Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 22
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Sci Rep ; 10(1): 15938, 2020 09 29.
Article de Anglais | MEDLINE | ID: mdl-32994436

RÉSUMÉ

In bacteria, glucosamine-6-phosphate (GlcN6P) synthase, GlmS, is an enzyme required for the synthesis of Uridine diphosphate N-acetylglucosamine (UDP-GlcNAc), a precursor of peptidoglycan. In Bacillus subtilis, an UDP-GlcNAc binding protein, GlmR (formerly YvcK), essential for growth on non-glycolytic carbon sources, has been proposed to stimulate GlmS activity; this activation could be antagonized by UDP-GlcNAc. Using purified proteins, we demonstrate that GlmR directly stimulates GlmS activity and the presence of UDP-GlcNAc (at concentrations above 0.1 mM) prevents this regulation. We also showed that YvcJ, whose gene is associated with yvcK (glmR), interacts with GlmR in an UDP-GlcNAc dependent manner. Strains producing GlmR variants unable to interact with YvcJ show decreased transformation efficiency similar to that of a yvcJ null mutant. We therefore propose that, depending on the intracellular concentration of UDP-GlcNAc, GlmR interacts with either YvcJ or GlmS. When UDP-GlcNAc concentration is high, this UDP-sugar binds to YvcJ and to GlmR, blocking the stimulation of GlmS activity and driving the interaction between GlmR and YvcJ to probably regulate the cellular role of the latter. When the UDP-GlcNAc level is low, GlmR does not interact with YvcJ and thus does not regulate its cellular role but interacts with GlmS to stimulate its activity.


Sujet(s)
Bacillus subtilis/métabolisme , Uridine diphosphate N-acétylglucosamine/génétique , Uridine diphosphate N-acétylglucosamine/métabolisme , Séquence d'acides aminés , Protéines bactériennes/métabolisme , Paroi cellulaire/métabolisme , Glutamine fructose 6-phosphate transaminase (isomerizing)/métabolisme , Peptidoglycane/métabolisme , Uridine diphosphate/métabolisme , Uridine diphosphate N-acétylglucosamine/physiologie
2.
J Biol Chem ; 295(34): 11949-11962, 2020 08 21.
Article de Anglais | MEDLINE | ID: mdl-32601062

RÉSUMÉ

Pel is a GalNAc-rich bacterial polysaccharide that contributes to the structure and function of Pseudomonas aeruginosa biofilms. The pelABCDEFG operon is highly conserved among diverse bacterial species, and Pel may therefore be a widespread biofilm determinant. Previous annotation of pel gene clusters has helped us identify an additional gene, pelX, that is present adjacent to pelABCDEFG in >100 different bacterial species. The pelX gene is predicted to encode a member of the short-chain dehydrogenase/reductase (SDR) superfamily, but its potential role in Pel-dependent biofilm formation is unknown. Herein, we have used Pseudomonas protegens Pf-5 as a model to elucidate PelX function as Pseudomonas aeruginosa lacks a pelX homologue in its pel gene cluster. We found that P. protegens forms Pel-dependent biofilms; however, despite expression of pelX under these conditions, biofilm formation was unaffected in a ΔpelX strain. This observation led us to identify a pelX paralogue, PFL_5533, which we designate here PgnE, that appears to be functionally redundant to pelX In line with this, a ΔpelX ΔpgnE double mutant was substantially impaired in its ability to form Pel-dependent biofilms. To understand the molecular basis for this observation, we determined the structure of PelX to 2.1 Å resolution. The structure revealed that PelX resembles UDP-GlcNAc C4-epimerases. Using 1H NMR analysis, we show that PelX catalyzes the epimerization between UDP-GlcNAc and UDP-GalNAc. Our results indicate that Pel-dependent biofilm formation requires a UDP-GlcNAc C4-epimerase that generates the UDP-GalNAc precursors required by the Pel synthase machinery for polymer production.


Sujet(s)
Protéines bactériennes/métabolisme , Biofilms , Carbohydrate epimerases/métabolisme , Polyosides bactériens/métabolisme , Pseudomonas aeruginosa/physiologie , Pseudomonas/physiologie , Protéines bactériennes/génétique , Carbohydrate epimerases/génétique , Polyosides bactériens/génétique , Uridine diphosphate N-acétylglucosamine/génétique , Uridine diphosphate N-acétylglucosamine/métabolisme
3.
J Biol Chem ; 294(26): 10042-10054, 2019 06 28.
Article de Anglais | MEDLINE | ID: mdl-31118275

RÉSUMÉ

Nucleotide sugar transporters (NSTs) regulate the flux of activated sugars from the cytosol into the lumen of the Golgi apparatus where glycosyltransferases use them for the modification of proteins, lipids, and proteoglycans. It has been well-established that NSTs are antiporters that exchange nucleotide sugars with the respective nucleoside monophosphate. Nevertheless, information about the molecular basis of ligand recognition and transport is scarce. Here, using topology predictors, cysteine-scanning mutagenesis, expression of GFP-tagged protein variants, and phenotypic complementation of the yeast strain Kl3, we identified residues involved in the activity of a mouse UDP-GlcNAc transporter, murine solute carrier family 35 member A3 (mSlc35a3). We specifically focused on the putative transmembrane helix 2 (TMH2) and observed that cells expressing E47C or K50C mSlc35a3 variants had lower levels of GlcNAc-containing glycoconjugates than WT cells, indicating impaired UDP-GlcNAc transport activity of these two variants. A conservative substitution analysis revealed that single or double substitutions of Glu-47 and Lys-50 do not restore GlcNAc glycoconjugates. Analysis of mSlc35a3 and its genetic variants reconstituted into proteoliposomes disclosed the following: (i) all variants act as UDP-GlcNAc/UMP antiporters; (ii) conservative substitutions (E47D, E47Q, K50R, or K50H) impair UDP-GlcNAc uptake; and (iii) substitutions of Glu-47 and Lys-50 dramatically alter kinetic parameters, consistent with a critical role of these two residues in mSlc35a3 function. A bioinformatics analysis revealed that an EXXK motif in TMH2 is highly conserved across SLC35 A subfamily members, and a 3D-homology model predicted that Glu-47 and Lys-50 are facing the central cavity of the protein.


Sujet(s)
Acide glutamique/métabolisme , Lysine/métabolisme , Cotransporteurs sodium-phosphate de type IIc/métabolisme , Uridine diphosphate N-acétylglucosamine/métabolisme , Uridine monophosphate/métabolisme , Séquence d'acides aminés , Animaux , Appareil de Golgi/métabolisme , Transport des ions , Souris , Modèles moléculaires , Conformation des protéines , Similitude de séquences , Cotransporteurs sodium-phosphate de type IIc/composition chimique , Cotransporteurs sodium-phosphate de type IIc/génétique , Uridine diphosphate N-acétylglucosamine/génétique
4.
Biochim Biophys Acta Proteins Proteom ; 1866(3): 397-406, 2018 Mar.
Article de Anglais | MEDLINE | ID: mdl-29203374

RÉSUMÉ

The biosynthesis of UDP-N-acetylmuramic acid (UDP-MurNAc) by reduction of UDP-N-acetylglucosamine-enolpyruvate (UDP-GlcNAc-EP) in an NADPH and FAD-dependent reaction in bacteria is one of the key steps in peptidoglycan biosynthesis catalyzed by UDP-N-acetylglucosamine-enolpyruvate reductase (MurB). Here, we present the crystal structure of Mycobacterium tuberculosis MurB (MtbMurB) with FAD as the prosthetic group at 2.0Å resolution. There are six molecules in asymmetric unit in the form of dimers. Each protomer can be subdivided into three domains and the prosthetic group, FAD is bound in the active site between domain I and domain II. Comparison of MtbMurB structure with the structures of the Escherichia coli MurB (in complex with UDP-GlcNAc-EP) and Pseudomonas aeruginosa MurB (in complex with NADPH) showed all three structures share similar domain architecture and residues in the active site. The nicotinamide and the enol pyruvyl moieties are well aligned upon superimposition, both positioned in suitable position for hydride transfer to and from FAD. The comparison studies and MD simulations demonstrate that the two lobes of domain-III become more flexible. The substrates (NADPH and UDP-GlcNAc-EP) binding responsible for open conformation of MurB, suggesting that NADPH and UDP-GlcNAc-EP interactions are conformationally stable. Our findings provide a detail mechanism about the closed to open state by binding of NADPH and UDP-GlcNAc-EP induces the conformational changes of MurB structure that may trigger the MurB catalytic reaction.


Sujet(s)
Protéines bactériennes/métabolisme , Simulation de dynamique moléculaire , Mycobacterium tuberculosis/enzymologie , Uridine diphosphate N-acétylglucosamine/analogues et dérivés , Séquence d'acides aminés , Protéines bactériennes/composition chimique , Protéines bactériennes/génétique , Sites de fixation/génétique , Biocatalyse , Domaine catalytique , Cristallographie aux rayons X , Mycobacterium tuberculosis/génétique , NADP/composition chimique , NADP/métabolisme , Liaison aux protéines , Domaines protéiques , Multimérisation de protéines , Similitude de séquences d'acides aminés , Uridine diphosphate N-acétylglucosamine/composition chimique , Uridine diphosphate N-acétylglucosamine/génétique , Uridine diphosphate N-acétylglucosamine/métabolisme
5.
Prep Biochem Biotechnol ; 47(9): 852-859, 2017 Oct 21.
Article de Anglais | MEDLINE | ID: mdl-27220687

RÉSUMÉ

Uridine 5'-diphosphate N-acetylglucosamine (UDP-GlcNAc) is a natural UDP-monosaccharide donor for bacterial glycosyltransferases, while uridine 5'-diphosphate N-trifluoacetyl glucosamine (UDP-GlcNTFA) is its synthetic mimic. The chemoenzymatic synthesis of UDP-GlcNAc and UDP-GlcNTFA was attempted by three recombinant enzymes. Recombinant N-acetylhexosamine 1-kinase was used to produce GlcNAc/GlcNTFA-1-phosphate from GlcNAc/GlcNTFA. N-acetylglucosamine-1-phosphate uridyltransferase from Escherichia coli K12 MG1655 was used to produce UDP-GlcNAc/GlcNTFA from GlcNAc/GlcNTFA-1-phosphate. Inorganic pyrophosphatase from E. coli K12 MG1655 was used to hydrolyze pyrophosphate to accelerate the reaction. The above enzymes were expressed in E. coli BL21 (DE3) and purified, respectively, and finally mixed in one-pot bioreactor. The effects of reaction conditions on the production of UDP-GlcNAc and UDP-GlcNTFA were characterized. To avoid the substrate inhibition effect on the production of UDP-GlcNAc and UDP-GlcNTFA, the reaction was performed with fed batch of substrate. Under the optimized conditions, high production of UDP-GlcNAc (59.51 g/L) and UDP-GlcNTFA (46.54 g/L) were achieved in this three-enzyme one-pot system. The present work is promising to develop an efficient scalable process for the supply of UDP-monosaccharide donors for oligosaccharide synthesis.


Sujet(s)
Acétyl-glucosamine/analogues et dérivés , Bifidobacterium/enzymologie , Enterococcus/enzymologie , Escherichia coli/enzymologie , Lactobacillus/enzymologie , Uridine diphosphate N-acétylglucosamine/métabolisme , Uridine diphosphate/analogues et dérivés , Acétyl-glucosamine/génétique , Acétyl-glucosamine/métabolisme , Bifidobacterium/génétique , Bifidobacterium/métabolisme , Voies de biosynthèse , Clonage moléculaire , Enterococcus/génétique , Enterococcus/métabolisme , Escherichia coli/génétique , Escherichia coli/métabolisme , Inorganic Pyrophosphatase/génétique , Inorganic Pyrophosphatase/métabolisme , Lactobacillus/génétique , Lactobacillus/métabolisme , Nucleotidyltransferases/génétique , Nucleotidyltransferases/métabolisme , Phosphotransferases/génétique , Phosphotransferases/métabolisme , Protéines recombinantes/génétique , Protéines recombinantes/métabolisme , Uridine diphosphate/génétique , Uridine diphosphate/métabolisme , Uridine diphosphate N-acétylglucosamine/génétique
6.
Glycobiology ; 26(7): 710-22, 2016 07.
Article de Anglais | MEDLINE | ID: mdl-26887390

RÉSUMÉ

UDP-N-acetylglucosamine (UDP-GlcNAc) is a glucose metabolite with pivotal functions as a key substrate for the synthesis of glycoconjugates like hyaluronan, and as a metabolic sensor that controls cell functions through O-GlcNAc modification of intracellular proteins. However, little is known about the regulation of hexosamine biosynthesis that controls UDP-GlcNAc content. Four enzymes can catalyze the crucial starting point of the pathway, conversion of fructose-6-phosphate (Fru6P) to glucosamine-6-phosphate (GlcN6P): glutamine-fructose-6-phosphate aminotransferases (GFAT1 and 2) and glucosamine-6-phosphate deaminases (GNPDA1 and 2). Using siRNA silencing, we studied the contributions of these enzymes to UDP-GlcNAc content and hyaluronan synthesis in human keratinocytes. Depletion of GFAT1 reduced the cellular pool of UDP-GlcNAc and hyaluronan synthesis, while simultaneous blocking of both GNPDA1 and GDPDA2 exerted opposite effects, indicating that in standard culture conditions keratinocyte GNPDAs mainly catalyzed the reaction from GlcN6P back to Fru6P. However, when hexosamine biosynthesis was blocked by GFAT1 siRNA, the effect by GNPDAs was reversed, now catalyzing Fru6P towards GlcN6P, likely in an attempt to maintain UDP-GlcNAc content. Silencing of these enzymes also changed the gene expression of related enzymes: GNPDA1 siRNA induced GFAT2 which was hardly measurable in these cells under standard culture conditions, GNPDA2 siRNA increased GFAT1, and GFAT1 siRNA increased the expression of hyaluronan synthase 2 (HAS2). Silencing of GFAT1 stimulated GNPDA1 and GDPDA2, and inhibited cell migration. The multiple delicate adjustments of these reactions demonstrate the importance of hexosamine biosynthesis in cellular homeostasis, known to be deranged in diseases like diabetes and cancer.


Sujet(s)
Aldose-ketose isomerases/génétique , Glutamine fructose 6-phosphate transaminase (isomerizing)/génétique , Hexosamine/biosynthèse , Hyaluronan synthases/génétique , Uridine diphosphate N-acétylglucosamine/métabolisme , Aldose-ketose isomerases/antagonistes et inhibiteurs , Mouvement cellulaire/génétique , Fructose phosphate/métabolisme , Glucosamine/analogues et dérivés , Glucosamine/métabolisme , Glucose/métabolisme , Glucose-6-phosphate/analogues et dérivés , Glucose-6-phosphate/métabolisme , Glutamine fructose 6-phosphate transaminase (isomerizing)/antagonistes et inhibiteurs , Humains , Acide hyaluronique/biosynthèse , Kératinocytes/métabolisme , Petit ARN interférent/génétique , Uridine diphosphate N-acétylglucosamine/génétique
7.
Insect Biochem Mol Biol ; 68: 1-12, 2016 Jan.
Article de Anglais | MEDLINE | ID: mdl-26592348

RÉSUMÉ

Uridine diphosphate-N-acetylglucosamine-pyrophosphorylase (UAP) is involved in the biosynthesis of chitin, an essential component of the epidermal cuticle and midgut peritrophic matrix (PM) in insects. In the present paper, two putative LdUAP genes were cloned in Leptinotarsa decemlineata. In vivo bioassay revealed that 20-hydroxyecdysone (20E) and an ecdysteroid agonist halofenozide activated the expression of the two LdUAPs, whereas a decrease in 20E by RNA interference (RNAi) of an ecdysteroidogenesis gene LdSHD and a 20E signaling gene LdFTZ-F1 repressed the expression. Juvenile hormone (JH), a JH analog pyriproxyfen and an increase in JH by RNAi of an allatostatin gene LdAS-C downregulated LdUAP1 but upregulated LdUAP2, whereas a decrease in JH by silencing of a JH biosynthesis gene LdJHAMT had converse effects. Thus, expression of LdUAPs responded to both 20E and JH. Moreover, knockdown of LdUAP1 reduced chitin contents in whole larvae and integument samples, thinned tracheal taenidia, impaired larval-larval molt, larval-pupal ecdysis and adult emergence. In contrast, silencing of LdUAP2 significantly reduced foliage consumption, decreased chitin content in midgut samples, damaged PM, and retarded larval growth. The resulting larvae had lighter fresh weights, smaller body sizes and depleted fat body. As a result, the development was arrested. Combined knockdown of LdUAP1 and LdUAP2 caused an additive negative effect. Our data suggest that LdUAP1 and LdUAP2 have specialized functions in biosynthesizing chitin in the epidermal cuticle and PM respectively in L. decemlineata.


Sujet(s)
Chitine/biosynthèse , Coléoptères/métabolisme , Protéines d'insecte/métabolisme , Uridine diphosphate N-acétylglucosamine/métabolisme , Animaux , Clonage moléculaire , Coléoptères/génétique , Coléoptères/croissance et développement , Système digestif/métabolisme , Ecdystérone/métabolisme , Gènes d'insecte , Protéines d'insecte/génétique , Hormones juvéniles/métabolisme , Larve/métabolisme , Mue/génétique , Uridine diphosphate N-acétylglucosamine/génétique
8.
Biochem Biophys Res Commun ; 468(1-2): 349-53, 2015.
Article de Anglais | MEDLINE | ID: mdl-26499076

RÉSUMÉ

Glycolysis, the primary pathway metabolizing glucose for energy production, is connected to the hexosamine biosynthetic pathway (HBP) which produces UDP-N-acetylglucosamine (UDP-GlcNAc), a GlcNAc donor for O-linked GlcNAc modification (O-GlcNAc), as well as for traditional elongated glycosylation. Thus, glycolysis and O-GlcNAc are intimately associated. The present study reports the transcriptional activation of glycolytic genes by the transcription factor Sp1 and the O-GlcNAc-mediated suppression of Sp1-dependent activation of glycolytic genes. O-GlcNAc-deficient mutant Sp1 stimulated the transcription of nine glycolytic genes and cellular production of pyruvate, the final product of glycolysis, to a greater extent than wild-type Sp1. Consistently, this mutant Sp1 increased the protein levels of the two key glycolytic enzymes, phosphofructokinase (PFK) and glyceraldehyde 3-phosphate dehydrogenase (GAPDH), to a greater extent than wild-type Sp1. Finally, the mutant Sp1 occupied GC-rich elements on PFK and GAPDH promoters more efficiently than wild-type Sp1. These results suggest that O-GlcNAcylation of Sp1 suppresses Sp1-mediated activation of glycolytic gene transcription.


Sujet(s)
Glycolyse , Facteur de transcription Sp1/métabolisme , Activation de la transcription , Uridine diphosphate N-acétylglucosamine/métabolisme , Séquence nucléotidique , Glyceraldehyde 3-phosphate dehydrogenases/génétique , Cellules HEK293 , Humains , Données de séquences moléculaires , Mutation , Phosphofructokinases/génétique , Régions promotrices (génétique) , Facteur de transcription Sp1/génétique , Uridine diphosphate N-acétylglucosamine/génétique
9.
Acta Crystallogr F Struct Biol Commun ; 71(Pt 5): 560-5, 2015 May.
Article de Anglais | MEDLINE | ID: mdl-25945709

RÉSUMÉ

Uridine diphosphate N-acetylglucosamine pyrophosphorylase (UAP) catalyzes the final step in the synthesis of UDP-GlcNAc, which is involved in cell-wall biogenesis in plants and fungi and in protein glycosylation. Small-molecule inhibitors have been developed against UAP from Trypanosoma brucei that target an allosteric pocket to provide selectivity over the human enzyme. A 1.8 Å resolution crystal structure was determined of UAP from Entamoeba histolytica, an anaerobic parasitic protozoan that causes amoebic dysentery. Although E. histolytica UAP exhibits the same three-domain global architecture as other UAPs, it appears to lack three α-helices at the N-terminus and contains two amino acids in the allosteric pocket that make it appear more like the enzyme from the human host than that from the other parasite T. brucei. Thus, allosteric inhibitors of T. brucei UAP are unlikely to target Entamoeba UAPs.


Sujet(s)
Entamoeba histolytica/composition chimique , Entamoeba histolytica/enzymologie , UTP glucose 1-phosphate uridylyltransferase/composition chimique , Uridine diphosphate N-acétylglucosamine/composition chimique , Séquence d'acides aminés , Cristallisation , Entamoeba histolytica/génétique , Humains , Données de séquences moléculaires , Structure secondaire des protéines , Structure tertiaire des protéines , UTP glucose 1-phosphate uridylyltransferase/génétique , Uridine diphosphate N-acétylglucosamine/génétique
10.
J Biol Chem ; 287(42): 35544-35555, 2012 Oct 12.
Article de Anglais | MEDLINE | ID: mdl-22887999

RÉSUMÉ

Hyaluronan (HA) is a glycosaminoglycan present in most tissue microenvironments that can modulate many cell behaviors, including proliferation, migration, and adhesive proprieties. In contrast with other glycosaminoglycans, which are synthesized in the Golgi, HA is synthesized at the plasma membrane by one or more of the three HA synthases (HAS1-3), which use cytoplasmic UDP-glucuronic acid and UDP-N-acetylglucosamine as substrates. Previous studies revealed the importance of UDP-sugars for regulating HA synthesis. Therefore, we analyzed the effect of UDP-GlcNAc availability and protein glycosylation with O-linked N-acetylglucosamine (O-GlcNAcylation) on HA and chondroitin sulfate synthesis in primary human aortic smooth muscle cells. Glucosamine treatment, which increases UDP-GlcNAc availability and protein O-GlcNAcylation, increased synthesis of both HA and chondroitin sulfate. However, increasing O-GlcNAcylation by stimulation with O-(2-acetamido-2-deoxy-d-glucopyranosylidene)amino-N-phenylcarbamate without a concomitant increase of UDP-GlcNAc increased only HA synthesis. We found that HAS2, the main synthase in aortic smooth muscle cells, can be O-GlcNAcylated on serine 221, which strongly increased its activity and its stability (t(½) >5 h versus ∼17 min without O-GlcNAcylation). S221A mutation prevented HAS2 O-GlcNAcylation, which maintained the rapid turnover rate even in the presence of GlcN and increased UDP-GlcNAc. These findings could explain the elevated matrix HA observed in diabetic vessels that, in turn, could mediate cell dedifferentiation processes critical in vascular pathologies.


Sujet(s)
Aorte/métabolisme , Chondroïtines sulfate/biosynthèse , Angiopathies diabétiques/métabolisme , Glucuronosyltransferase/métabolisme , Acide hyaluronique/biosynthèse , Protéines du muscle/métabolisme , Muscles lisses vasculaires/métabolisme , Uridine diphosphate N-acétylglucosamine/métabolisme , Substitution d'acide aminé , Aorte/anatomopathologie , Lignée cellulaire , Chondroïtines sulfate/génétique , Angiopathies diabétiques/génétique , Angiopathies diabétiques/anatomopathologie , Glucuronosyltransferase/génétique , Glycosylation , Humains , Hyaluronan synthases , Acide hyaluronique/génétique , Protéines du muscle/génétique , Muscles lisses vasculaires/anatomopathologie , Mutation faux-sens , Uridine diphosphate N-acétylglucosamine/génétique
11.
Biochim Biophys Acta ; 1822(10): 1516-26, 2012 Oct.
Article de Anglais | MEDLINE | ID: mdl-22613355

RÉSUMÉ

Deficiency of UDP-galactose 4'-epimerase is implicated in type III galactosemia. Two variants, p.K161N-hGALE and p.D175N-hGALE, have been previously found in combination with other alleles in patients with a mild form of the disease. Both variants were studied in vivo and in vitro and showed different levels of impairment. p.K161N-hGALE was severely impaired with substantially reduced enzymatic activity, increased thermal stability, reduced cofactor binding and no ability to rescue the galactose-sensitivity of gal10-null yeast. Interestingly p.K161N-hGALE showed less impairment of activity with UDP-N-acetylgalactosamine in comparison to UDP-galactose. Differential scanning fluorimetry revealed that p.K161N-hGALE was more stable than the wild-type protein and only changed stability in the presence of UDP-N-acetylglucosamine and NAD(+). p.D175N-hGALE essentially rescued the galactose-sensitivity of gal10-null yeast, was less stable than the wild-type protein but showed increased stability in the presence of substrates and cofactor. We postulate that p.K161N-hGALE causes its effects by abolishing an important interaction between the protein and the cofactor, whereas p.D175N-hGALE is predicted to remove a stabilizing salt bridge between the ends of two α-helices that contain residues that interact with NAD(+). These results suggest that the cofactor binding is dynamic and that its loss results in significant structural changes that may be important in disease causation.


Sujet(s)
Coenzymes/métabolisme , Galactosémies/enzymologie , Liaison aux protéines/génétique , UDP glucose 4-epimerase/composition chimique , UDP glucose 4-epimerase/génétique , UDP glucose 4-epimerase/métabolisme , Allèles , Coenzymes/génétique , Escherichia coli/génétique , Escherichia coli/métabolisme , Protéines fongiques/métabolisme , Galactose/génétique , Galactose/métabolisme , Galactosémies/génétique , Humains , Cinétique , Modèles moléculaires , NAD/génétique , NAD/métabolisme , Peptide hydrolases/génétique , Peptide hydrolases/métabolisme , Dénaturation des protéines , Multimérisation de protéines , Structure secondaire des protéines/génétique , Protéines recombinantes/génétique , Protéines recombinantes/métabolisme , Relation structure-activité , Uridine diphosphate N-acétylglucosamine/génétique , Uridine diphosphate N-acétylglucosamine/métabolisme , Levures/génétique , Levures/métabolisme
12.
Biotechnol Bioeng ; 109(7): 1704-12, 2012 Jul.
Article de Anglais | MEDLINE | ID: mdl-22383248

RÉSUMÉ

UDP-sugars are used as glycosyl donors in many enzymatic glycosylation processes. In bacteria UDP-N-acetylglucosamine (UDP-GlcNAc) is synthesized from fructose-6-phosphate by four successive reactions catalyzed by three enzymes: Glucosamine-6-phosphate synthase (GlmS), phosphoglucosamine mutase (GlmM), and the bi-functional enzyme glucosamine-1-phosphate acetyltransferase/N-acetylglucosamine-1-phosphate uridyltransferase (GlmU). In this work several metabolic engineering strategies, aimed to increment UDP-GlcNAc biosynthesis, were applied in the probiotic bacterium Lactobacillus casei strain BL23. This strain does not produce exopolysaccharides, therefore it could be a suitable host for the production of oligosaccharides. The genes glmS, glmM, and glmU coding for GlmS, GlmM, and GlmU activities in L. casei BL23, respectively, were identified, cloned and shown to be functional by homologous over-expression. The recombinant L. casei strain over-expressing simultaneously the genes glmM and glmS showed a 3.47 times increase in GlmS activity and 6.43 times increase in GlmM activity with respect to the control strain. Remarkably, these incremented activities resulted in about fourfold increase of the UDP-GlcNAc pool. In L. casei BL23 wild type strain transcriptional analyses showed that glmM and glmU are constitutively transcribed. By contrast, glmS transcription is down-regulated with a 21-fold decrease of glmS mRNA in cells cultured with N-acetylglucosamine as the sole carbon source compared to cells cultured with glucose. Our results revealed for the first time that GlmS, GlmM, and GlmU are responsible for UDP-GlcNAc biosynthesis in lactobacilli.


Sujet(s)
Microbiologie industrielle/méthodes , Lacticaseibacillus casei/enzymologie , Lacticaseibacillus casei/génétique , Génie métabolique/méthodes , Uridine diphosphate N-acétylglucosamine/métabolisme , Acetyltransferases/génétique , Acetyltransferases/métabolisme , Glutamine fructose 6-phosphate transaminase (isomerizing)/génétique , Glutamine fructose 6-phosphate transaminase (isomerizing)/métabolisme , Lacticaseibacillus casei/métabolisme , Phosphoglucomutase/génétique , Phosphoglucomutase/métabolisme , ARN messager/génétique , Régulation positive , Uridine diphosphate N-acétylglucosamine/génétique
13.
J Biol Chem ; 287(10): 7203-12, 2012 Mar 02.
Article de Anglais | MEDLINE | ID: mdl-22235128

RÉSUMÉ

The Pasteurella multocida heparosan synthases, PmHS1 and PmHS2, are homologous (∼65% identical) bifunctional glycosyltransferase proteins found in Type D Pasteurella. These unique enzymes are able to generate the glycosaminoglycan heparosan by polymerizing sugars to form repeating disaccharide units from the donor molecules UDP-glucuronic acid (UDP-GlcUA) and UDP-N-acetylglucosamine (UDP-GlcNAc). Although these isozymes both generate heparosan, the catalytic phenotypes of these isozymes are quite different. Specifically, during in vitro synthesis, PmHS2 is better able to generate polysaccharide in the absence of exogenous acceptor (de novo synthesis) than PmHS1. Additionally, each of these enzymes is able to generate polysaccharide using unnatural sugar analogs in vitro, but they exhibit differences in the substitution patterns of the analogs they will employ. A series of chimeric enzymes has been generated consisting of various portions of both of the Pasteurella heparosan synthases in a single polypeptide chain. In vitro radiochemical sugar incorporation assays using these purified chimeric enzymes have shown that most of the constructs are enzymatically active, and some possess novel characteristics including the ability to produce nearly monodisperse polysaccharides with an expanded range of sugar analogs. Comparison of the kinetic properties and the sequences of the wild-type enzymes with the chimeric enzymes has enabled us to identify regions that may be responsible for some aspects of both donor binding specificity and acceptor usage. In combination with previous work, these approaches have enabled us to better understand the structure/function relationship of this unique family of glycosyltransferases.


Sujet(s)
Protéines bactériennes/composition chimique , Glycosyltransferase/composition chimique , Pasteurella multocida/enzymologie , Protéines bactériennes/génétique , Protéines bactériennes/métabolisme , Glycosyltransferase/génétique , Glycosyltransferase/métabolisme , Isoenzymes/composition chimique , Isoenzymes/génétique , Isoenzymes/métabolisme , Pasteurella multocida/génétique , Polyosides bactériens/biosynthèse , Polyosides bactériens/composition chimique , Polyosides bactériens/génétique , Protéines de fusion recombinantes/composition chimique , Protéines de fusion recombinantes/génétique , Protéines de fusion recombinantes/métabolisme , Relation structure-activité , Acide uridine diphosphate glucuronique/composition chimique , Acide uridine diphosphate glucuronique/génétique , Acide uridine diphosphate glucuronique/métabolisme , Uridine diphosphate N-acétylglucosamine/composition chimique , Uridine diphosphate N-acétylglucosamine/génétique , Uridine diphosphate N-acétylglucosamine/métabolisme
14.
J Biol Chem ; 286(43): 37483-95, 2011 Oct 28.
Article de Anglais | MEDLINE | ID: mdl-21896475

RÉSUMÉ

The monosaccharide, ß-N-acetylglucosamine (GlcNAc), can be added to the hydroxyl group of either serines or threonines to generate an O-linked ß-N-acetylglucosamine (O-GlcNAc) residue (Love, D. C., and Hanover, J. A. (2005) Sci. STKE 2005 312, 1-14; Hart, G. W., Housley, M. P., and Slawson, C. (2007) Nature 446, 1017-1022). This post-translational protein modification, termed O-GlcNAcylation, is reversible, analogous to phosphorylation, and has been implicated in many cellular processes. Here, we present evidence that in human cells all four core histones of the nucleosome are substrates for this glycosylation in the relative abundance H3, H4/H2B, and H2A. Increasing the intracellular level of UDP-GlcNAc, the nucleotide sugar donor substrate for O-GlcNAcylation enhanced histone O-GlcNAcylation and partially suppressed phosphorylation of histone H3 at serine 10 (H3S10ph). Expression of recombinant H3.3 harboring an S10A mutation abrogated histone H3 O-GlcNAcylation relative to its wild-type version, consistent with H3S10 being a site of histone O-GlcNAcylation (H3S10glc). Moreover, O-GlcNAcylated histones were lost from H3S10ph immunoprecipitates, whereas immunoprecipitation of either H3K4me3 or H3K9me3 (active or inactive histone marks, respectively) resulted in co-immunoprecipitation of O-GlcNAcylated histones. We also examined histone O-GlcNAcylation during cell cycle progression. Histone O-GlcNAcylation is high in G(1) cells, declines throughout the S phase, increases again during late S/early G(2), and persists through late G(2) and mitosis. Thus, O-GlcNAcylation is a novel histone post-translational modification regulating chromatin conformation during transcription and cell cycle progression.


Sujet(s)
Acétyl-glucosamine/métabolisme , Cycle cellulaire/physiologie , Histone/métabolisme , Maturation post-traductionnelle des protéines/physiologie , Acétyl-glucosamine/génétique , Acylation , Substitution d'acide aminé , Glycosylation , Cellules HEK293 , Cellules HeLa , Histone/génétique , Humains , Cellules K562 , Mutation faux-sens , Phosphorylation , Sérine/génétique , Sérine/métabolisme , Transcription génétique/physiologie , Uridine diphosphate N-acétylglucosamine/génétique , Uridine diphosphate N-acétylglucosamine/métabolisme
15.
Berl Munch Tierarztl Wochenschr ; 123(5-6): 251-5, 2010.
Article de Allemand | MEDLINE | ID: mdl-20496833

RÉSUMÉ

A male black and white German Holstein calf showed a congenital, high-graded scoliosis and rotation of the thoracal spinal cord associated with shortening and fusion of multiple vertebral bodies and abnormal bending of the processus spinosus. Furthermore reduced birth weight, partial hypoplasia of the lung, excessive liver segmentation, doubled gall bladder, rectal atresia, horseshoe kidney, and uterine atresia were found. Due to the exclusion of a point mutation in exon 4 of the solute carrier family 35 (UDP-N-acetylglucosamine (UDP-GlcNAc) transporter), member A3 (SLC35A3) gene, complex vertebral malformation (CVM) was ruled out. Conclusively, it is hypothetized that the presented case resembles a new brachyspina syndrome with a still unresolved genetic etiology.


Sujet(s)
Rachis/malformations , Animaux , Bovins , Exons , Issue fatale , Mâle , Transporteurs de monosaccharides/génétique , Mutation ponctuelle , Scoliose/génétique , Scoliose/anatomopathologie , Scoliose/médecine vétérinaire , Uridine diphosphate N-acétylglucosamine/génétique
16.
Curr Pharm Biotechnol ; 9(4): 239-41, 2008 Aug.
Article de Anglais | MEDLINE | ID: mdl-18691082

RÉSUMÉ

Presently, the two main commercial sources of hyaluronic acid (HA) are rooster combs and streptococci. Harvesting from rooster combs is complex and costly. Streptococci are difficult to genetically manipulate and require complex media for growth. Both sources have potential problems with unwanted by-products, such as allergens and toxins. These problems can be solved by producing the HA with safe bacilli that are expressing a recombinant HA synthase (HAS).


Sujet(s)
Bacillus subtilis/métabolisme , Biotechnologie/méthodes , Glucuronosyltransferase , Acide hyaluronique/biosynthèse , Protéines recombinantes , Bacillus subtilis/génétique , Bacillus subtilis/croissance et développement , Fermentation , Glucuronosyltransferase/génétique , Glucuronosyltransferase/métabolisme , Hyaluronan synthases , Acide hyaluronique/génétique , Protéines recombinantes/génétique , Protéines recombinantes/métabolisme , Acide uridine diphosphate glucuronique/génétique , Acide uridine diphosphate glucuronique/métabolisme , Uridine diphosphate N-acétylglucosamine/génétique , Uridine diphosphate N-acétylglucosamine/métabolisme
17.
J Biol Chem ; 283(23): 16147-61, 2008 Jun 06.
Article de Anglais | MEDLINE | ID: mdl-18381290

RÉSUMÉ

A gene encoding Trypanosoma brucei UDP-N-acetylglucosamine pyrophosphorylase was identified, and the recombinant protein was shown to have enzymatic activity. The parasite enzyme is unusual in having a strict substrate specificity for N-acetylglucosamine 1-phosphate and in being located inside a peroxisome-like microbody, the glycosome. A bloodstream form T. brucei conditional null mutant was constructed and shown to be unable to sustain growth in vitro or in vivo under nonpermissive conditions, demonstrating that there are no alternative metabolic or nutritional routes to UDP-N-acetylglucosamine and providing a genetic validation for the enzyme as a potential drug target. The conditional null mutant was also used to investigate the effects of N-acetylglucosamine starvation in the parasite. After 48 h under nonpermissive conditions, about 24 h before cell lysis, the status of parasite glycoprotein glycosylation was assessed. Under these conditions, UDP-N-acetylglucosamine levels were less than 5% of wild type. Lectin blotting and fluorescence microscopy with tomato lectin revealed that poly-N-acetyllactosamine structures were greatly reduced in the parasite. The principal parasite surface coat component, the variant surface glycoprotein, was also analyzed. Endoglycosidase digestions and mass spectrometry showed that, under UDP-N-acetylglucosamine starvation, the variant surface glycoprotein was specifically underglycosylated at its C-terminal Asn-428 N-glycosylation site. The significance of this finding, with respect to the hierarchy of site-specific N-glycosylation in T. brucei, is discussed.


Sujet(s)
Nucleotidyltransferases/biosynthèse , Modification traductionnelle des protéines/physiologie , Protéines de protozoaire/biosynthèse , Trypanosoma brucei brucei/enzymologie , Uridine diphosphate N-acétylglucosamine/biosynthèse , Acétyl-glucosamine/analogues et dérivés , Acétyl-glucosamine/métabolisme , Animaux , Glycosylation , Nucleotidyltransferases/composition chimique , Nucleotidyltransferases/génétique , Lectines végétales/composition chimique , Protéines de protozoaire/composition chimique , Protéines de protozoaire/génétique , Protéines recombinantes/biosynthèse , Protéines recombinantes/composition chimique , Protéines recombinantes/génétique , Trypanosoma brucei brucei/génétique , Uridine diphosphate N-acétylglucosamine/génétique
18.
J Biol Chem ; 282(27): 20027-35, 2007 Jul 06.
Article de Anglais | MEDLINE | ID: mdl-17488719

RÉSUMÉ

Autoimmunity is a complex trait disease where the environment influences susceptibility to disease by unclear mechanisms. T cell receptor clustering and signaling at the immune synapse, T cell proliferation, CTLA-4 endocytosis, T(H)1 differentiation, and autoimmunity are negatively regulated by beta1,6GlcNAc-branched N-glycans attached to cell surface glycoproteins. Beta1,6GlcNAc-branched N-glycan expression in T cells is dependent on metabolite supply to UDP-GlcNAc biosynthesis (hexosamine pathway) and in turn to Golgi N-acetylglucosaminyltransferases Mgat1, -2, -4, and -5. In Jurkat T cells, beta1,6GlcNAc-branching in N-glycans is stimulated by metabolites supplying the hexosamine pathway including glucose, GlcNAc, acetoacetate, glutamine, ammonia, or uridine but not by control metabolites mannosamine, galactose, mannose, succinate, or pyruvate. Hexosamine supplementation in vitro and in vivo also increases beta1,6GlcNAc-branched N-glycans in naïve mouse T cells and suppresses T cell receptor signaling, T cell proliferation, CTLA-4 endocytosis, T(H)1 differentiation, experimental autoimmune encephalomyelitis, and autoimmune diabetes in non-obese diabetic mice. Our results indicate that metabolite flux through the hexosamine and N-glycan pathways conditionally regulates autoimmunity by modulating multiple T cell functionalities downstream of beta1,6GlcNAc-branched N-glycans. This suggests metabolic therapy as a potential treatment for autoimmune disease.


Sujet(s)
Auto-immunité , Diabète expérimental/immunologie , Diabète de type 1/immunologie , Diabète de type 1/métabolisme , Encéphalomyélite auto-immune expérimentale/immunologie , N-acetylglucosaminyltransferase/immunologie , Lymphocytes auxiliaires Th1/immunologie , bêta-Glucanes/immunologie , Animaux , Antigènes CD/immunologie , Antigènes CD/métabolisme , Antigènes de différenciation/immunologie , Antigènes de différenciation/métabolisme , Auto-immunité/génétique , Antigène CTLA-4 , Différenciation cellulaire/génétique , Différenciation cellulaire/immunologie , Diabète expérimental/génétique , Diabète de type 1/génétique , Diabète de type 1/thérapie , Encéphalomyélite auto-immune expérimentale/génétique , Encéphalomyélite auto-immune expérimentale/métabolisme , Encéphalomyélite auto-immune expérimentale/thérapie , Endocytose/génétique , Endocytose/immunologie , Appareil de Golgi/enzymologie , Appareil de Golgi/génétique , Appareil de Golgi/immunologie , Humains , Cellules Jurkat , Souris , Souris knockout , N-acetylglucosaminyltransferase/déficit , N-acetylglucosaminyltransferase/métabolisme , Récepteurs aux antigènes des cellules T/immunologie , Récepteurs aux antigènes des cellules T/métabolisme , Transduction du signal/immunologie , Lymphocytes auxiliaires Th1/enzymologie , Uridine diphosphate N-acétylglucosamine/génétique , Uridine diphosphate N-acétylglucosamine/immunologie , Uridine diphosphate N-acétylglucosamine/métabolisme , bêta-Glucanes/métabolisme
19.
Biosci Biotechnol Biochem ; 70(11): 2662-8, 2006 Nov.
Article de Anglais | MEDLINE | ID: mdl-17090929

RÉSUMÉ

UDP-N-Acetylglucosamine: alpha-3-D-mannoside beta-1,2-N-acetylglucosaminyltransferase I (GnT-I) is an essential enzyme in the conversion of high mannose type oligosaccharide to the hybrid or complex type. The full length of the rat GnT-I gene was expressed in the filamentous fungus Aspergillus oryzae. A microsomal preparation from a recombinant fungus (strain NG) showed GnT-I activity that transferred N-acetylglucosamine residue to acceptor heptaose, Man(5)GlcNAc(2). The N-linked sugar chain of alpha-amylase secreted by the strain showed a peak of novel retention on high performance liquid chromatography that was same as a reaction product of in vitro GnT-1 assay. The peak of oligosaccharide disappeared on HPLC after beta-N-acetylglucosaminidase treatment. Mass analysis supported the presence of GlcNAcMan(5)GlcNAc(2) as a sugar chain of alpha-amylase from strain NG. Chimera of GnT-I with green fluorescent protein (GFP) showed a dotted pattern of fluorescence in the mycelia, suggesting localization at Golgi vesicles. We concluded that GnT-1 was functionally expressed in A. oryzae cells and that N-acetylglucosamine residue was transferred to N-glycan of alpha-amylase in vivo. A. oryzae is expected to be a potential host for the production of glycoprotein with a genetically altered sugar chain.


Sujet(s)
Aspergillus oryzae/enzymologie , Métabolisme glucidique , Expression des gènes , N-acetylglucosaminyltransferase/métabolisme , Uridine diphosphate N-acétylglucosamine/métabolisme , alpha-Amylases/métabolisme , Aspergillus oryzae/génétique , Glucides/composition chimique , Chromatographie en phase liquide à haute performance , Glycosylation , Microscopie de fluorescence , N-acetylglucosaminyltransferase/génétique , Plasmides/génétique , Spectrométrie de masse MALDI , Uridine diphosphate N-acétylglucosamine/génétique
20.
Anal Biochem ; 319(2): 304-13, 2003 Aug 15.
Article de Anglais | MEDLINE | ID: mdl-12871726

RÉSUMÉ

We have created a stable, tetracycline-inducible HeLa cell line that overexpresses murine uridine diphosphate-N-acetylglucosaminyl transferase (OGT). Tetracycline increased cytosolic OGT activity about 4-fold in a dose-dependent manner (ED(50)=0.03 microg/ml) with enhanced activity observable at 8h and maximal activity observable by 40h. Enhanced OGT activity was due to overexpression of OGT protein as determined by Western analysis. Trichostatin A (TSA), a potent and specific histone deacetylase inhibitor (HDI), markedly enhanced tetracycline-induced OGT gene expression, resulting in a >10-fold increase in OGT activity (>50-fold compared to that of uninduced cells). Other HDIs such as butyrate (ED(50)=1.6mM) and propionate (ED(50)=8mM) were similarly effective, but less potent than TSA (ED(50)=120 nM). We next examined the appearance of recombinant OGT in cytosol and nucleosol at various times (10 min to 6h) after inducing OGT gene. Within 2h, recombinant OGT was detected by Western analysis in both cytosol and nucleosol. This indicates rapid biosynthesis and accumulation of recombinant OGT in the cytosol and subsequent nuclear translocation. Entry of OGT into the nucleus was closely correlated with enhanced O-linked glycosylation of nuclear proteins, indicating that recombinant OGT was enzymatically active. The ability to rapidly induce OGT expression in a stable cell line provides an excellent model system to study the mechanism(s) underlying OGT nuclear translocation and a useful system to elucidate the cascade of signaling events related to O-linked glycosylation.


Sujet(s)
Antienzymes/pharmacologie , Inhibiteurs de désacétylase d'histone , Tétracycline/pharmacologie , Uridine diphosphate N-acétylglucosamine/biosynthèse , Animaux , Transport biologique , Butyrates/pharmacologie , Noyau de la cellule/enzymologie , Cytosol/enzymologie , Relation dose-effet des médicaments , Induction enzymatique/effets des médicaments et des substances chimiques , Acides gras/composition chimique , Acides gras/pharmacologie , Galactose/analogues et dérivés , Expression des gènes , Glycoprotéines/composition chimique , Glycoprotéines/métabolisme , Cellules HeLa , Humains , Acides hydroxamiques/pharmacologie , Cinétique , Souris , Protéines recombinantes/génétique , Protéines recombinantes/métabolisme , Uridine diphosphate N-acétylglucosamine/génétique , Uridine diphosphate N-acétylglucosamine/métabolisme
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...