliques , Lésion de reperfusion myocardique , Phospholipid hydroperoxide glutathione peroxidase , Propofol , Rat Sprague-Dawley , Animaux , Lésion de reperfusion myocardique/prévention et contrôle , Lésion de reperfusion myocardique/métabolisme , Lésion de reperfusion myocardique/anatomopathologie , Lésion de reperfusion myocardique/traitement médicamenteux , Ferroptose/effets des médicaments et des substances chimiques , Transporteurs d'acides monocarboxyliques/métabolisme , Propofol/pharmacologie , Rats , Mâle , Phospholipid hydroperoxide glutathione peroxidase/métabolisme , AMP-Activated Protein Kinases/métabolisme , Transduction du signal/effets des médicaments et des substances chimiques , Lignée cellulaire , Myocarde/anatomopathologie , Myocarde/métabolisme , Protéines du muscle
19.
Neurobiol Dis ; 200: 106623, 2024 Oct 01.
Article de Anglais | MEDLINE | ID: mdl-39103022

RÉSUMÉ

Alzheimer's Disease (AD) is characterized by an accumulation of pathologic amyloid-beta (Aß) and Tau proteins, neuroinflammation, metabolic changes and neuronal death. Reactive astrocytes participate in these pathophysiological processes by releasing pro-inflammatory molecules and recruiting the immune system, which further reinforces inflammation and contributes to neuronal death. Besides these neurotoxic effects, astrocytes can protect neurons by providing them with high amounts of lactate as energy fuel. Astrocytes rely on aerobic glycolysis to generate lactate by reducing pyruvate, the end product of glycolysis, through lactate dehydrogenase. Consequently, limited amounts of pyruvate enter astrocytic mitochondria through the Mitochondrial Pyruvate Carrier (MPC) to be oxidized. The MPC is a heterodimer composed of two subunits MPC1 and MPC2, the function of which in astrocytes has been poorly investigated. Here, we analyzed the role of the MPC in the pathogeny of AD, knowing that a reduction in overall glucose metabolism has been associated with a drop in cognitive performances and an accumulation of Aß and Tau. We generated 3xTgAD mice in which MPC1 was knocked-out in astrocytes specifically and focused our study on the biochemical hallmarks of the disease, mainly Aß and neurofibrillary tangle production. We show that inhibition of the MPC before the onset of the disease significantly reduces the quantity of Aß and Tau aggregates in the brain of 3xTgAD mice, suggesting that acting on astrocytic glucose metabolism early on could hinder the progression of the disease.


Sujet(s)
Maladie d'Alzheimer , Peptides bêta-amyloïdes , Astrocytes , Protéines de transport de la membrane mitochondriale , Transporteurs d'acides monocarboxyliques , Protéines tau , Animaux , Souris , Maladie d'Alzheimer/métabolisme , Maladie d'Alzheimer/anatomopathologie , Peptides bêta-amyloïdes/métabolisme , Transporteurs d'anions , Astrocytes/métabolisme , Astrocytes/anatomopathologie , Modèles animaux de maladie humaine , Souris de lignée C57BL , Souris transgéniques , Mitochondries/métabolisme , Mitochondries/anatomopathologie , Protéines de transport de la membrane mitochondriale/métabolisme , Protéines de transport de la membrane mitochondriale/génétique , Transporteurs d'acides monocarboxyliques/métabolisme , Transporteurs d'acides monocarboxyliques/génétique , Protéines tau/métabolisme
20.
EBioMedicine ; 106: 105243, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-39004066

RÉSUMÉ

BACKGROUND: Surgery is crucial for glioma treatment, but achieving complete tumour removal remains challenging. We evaluated the effectiveness of a probe targeting monocarboxylate transporter 4 (MCT4) in recognising gliomas, and of near-infrared window II (NIR-II) fluorescent molecular imaging and photothermal therapy as treatment strategies. METHODS: We combined an MCT4-specific monoclonal antibody with indocyanine green to create the probe. An orthotopic mouse model and a transwell model were used to evaluate its ability to guide tumour resection using NIR-II fluorescence and to penetrate the blood-brain barrier (BBB), respectively. A subcutaneous tumour model was established to confirm photothermal therapy efficacy. Probe specificity was assessed in brain tissue from mice and humans. Finally, probe effectiveness in photothermal therapy was investigated. FINDINGS: MCT4 was differentially expressed in tumour and normal brain tissue. The designed probe exhibited precise tumour targeting. Tumour imaging was precise, with a signal-to-background (SBR) ratio of 2.8. Residual tumour cells were absent from brain tissue postoperatively (SBR: 6.3). The probe exhibited robust penetration of the BBB. Moreover, the probe increased the tumour temperature to 50 °C within 5 min of laser excitation. Photothermal therapy significantly reduced tumour volume and extended survival time in mice without damage to vital organs. INTERPRETATION: These findings highlight the potential efficacy of our probe for fluorescence-guided surgery and therapeutic interventions. FUNDING: Jilin Province Department of Science and Technology (20200403079SF), Department of Finance (2021SCZ06) and Development and Reform Commission (20200601002JC); National Natural Science Foundation of China (92059207, 92359301, 62027901, 81930053, 81227901, U21A20386); and CAS Youth Interdisciplinary Team (JCTD-2021-08).


Sujet(s)
Tumeurs du cerveau , Glioblastome , Transporteurs d'acides monocarboxyliques , Thérapie photothermique , Animaux , Souris , Transporteurs d'acides monocarboxyliques/métabolisme , Transporteurs d'acides monocarboxyliques/antagonistes et inhibiteurs , Humains , Thérapie photothermique/méthodes , Glioblastome/thérapie , Glioblastome/métabolisme , Glioblastome/imagerie diagnostique , Glioblastome/anatomopathologie , Glioblastome/chirurgie , Lignée cellulaire tumorale , Tumeurs du cerveau/thérapie , Tumeurs du cerveau/métabolisme , Tumeurs du cerveau/imagerie diagnostique , Tumeurs du cerveau/anatomopathologie , Tumeurs du cerveau/chirurgie , Chirurgie assistée par ordinateur/méthodes , Modèles animaux de maladie humaine , Barrière hémato-encéphalique/métabolisme , Protéines du muscle/métabolisme , Imagerie optique/méthodes , Tests d'activité antitumorale sur modèle de xénogreffe
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE