Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 276
Filtrer
1.
Int J Biol Macromol ; 278(Pt 2): 134777, 2024 Oct.
Article de Anglais | MEDLINE | ID: mdl-39153669

RÉSUMÉ

Glioblastoma (GBM) represents a formidable challenge in oncology, characterized by aggressive proliferation and poor prognosis. Iron metabolism plays a critical player in GBM progression, with dysregulated iron uptake and utilization contributing to tumor growth and therapeutic resistance. Iron's pivotal role in DNA synthesis, oxidative stress, and angiogenesis underscores its significance in GBM pathogenesis. Elevated expression of iron transporters, such as transferrin receptor 1 (TfR1), highlights the tumor's reliance on iron for survival. Innovative treatment strategies targeting iron dysregulation hold promise for overcoming therapeutic challenges in GBM management. Approaches such as iron chelation therapies, induction of ferroptosis to nanoparticle-based drug delivery systems exploit iron-dependent vulnerabilities, offering avenues for enhance treatment efficacy and improve patient outcomes. As research advances, understanding the complexities of iron-mediated carcinogenesis provides a foundation for developing precision medicine approaches tailored to combat GBM effectively. This review explores the intricate relationship between iron metabolism and GBM, elucidating its multifaceted implications and therapeutic opportunities. By consolidating the latest insights into iron metabolism in GBM, this review underscores its potential as a therapeutic target for improving patient care in combination with the standard of care approach.


Sujet(s)
Ferroptose , Glioblastome , Fer , Récepteurs à la transferrine , Humains , Récepteurs à la transferrine/métabolisme , Fer/métabolisme , Ferroptose/effets des médicaments et des substances chimiques , Glioblastome/métabolisme , Glioblastome/traitement médicamenteux , Glioblastome/anatomopathologie , Animaux , Tumeurs du cerveau/métabolisme , Tumeurs du cerveau/traitement médicamenteux , Tumeurs du cerveau/anatomopathologie , Antigènes CD/métabolisme , Antigènes CD/génétique , Agents chélateurs du fer/usage thérapeutique , Agents chélateurs du fer/pharmacologie
2.
Int J Mol Sci ; 25(14)2024 Jul 09.
Article de Anglais | MEDLINE | ID: mdl-39062770

RÉSUMÉ

Glioblastoma (GBM) is an aggressive brain cancer characterized by significant molecular and cellular heterogeneity, which complicates treatment efforts. Current standard therapies, including surgical resection, radiation, and temozolomide (TMZ) chemotherapy, often fail to achieve long-term remission due to tumor recurrence and resistance. A pro-oxidant environment is involved in glioma progression, with oxidative stress contributing to the genetic instability that leads to gliomagenesis. Evaluating pro-oxidant therapies in brain tumors is crucial due to their potential to selectively target and eradicate cancer cells by exploiting the elevated oxidative stress levels inherent in these malignant cells, thereby offering a novel and effective strategy for overcoming resistance to conventional therapies. This study investigates the therapeutic potential of doxorubicin (DOX) and photodynamic therapy (PDT) with Me-ALA, focusing on their effects on redox homeostasis. Basal ROS levels and antioxidant gene expression (NFE2L2, CAT, GSR) were quantitatively assessed across GBM cell lines, revealing significant variability probably linked to genetic differences. DOX and PDT treatments, both individually and in combination, were analyzed for their efficacy in inducing oxidative stress and cytotoxicity. An in silico analysis further explored the relationship between gene mutations and oxidative stress in GBM patients, providing insights into the molecular mechanisms underlying treatment responses. Our findings suggest that pro-oxidant therapies, such as DOX and PDT in combination, could selectively target GBM cells, highlighting a promising avenue for improving therapeutic outcomes in GBM.


Sujet(s)
Tumeurs du cerveau , Doxorubicine , Glioblastome , Stress oxydatif , Photothérapie dynamique , Espèces réactives de l'oxygène , Glioblastome/traitement médicamenteux , Glioblastome/métabolisme , Glioblastome/anatomopathologie , Glioblastome/génétique , Humains , Doxorubicine/pharmacologie , Doxorubicine/usage thérapeutique , Photothérapie dynamique/méthodes , Stress oxydatif/effets des médicaments et des substances chimiques , Espèces réactives de l'oxygène/métabolisme , Lignée cellulaire tumorale , Tumeurs du cerveau/traitement médicamenteux , Tumeurs du cerveau/anatomopathologie , Tumeurs du cerveau/génétique , Tumeurs du cerveau/métabolisme , Synergie des médicaments , Photosensibilisants/pharmacologie , Photosensibilisants/usage thérapeutique
3.
Rev Neurosci ; 35(7): 813-838, 2024 Oct 28.
Article de Anglais | MEDLINE | ID: mdl-38841811

RÉSUMÉ

Glioblastoma multiforme (GBM) exhibits genetic alterations that induce the deregulation of oncogenic pathways, thus promoting metabolic adaptation. The modulation of metabolic enzyme activities is necessary to generate nucleotides, amino acids, and fatty acids, which provide energy and metabolic intermediates essential for fulfilling the biosynthetic needs of glioma cells. Moreover, the TCA cycle produces intermediates that play important roles in the metabolism of glucose, fatty acids, or non-essential amino acids, and act as signaling molecules associated with the activation of oncogenic pathways, transcriptional changes, and epigenetic modifications. In this review, we aim to explore how dysregulated metabolic enzymes from the TCA cycle and oxidative phosphorylation, along with their metabolites, modulate both catabolic and anabolic metabolic pathways, as well as pro-oncogenic signaling pathways, transcriptional changes, and epigenetic modifications in GBM cells, contributing to the formation, survival, growth, and invasion of glioma cells. Additionally, we discuss promising therapeutic strategies targeting key players in metabolic regulation. Therefore, understanding metabolic reprogramming is necessary to fully comprehend the biology of malignant gliomas and significantly improve patient survival.


Sujet(s)
Tumeurs du cerveau , Cycle citrique , Glioblastome , Phosphorylation oxydative , Humains , Glioblastome/métabolisme , Tumeurs du cerveau/métabolisme , Animaux
4.
Cell Mol Neurobiol ; 44(1): 51, 2024 Jun 22.
Article de Anglais | MEDLINE | ID: mdl-38907776

RÉSUMÉ

The circadian system is a conserved time-keeping machinery that regulates a wide range of processes such as sleep/wake, feeding/fasting, and activity/rest cycles to coordinate behavior and physiology. Circadian disruption can be a contributing factor in the development of metabolic diseases, inflammatory disorders, and higher risk of cancer. Glioblastoma (GBM) is a highly aggressive grade 4 brain tumor that is resistant to conventional therapies and has a poor prognosis after diagnosis, with a median survival of only 12-15 months. GBM cells kept in culture were shown to contain a functional circadian oscillator. In seeking more efficient therapies with lower side effects, we evaluated the pharmacological modulation of the circadian clock by targeting the cytosolic kinases glycogen synthase kinase-3 (GSK-3) and casein kinase 1 ε/δ (CK1ε/δ) with specific inhibitors (CHIR99021 and PF670462, respectively), the cryptochrome protein stabilizer (KL001), or circadian disruption after Per2 knockdown expression in GBM-derived cells. CHIR99021-treated cells had a significant effect on cell viability, clock protein expression, migration, and cell cycle distribution. Moreover, cultures exhibited higher levels of reactive oxygen species and alterations in lipid droplet content after GSK-3 inhibition compared to control cells. The combined treatment of CHIR99021 with temozolomide was found to improve the effect on cell viability compared to temozolomide therapy alone. Per2 disruption affected both GBM migration and cell cycle progression. Overall, our results suggest that pharmacological modulation or molecular clock disruption severely affects GBM cell biology.


Sujet(s)
Tumeurs du cerveau , Glioblastome , Glioblastome/anatomopathologie , Glioblastome/métabolisme , Glioblastome/traitement médicamenteux , Humains , Lignée cellulaire tumorale , Tumeurs du cerveau/anatomopathologie , Tumeurs du cerveau/métabolisme , Tumeurs du cerveau/traitement médicamenteux , Pyridines/pharmacologie , Survie cellulaire/effets des médicaments et des substances chimiques , Cytosol/métabolisme , Cytosol/effets des médicaments et des substances chimiques , Glycogen Synthase Kinase 3/métabolisme , Pyrimidines/pharmacologie , Mouvement cellulaire/effets des médicaments et des substances chimiques , Horloges circadiennes/effets des médicaments et des substances chimiques , Horloges circadiennes/physiologie , Protéines CLOCK/métabolisme , Protéines CLOCK/génétique , Protéines circadiennes Period/métabolisme , Protéines circadiennes Period/génétique , Espèces réactives de l'oxygène/métabolisme
5.
J Cell Biochem ; 125(8): e30612, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38923575

RÉSUMÉ

Glioblastoma (GBM) is the most common form of malignant primary brain tumor with a high mortality rate. The aim of the present study was to investigate the clinical significance of Family with Sequence Similarity 3, Member C, FAM3C, in GBM using bioinformatic-integrated analysis. First, we performed the transcriptomic integration analysis to assess the expression profile of FAM3C in GBM using several data sets (RNA-sequencing and scRNA-sequencing), which were obtained from TCGA and GEO databases. By using the STRING platform, we investigated FAM3C-coregulated genes to construct the protein-protein interaction network. Next, Metascape, Enrichr, and CIBERSORT databases were used. We found FAM3C high expression in GBM with poor survival rates. Further, we observed, via FAM3C coexpression network analysis, that FAM3C plays key roles in several hallmarks of cancer. Surprisingly, we also highlighted five FAM3C­coregulated genes overexpressed in GBM. Specifically, we demonstrated the association between the high expression of FAM3C and the abundance of the different immune cells, which may markedly worsen GBM prognosis. For the first time, our findings suggest that FAM3C not only can be a new emerging biomarker with promising therapeutic values to GBM patients but also gave a new insight into a potential resource for future GBM studies.


Sujet(s)
Marqueurs biologiques tumoraux , Tumeurs du cerveau , Analyse de profil d'expression de gènes , Régulation de l'expression des gènes tumoraux , Glioblastome , Humains , Glioblastome/génétique , Glioblastome/métabolisme , Glioblastome/mortalité , Marqueurs biologiques tumoraux/génétique , Marqueurs biologiques tumoraux/métabolisme , Tumeurs du cerveau/génétique , Tumeurs du cerveau/métabolisme , Tumeurs du cerveau/anatomopathologie , Cartes d'interactions protéiques , Pronostic , Transcriptome , Réseaux de régulation génique , Biologie informatique/méthodes , Taux de survie , Protéines tumorales/génétique , Protéines tumorales/métabolisme , Protéines tumorales/biosynthèse , Cytokines
6.
Biochim Biophys Acta Mol Basis Dis ; 1870(6): 167248, 2024 08.
Article de Anglais | MEDLINE | ID: mdl-38777100

RÉSUMÉ

Recent studies in Diffuse Midline Gliomas (DMG) demonstrated a strong connection between epigenome dysregulation and metabolic rewiring. Here, we evaluated the value of targeting a glycolytic protein named Phosphofructo-2-kinase/Fructose-2,6-bisphosphatase 3 (PFKFB3) in H3.3K27M DMG. We observed that the viability of H3.3K27M cells is dramatically reduced by PFK15, a potent inhibitor of PFKFB3. Furthermore, PFKFB3 inhibition induced apoptosis and G2/M arrest. Interestingly, CRISPR-Knockout of the K27M mutant allele has a synergistic effect on the observed phenotype. Altogether, we identified PFKFB3 as a new target for H3.3K27M DMG, making PFK15 a potential candidate for future animal studies and clinical trials.


Sujet(s)
Gliome , Histone , Phosphofructokinase-2 , Humains , Gliome/métabolisme , Gliome/anatomopathologie , Gliome/génétique , Phosphofructokinase-2/métabolisme , Phosphofructokinase-2/génétique , Histone/métabolisme , Histone/génétique , Lignée cellulaire tumorale , Enfant , Tumeurs du cerveau/métabolisme , Tumeurs du cerveau/anatomopathologie , Tumeurs du cerveau/génétique , Tumeurs du cerveau/traitement médicamenteux , Apoptose , Mutation , Glycolyse/effets des médicaments et des substances chimiques
7.
J Mol Neurosci ; 74(2): 54, 2024 May 17.
Article de Anglais | MEDLINE | ID: mdl-38760510

RÉSUMÉ

This article discusses a rare case of coexistent meningiomas and Primary familial brain calcification (PFBC). PFBC is a neurodegenerative disease characterized by brain calcifications and a variety of neuropsychiatric symptoms and signs, with pathogenic variants in specific genes. The study explores the potential link between PFBC and meningiomas, highlighting shared features like intralesional calcifications and common genes such as MEA6. The article also revisits PFBC patients developing other brain tumors, particularly gliomas, emphasizing the intersection of oncogenes like PDGFB and PDGFRB in both calcifications and tumor progression. In recent investigations, attention has extended beyond brain tumors to breast cancer metastasis, unveiling a noteworthy connection. These findings suggest a broader connection between brain calcifications and tumors, encouraging a reevaluation of therapeutic approaches for PFBC.


Sujet(s)
Tumeurs du cerveau , Calcinose , Méningiome , Humains , Calcinose/génétique , Calcinose/anatomopathologie , Méningiome/génétique , Méningiome/anatomopathologie , Tumeurs du cerveau/génétique , Tumeurs du cerveau/anatomopathologie , Tumeurs du cerveau/métabolisme , Femelle , Tumeurs des méninges/génétique , Tumeurs des méninges/anatomopathologie , Encéphalopathies/génétique , Encéphalopathies/anatomopathologie , Encéphalopathies/métabolisme
8.
Neurogenetics ; 25(3): 249-262, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38775886

RÉSUMÉ

Glioblastomas (GBM) are aggressive tumors known for their heterogeneity, rapid proliferation, treatment resistance, and extensive vasculature. Angiogenesis, the formation of new vessels, involves endothelial cell (EC) migration and proliferation. Various extracellular matrix (ECM) molecules regulate EC survival, migration, and proliferation. Culturing human brain EC (HBMEC) on GBM-derived ECM revealed a decrease in EC numbers compared to controls. Through in silico analysis, we explored ECM gene expression differences between GBM and brain normal glia cells and the impact of GBM microenvironment on EC ECM transcripts. ECM molecules such as collagen alpha chains (COL4A1, COL4A2, p < 0.0001); laminin alpha (LAMA4), beta (LAMB2), and gamma (LAMC1) chains (p < 0.0005); neurocan (NCAN), brevican (BCAN) and versican (VCAN) (p < 0.0005); hyaluronan synthase (HAS) 2 and metalloprotease (MMP) 2 (p < 0.005); MMP inhibitors (TIMP1-4, p < 0.0005), transforming growth factor beta-1 (TGFB1) and integrin alpha (ITGA3/5) (p < 0.05) and beta (ITGB1, p < 0.0005) chains showed increased expression in GBM. Additionally, GBM-influenced EC exhibited elevated expression of COL5A3, COL6A1, COL22A1 and COL27A1 (p < 0.01); LAMA1, LAMB1 (p < 0.001); fibulins (FBLN1/2, p < 0.01); MMP9, HAS1, ITGA3, TGFB1, and wingless-related integration site 9B (WNT9B) (p < 0.01) compared to normal EC. Some of these molecules: COL5A1/3, COL6A1, COL22/27A1, FBLN1/2, ITGA3/5, ITGB1 and LAMA1/B1 (p < 0.01); NCAN, HAS1, MMP2/9, TIMP1/2 and TGFB1 (p < 0.05) correlated with GBM patient survival. In conclusion, this study identified both established and novel ECM molecules regulating GBM angiogenesis, suggesting NCAN and COL27A1 are new potential prognostic biomarkers for GBM.


Sujet(s)
Tumeurs du cerveau , Matrice extracellulaire , Glioblastome , Néovascularisation pathologique , Humains , Glioblastome/génétique , Glioblastome/métabolisme , Glioblastome/anatomopathologie , Tumeurs du cerveau/génétique , Tumeurs du cerveau/métabolisme , Tumeurs du cerveau/anatomopathologie , Néovascularisation pathologique/génétique , Néovascularisation pathologique/métabolisme , Matrice extracellulaire/métabolisme , Pronostic , Cellules endothéliales/métabolisme , Microenvironnement tumoral/génétique , Protéines de la matrice extracellulaire/génétique , Protéines de la matrice extracellulaire/métabolisme , Régulation de l'expression des gènes tumoraux , Laminine/métabolisme , Laminine/génétique , Angiogenesis
9.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article de Anglais | MEDLINE | ID: mdl-38732140

RÉSUMÉ

Glioblastoma Multiforme is a brain tumor distinguished by its aggressiveness. We suggested that this aggressiveness leads single-cell RNA-sequence data (scRNA-seq) to span a representative portion of the cancer attractors domain. This conjecture allowed us to interpret the scRNA-seq heterogeneity as reflecting a representative trajectory within the attractor's domain. We considered factors such as genomic instability to characterize the cancer dynamics through stochastic fixed points. The fixed points were derived from centroids obtained through various clustering methods to verify our method sensitivity. This methodological foundation is based upon sample and time average equivalence, assigning an interpretative value to the data cluster centroids and supporting parameters estimation. We used stochastic simulations to reproduce the dynamics, and our results showed an alignment between experimental and simulated dataset centroids. We also computed the Waddington landscape, which provided a visual framework for validating the centroids and standard deviations as characterizations of cancer attractors. Additionally, we examined the stability and transitions between attractors and revealed a potential interplay between subtypes. These transitions might be related to cancer recurrence and progression, connecting the molecular mechanisms of cancer heterogeneity with statistical properties of gene expression dynamics. Our work advances the modeling of gene expression dynamics and paves the way for personalized therapeutic interventions.


Sujet(s)
Tumeurs du cerveau , Glioblastome , Analyse sur cellule unique , Glioblastome/génétique , Glioblastome/anatomopathologie , Glioblastome/métabolisme , Humains , Analyse sur cellule unique/méthodes , Tumeurs du cerveau/génétique , Tumeurs du cerveau/anatomopathologie , Tumeurs du cerveau/métabolisme , Régulation de l'expression des gènes tumoraux , Hétérogénéité génétique , Analyse de profil d'expression de gènes/méthodes , Instabilité du génome , Analyse de séquence d'ARN/méthodes , Analyse de regroupements
10.
Rev Assoc Med Bras (1992) ; 70(5): e20231337, 2024.
Article de Anglais | MEDLINE | ID: mdl-38775506

RÉSUMÉ

OBJECTIVE: It has been previously shown that brain-derived neurotrophic factor is linked with various types of cancer. Brain-derived neurotrophic factor is found to be highly expressed in multiple human cancers and associated with tumor growth, invasion, and metastasis. Adipokinetic hormones are functionally related to the vertebrate glucagon, as they have similar functionalities that manage the nutrient-dependent secretion of these two hormones. Migrasomes are new organelles that contain numerous small vesicles, which aid in transmitting signals between the migrating cells. Therefore, the aim of this study was to investigate the effects of Anax imperator adipokinetic hormone on brain-derived neurotrophic factor expression and ultrastructure of cells in the C6 glioma cell line. METHODS: The rat C6 glioma cells were treated with concentrations of 5 and 10 Anax imperator adipokinetic hormone for 24 h. The effects of the Anax imperator adipokinetic hormone on the migrasome formation and brain-derived neurotrophic factor expression were analyzed using immunocytochemistry and transmission electron microscope. RESULTS: The rat C6 glioma cells of the 5 and 10 µM Anax imperator adipokinetic hormone groups showed significantly high expressions of brain-derived neurotrophic factor and migrasomes numbers, compared with the control group. CONCLUSION: A positive correlation was found between the brain-derived neurotrophic factor expression level and the formation of migrasome, which indicates that the increased expression of brain-derived neurotrophic factor and the number of migrasomes may be involved to metastasis of the rat C6 glioma cell line induced by the Anax imperator adipokinetic hormone. Therefore, the expression of brain-derived neurotrophic factor and migrasome formation may be promising targets for preventing tumor proliferation, invasion, and metastasis in glioma.


Sujet(s)
Facteur neurotrophique dérivé du cerveau , Gliome , Oligopeptides , Acide pidolique , Gliome/métabolisme , Gliome/anatomopathologie , Animaux , Facteur neurotrophique dérivé du cerveau/métabolisme , Rats , Lignée cellulaire tumorale , Acide pidolique/analogues et dérivés , Acide pidolique/métabolisme , Oligopeptides/pharmacologie , Hormones des insectes/métabolisme , Mouvement cellulaire/effets des médicaments et des substances chimiques , Immunohistochimie , Tumeurs du cerveau/métabolisme , Tumeurs du cerveau/anatomopathologie , Organites/métabolisme , Organites/effets des médicaments et des substances chimiques , Organites/ultrastructure
11.
Clin Transl Oncol ; 26(9): 2296-2308, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-38568412

RÉSUMÉ

BACKGROUND: Brain metastasis (BM) is common in lung adenocarcinoma (LUAD) and has a poor prognosis, necessitating predictive biomarkers. MicroRNAs (MiRNAs) promote cancer cell growth, infiltration, and metastasis. However, the relationship between the miRNA expression profiles and BM occurrence in patients with LUAD remains unclear. METHODS: We conducted an analysis to identify miRNAs in tissue samples that exhibited different expression levels between patients with and without BM. Using a machine learning approach, we confirmed whether the miRNA profile could be a predictive tool for BM. We performed pathway analysis of miRNA target genes using a matched mRNA dataset. RESULTS: We selected 25 miRNAs that consistently exhibited differential expression between the two groups of 32 samples. The 25-miRNA profile demonstrated a strong predictive potential for BM in both Group 1 and Group 2 and the entire dataset (area under the curve [AUC] = 0.918, accuracy = 0.875 in Group 1; AUC = 0.867, accuracy = 0.781 in Group 2; and AUC = 0.908, accuracy = 0.875 in the entire group). Patients predicted to have BM, based on the 25-miRNA profile, had lower survival rates. Target gene analysis of miRNAs suggested that BM could be induced through the ErbB signaling pathway, proteoglycans in cancer, and the focal adhesion pathway. Furthermore, patients predicted to have BM based on the 25-miRNA profile exhibited higher expression of the epithelial-mesenchymal transition signature, TWIST, and vimentin than those not predicted to have BM. Specifically, there was a correlation between EGFR mRNA levels and BM. CONCLUSIONS: This 25-miRNA profile may serve as a biomarker for predicting BM in patients with LUAD.


Sujet(s)
Adénocarcinome pulmonaire , Tumeurs du cerveau , Tumeurs du poumon , Apprentissage machine , microARN , ARN messager , Humains , microARN/génétique , Tumeurs du cerveau/secondaire , Tumeurs du cerveau/génétique , Tumeurs du cerveau/métabolisme , Tumeurs du poumon/génétique , Tumeurs du poumon/anatomopathologie , Tumeurs du poumon/métabolisme , Adénocarcinome pulmonaire/génétique , Adénocarcinome pulmonaire/anatomopathologie , ARN messager/génétique , Femelle , Mâle , Adulte d'âge moyen , Sujet âgé , Marqueurs biologiques tumoraux/génétique , Marqueurs biologiques tumoraux/métabolisme , Pronostic , Analyse de profil d'expression de gènes , Régulation de l'expression des gènes tumoraux , Transition épithélio-mésenchymateuse/génétique , Jeux de données comme sujet , Vimentine/métabolisme , Vimentine/génétique
12.
J Interferon Cytokine Res ; 44(5): 198-207, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38512222

RÉSUMÉ

Melanoma, an infrequent yet significant variant of skin cancer, emerges as a primary cause of brain metastasis among various malignancies. Despite recognizing the involvement of inflammatory molecules, particularly chemokines, in shaping the metastatic microenvironment, the intricate cellular signaling mechanisms underlying cerebral metastasis remain elusive. In our pursuit to unravel the role of cytokines in melanoma metastasis, we devised a protocol utilizing mixed cerebral cortical cells and SK-MEL-28 melanoma cell lines. Contrary to expectations, we observed no discernible morphological change in melanoma cells exposed to a cerebral conditioned medium (CM). However, a substantial increase in both migration and proliferation was quantitatively noted. Profiling the chemokine secretion by melanoma in response to the cerebral CM unveiled the pivotal role of interferon gamma-induced protein 10 (CXCL10), inhibiting the secretion of interleukin 8 (CXCL8). Furthermore, through a transwell assay, we demonstrated that knockdown CXCL10 led to a significant decrease in the migration of the SK-MEL-28 cell line. In conclusion, our findings suggest that a cerebral CM induces melanoma cell migration, while modulating the secretion of CXCL10 and CXCL8 in the context of brain metastases. These insights advance our understanding of the underlying mechanisms in melanoma cerebral metastasis, paving the way for further exploration and targeted therapeutic interventions.


Sujet(s)
Mouvement cellulaire , Chimiokine CXCL10 , Mélanome , Transduction du signal , Chimiokine CXCL10/métabolisme , Chimiokine CXCL10/génétique , Humains , Milieux de culture conditionnés/pharmacologie , Mélanome/anatomopathologie , Mélanome/métabolisme , Lignée cellulaire tumorale , Interleukine-8/métabolisme , Tumeurs du cerveau/métabolisme , Tumeurs du cerveau/anatomopathologie , Tumeurs du cerveau/secondaire , Invasion tumorale , Prolifération cellulaire , Cortex cérébral/métabolisme , Cortex cérébral/anatomopathologie
13.
Curr Cancer Drug Targets ; 24(6): 579-594, 2024.
Article de Anglais | MEDLINE | ID: mdl-38310461

RÉSUMÉ

Glioblastoma (GBM) stands as the most aggressive and lethal among the main types of primary brain tumors. It exhibits malignant growth, infiltrating the brain tissue, and displaying resistance toward treatment. GBM is a complex disease characterized by high degrees of heterogeneity. During tumour growth, microglia and astrocytes, among other cells, infiltrate the tumour microenvironment and contribute extensively to gliomagenesis. Tumour-associated macrophages (TAMs), either of peripheral origin or representing brain-intrinsic microglia, are the most numerous nonneoplastic populations in the tumour microenvironment in GBM. The complex heterogeneous nature of GBM cells is facilitated by the local inflammatory tumour microenvironment, which mostly induces tumour aggressiveness and drug resistance. The immunosuppressive tumour microenvironment of GBM provides multiple pathways for tumour immune evasion, contributing to tumour progression. Additionally, TAMs and astrocytes can contribute to tumour progression through the release of cytokines and activation of signalling pathways. In this review, we summarize the role of the microenvironment in GBM progression, focusing on neuroinflammation. These recent advancements in research of the microenvironment hold the potential to offer a promising approach to the treatment of GBM in the coming times.


Sujet(s)
Tumeurs du cerveau , Évolution de la maladie , Glioblastome , Maladies neuro-inflammatoires , Microenvironnement tumoral , Humains , Glioblastome/anatomopathologie , Glioblastome/immunologie , Glioblastome/traitement médicamenteux , Tumeurs du cerveau/anatomopathologie , Tumeurs du cerveau/immunologie , Tumeurs du cerveau/métabolisme , Maladies neuro-inflammatoires/anatomopathologie , Maladies neuro-inflammatoires/immunologie , Astrocytes/anatomopathologie , Astrocytes/métabolisme , Astrocytes/immunologie , Animaux , Macrophages associés aux tumeurs/immunologie , Macrophages associés aux tumeurs/métabolisme , Macrophages associés aux tumeurs/anatomopathologie , Transduction du signal , Microglie/anatomopathologie , Microglie/immunologie
14.
Mol Neurobiol ; 61(8): 5216-5229, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38180613

RÉSUMÉ

Glioblastomas derived from malignant astrocytes are the most common primary tumors of the central nervous system in humans, exhibiting very bad prognosis. Treatment with surgery, radiotherapy, and chemotherapy (mainly using temozolomide), generates as much one-year survival. The circadian clock controls different aspects of tumor development, and its role in GBM is beginning to be explored. Here, the role of the canonic circadian clock gene bmal1 was studied in vivo in a nude mice model bearing human GBMs from LN229 cells xenografted orthotopically in the dorsal striatum. For that aim, a bmal1 knock-down was generated in LN229 cells by CRISPR/Cas9 gene editing tool, and tumor progression was followed in male mice by measuring survival, tumor growth, cell proliferation and prognosis with CD44 marker, as well as astrocyte activation in the tumor microenvironment with GFAP and nestin markers. Disruption of bmal1 in the tumor decreased survival, increased tumor growth and CD44 expression, worsened motor performance, as well as increased GFAP expression in astrocytes at tumor microenvironment. In addition, survival and tumor progression was not affected in mice bearing LN229 wild type GBM that underwent circadian disruption by constant light, as compared to mice synchronized to 12:12 light-dark cycles. These results consistently demonstrate in an in vivo orthotopic model of human GBM, that bmal1 has a key role as a tumor suppressor gene regulating GBM progression.


Sujet(s)
Facteurs de transcription ARNTL , Horloges circadiennes , Modèles animaux de maladie humaine , Gènes suppresseurs de tumeur , Glioblastome , Souris nude , Animaux , Glioblastome/génétique , Glioblastome/anatomopathologie , Glioblastome/métabolisme , Facteurs de transcription ARNTL/génétique , Facteurs de transcription ARNTL/métabolisme , Humains , Horloges circadiennes/génétique , Mâle , Lignée cellulaire tumorale , Tumeurs du cerveau/génétique , Tumeurs du cerveau/anatomopathologie , Tumeurs du cerveau/métabolisme , Astrocytes/métabolisme , Astrocytes/anatomopathologie , Souris , Prolifération cellulaire/génétique , Microenvironnement tumoral , Antigènes CD44/métabolisme , Antigènes CD44/génétique
15.
Curr Protein Pept Sci ; 25(1): 27-43, 2024.
Article de Anglais | MEDLINE | ID: mdl-37649287

RÉSUMÉ

INTRODUCTION: Brain tumors have high morbidity and mortality rates, accounting for 1.4% of all cancers. Gliomas are the most common primary brain tumors in adults. Currently, several therapeutic approaches are used; however, they are associated with side effects that affect patients'quality of life. Therefore, further studies are needed to develop novel therapeutic protocols with a more favorable side effect profile. In this context, cannabinoid compounds may serve as potential alternatives. OBJECTIVE: This study aimed to review the key enzymatic targets involved in glioma pathophysiology and evaluate the potential interaction of these targets with four cannabinoid derivatives through molecular docking simulations. METHODS: Molecular docking simulations were performed using four cannabinoid compounds and six molecular targets associated with glioma pathophysiology. RESULTS: Encouraging interactions between the selected enzymes and glioma-related targets were observed, suggesting their potential activity through these pathways. In particular, cannabigerol showed promising interactions with epidermal growth factor receptors and phosphatidylinositol 3- kinase, while Δ-9-tetrahydrocannabinol showed remarkable interactions with telomerase reverse transcriptase. CONCLUSION: The evaluated compounds exhibited favorable interactions with the analyzed enzymatic targets, thus representing potential candidates for further in vitro and in vivo studies.


Sujet(s)
Tumeurs du cerveau , Cannabinoïdes , Gliome , Adulte , Humains , Simulation de docking moléculaire , Qualité de vie , Cannabinoïdes/pharmacologie , Cannabinoïdes/usage thérapeutique , Gliome/traitement médicamenteux , Gliome/métabolisme , Gliome/anatomopathologie , Tumeurs du cerveau/traitement médicamenteux , Tumeurs du cerveau/métabolisme
16.
Int J Mol Sci ; 24(21)2023 Nov 01.
Article de Anglais | MEDLINE | ID: mdl-37958846

RÉSUMÉ

Glioblastoma (GBM) is the most common and aggressive primary brain tumor in adults, with few effective treatment strategies. The research on the development of new treatments is often constrained by the limitations of preclinical models, which fail to accurately replicate the disease's essential characteristics. Herein, we describe the obtention, molecular, and functional characterization of the GBM33 cell line. This cell line belongs to the GBM class according to the World Health Organization 2021 Classification of Central Nervous System Tumors, identified by methylation profiling. GBM33 expresses the astrocytic marker GFAP, as well as markers of neuronal origin commonly expressed in GBM cells, such as ßIII-tubulin and neurofilament. Functional assays demonstrated an increased growth rate when compared to the U87 commercial cell line and a similar sensitivity to temozolamide. GBM33 cells retained response to serum starvation, with reduced growth and diminished activation of the Akt signaling pathway. Unlike LN-18 and LN-229 commercial cell lines, GBM33 is able to produce primary cilia upon serum starvation. In summary, the successful establishment and comprehensive characterization of this GBM cell line provide researchers with invaluable tools for studying GBM biology, identifying novel therapeutic targets, and evaluating the efficacy of potential treatments.


Sujet(s)
Tumeurs du cerveau , Glioblastome , Adulte , Humains , Glioblastome/métabolisme , Brésil , Tumeurs du cerveau/métabolisme , Lignée cellulaire tumorale , Tubuline/métabolisme
17.
Exp Cell Res ; 433(2): 113825, 2023 12 15.
Article de Anglais | MEDLINE | ID: mdl-37866459

RÉSUMÉ

Metabolic adaptations are central for carcinogenesis and response to therapy, but little is known about the contribution of mitochondrial dynamics to the response of glioma cells to the standard treatment with temozolomide (TMZ). Glioma cells responded to TMZ with mitochondrial mass increased and the production of round structures of dysfunctional mitochondria. At single-cell level, asymmetric mitosis contributed to the heterogeneity of mitochondrial levels. It affected the fitness of cells in control and treated condition, indicating that the mitochondrial levels are relevant for glioma cell fitness in the presence of TMZ.


Sujet(s)
Tumeurs du cerveau , Gliome , Humains , Témozolomide/pharmacologie , Témozolomide/usage thérapeutique , Dacarbazine/pharmacologie , Dacarbazine/métabolisme , Dacarbazine/usage thérapeutique , Apoptose , Lignée cellulaire tumorale , Gliome/traitement médicamenteux , Gliome/métabolisme , Mitochondries/métabolisme , Antinéoplasiques alcoylants/pharmacologie , Tumeurs du cerveau/traitement médicamenteux , Tumeurs du cerveau/métabolisme , Résistance aux médicaments antinéoplasiques
18.
Int J Mol Sci ; 24(14)2023 Jul 18.
Article de Anglais | MEDLINE | ID: mdl-37511358

RÉSUMÉ

Medulloblastoma (MB) is the most common type of malignant pediatric brain tumor. Neuropilin-1 (NRP1), encoded by the NRP1 gene, is a transmembrane glycoprotein overexpressed in several types of cancer. Previous studies indicate that NRP1 inhibition displays antitumor effects in MB models and higher NRP1 levels are associated with poorer prognosis in MB patients. Here, we used a large MB tumor dataset to examine NRP1 gene expression in different molecular subgroups and subtypes of MB. We found overall widespread NRP1 expression across MB samples. Tumors in the sonic hedgehog (SHH) subgroup showed significantly higher NRP1 transcript levels in comparison with Group 3 and Group 4 tumors, with SHH samples belonging to the α, ß, Δ, and γ subtypes. When all MB subgroups were combined, lower NRP1 expression was associated with significantly shorter patient overall survival (OS). Further analysis showed that low NRP1 was related to poorer OS, specifically in MB subgroups SHH and Group 3 MB. Our findings indicate that patients with SHH and Group 3 tumors that show lower expression of NRP1 in MB have a worse prognosis, which highlights the need for subgroup-specific investigation of the NRP1 role in MB.


Sujet(s)
Tumeurs du cerveau , Tumeurs du cervelet , Médulloblastome , Enfant , Humains , Tumeurs du cerveau/génétique , Tumeurs du cerveau/métabolisme , Tumeurs du cervelet/métabolisme , Protéines Hedgehog/génétique , Protéines Hedgehog/métabolisme , Médulloblastome/génétique , Médulloblastome/métabolisme
19.
Sci Rep ; 13(1): 9356, 2023 06 08.
Article de Anglais | MEDLINE | ID: mdl-37291120

RÉSUMÉ

Glioblastoma (GBM) is the most frequent malignant primary tumor of the CNS in adults, with a median survival of 14.6 months after diagnosis. The effectiveness of GBM therapies remains poor, highlighting the need for new therapeutic alternatives. In this work, we evaluated the effect of 4-methylumbelliferone (4MU), a coumarin derivative without adverse effects reported, in combination with temozolomide (TMZ) or vincristine (VCR) on U251, LN229, U251-TMZ resistant (U251-R) and LN229-TMZ resistant (LN229-R) human GBM cells. We determined cell proliferation by BrdU incorporation, migration through wound healing assay, metabolic and MMP activity by XTT and zymography assays, respectively, and cell death by PI staining and flow cytometry. 4MU sensitizes GBM cell lines to the effect of TMZ and VCR and inhibits metabolic activity and cell proliferation on U251-R cells. Interestingly, the lowest doses of TMZ enhance U251-R and LN229-R cell proliferation, while 4MU reverts this and even sensitizes both cell lines to TMZ and VCR effects. We showed a marked antitumor effect of 4MU on GBM cells alone and in combination with chemotherapy and proved, for the first time, the effect of 4MU on TMZ-resistant models, demonstrating that 4MU would be a potential therapeutic alternative for improving GBM therapy even on TMZ-refractory patients.


Sujet(s)
Tumeurs du cerveau , Glioblastome , Humains , Témozolomide/usage thérapeutique , Glioblastome/anatomopathologie , Hymécromone/pharmacologie , Résistance aux médicaments antinéoplasiques , Lignée cellulaire tumorale , Prolifération cellulaire , Tumeurs du cerveau/métabolisme , Antinéoplasiques alcoylants/pharmacologie , Antinéoplasiques alcoylants/usage thérapeutique , Apoptose , Tests d'activité antitumorale sur modèle de xénogreffe
20.
Mol Pharm ; 20(5): 2702-2713, 2023 05 01.
Article de Anglais | MEDLINE | ID: mdl-37013916

RÉSUMÉ

Glioblastoma (GBM), as the most central nervous system (CNS) intractable disease, has spoiled millions of lives due to its high mortality. Even though several efforts have been made, the existing treatments have had limited success. In this sense, we studied a lead compound, the boron-rich selective epidermal growth factor receptor (EGFR)-inhibitor hybrid 1, as a potential drug for GBM treatment. For this end, we analyzed the in vitro activity of hybrid 1 in a glioma/primary astrocytes coculture, studying cellular death types triggered by treatment with this compound and its cellular localizations. Additionally, hybrid 1 concentrated boron in glioma cells selectively and more effectively than the boron neutron capture therapy (BNCT)-clinical agent 10B-l-boronophenylalanine and thus displayed a better in vitro-BNCT effect. This encouraged us to analyze hybrid 1 in vivo. Therefore, immunosuppressed mice bearing U87 MG human GBM were treated with both 1 and 1 encapsulated in a modified liposome (recognized by brain-blood barrier peptide transporters), and we observed a potent in vivo per se antitumor activity (tumor size decrease and animal survival increase). These data demonstrate that 1 could be a promising new targeted therapy for GBM.


Sujet(s)
Thérapie par capture de neutrons par le bore , Tumeurs du cerveau , Glioblastome , Gliome , Souris , Humains , Animaux , Tumeurs du cerveau/traitement médicamenteux , Tumeurs du cerveau/radiothérapie , Tumeurs du cerveau/métabolisme , Bore , Composés du bore/pharmacologie , Composés du bore/usage thérapeutique , Gliome/traitement médicamenteux , Gliome/radiothérapie , Gliome/métabolisme , Glioblastome/traitement médicamenteux
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE