Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 8.254
Filtrer
1.
Biomolecules ; 14(6)2024 Jun 19.
Article de Anglais | MEDLINE | ID: mdl-38927127

RÉSUMÉ

Aluminum (Al) toxicity is one of the environmental stress factors that affects crop growth, development, and productivity. MYB transcription factors play crucial roles in responding to biotic or abiotic stresses. However, the roles of MYB transcription factors in Al tolerance have not been clearly elucidated. Here, we found that GmMYB183, a gene encoding a R2R3 MYB transcription factor, is involved in Al tolerance. Subcellular localization studies revealed that GmMYB183 protein is located in the nucleus, cytoplasm and cell membrane. Overexpression of GmMYB183 in Arabidopsis and soybean hairy roots enhanced plant tolerance towards Al stress compared to the wild type, with higher citrate secretion and less Al accumulation. Furthermore, we showed that GmMYB183 binds the GmMATE75 gene promoter encoding for a plasma-membrane-localized citrate transporter. Through a dual-luciferase reporter system and yeast one hybrid, the GmMYB183 protein was shown to directly activate the transcription of GmMATE75. Furthermore, the expression of GmMATE75 may depend on phosphorylation of Ser36 residues in GmMYB183 and two MYB sites in P3 segment of the GmMATE75 promoter. In conclusion, GmMYB183 conferred Al tolerance by promoting the secretion of citrate, which provides a scientific basis for further elucidating the mechanism of plant Al resistance.


Sujet(s)
Aluminium , Arabidopsis , Régulation de l'expression des gènes végétaux , Glycine max , Protéines végétales , Régions promotrices (génétique) , Facteurs de transcription , Aluminium/toxicité , Aluminium/métabolisme , Arabidopsis/génétique , Arabidopsis/métabolisme , Arabidopsis/effets des médicaments et des substances chimiques , Glycine max/génétique , Glycine max/métabolisme , Glycine max/effets des médicaments et des substances chimiques , Facteurs de transcription/métabolisme , Facteurs de transcription/génétique , Régulation de l'expression des gènes végétaux/effets des médicaments et des substances chimiques , Protéines végétales/génétique , Protéines végétales/métabolisme , Régions promotrices (génétique)/génétique , Végétaux génétiquement modifiés/génétique , Végétaux génétiquement modifiés/métabolisme , Stress physiologique/génétique , Stress physiologique/effets des médicaments et des substances chimiques , Racines de plante/métabolisme , Racines de plante/génétique , Racines de plante/effets des médicaments et des substances chimiques , Protéines de transport
2.
Int J Mol Sci ; 25(12)2024 Jun 07.
Article de Anglais | MEDLINE | ID: mdl-38928029

RÉSUMÉ

Metabolic engineering enables oilseed crops to be more competitive by having more attractive properties for oleochemical industrial applications. The aim of this study was to increase the erucic acid level and to produce wax ester (WE) in seed oil by genetic transformation to enhance the industrial applications of B. carinata. Six transgenic lines for high erucic acid and fifteen transgenic lines for wax esters were obtained. The integration of the target genes for high erucic acid (BnFAE1 and LdPLAAT) and for WEs (ScWS and ScFAR) in the genome of B. carinata cv. 'Derash' was confirmed by PCR analysis. The qRT-PCR results showed overexpression of BnFAE1 and LdPLAAT and downregulation of RNAi-BcFAD2 in the seeds of the transgenic lines. The fatty acid profile and WE content and profile in the seed oil of the transgenic lines and wild type grown in biotron were analyzed using gas chromatography and nanoelectrospray coupled with tandem mass spectrometry. A significant increase in erucic acid was observed in some transgenic lines ranging from 19% to 29% in relation to the wild type, with a level of erucic acid reaching up to 52.7%. Likewise, the transgenic lines harboring ScFAR and ScWS genes produced up to 25% WE content, and the most abundant WE species were 22:1/20:1 and 22:1/22:1. This study demonstrated that metabolic engineering is an effective biotechnological approach for developing B. carinata into an industrial crop.


Sujet(s)
Brassica , Acide érucique , Esters , Génie métabolique , Végétaux génétiquement modifiés , Graines , Cires , Acide érucique/métabolisme , Génie métabolique/méthodes , Végétaux génétiquement modifiés/génétique , Végétaux génétiquement modifiés/métabolisme , Cires/métabolisme , Esters/métabolisme , Graines/génétique , Graines/métabolisme , Brassica/génétique , Brassica/métabolisme , Acides gras/métabolisme , Huiles végétales/métabolisme , Régulation de l'expression des gènes végétaux , Protéines végétales/génétique , Protéines végétales/métabolisme
3.
Sheng Wu Gong Cheng Xue Bao ; 40(6): 1935-1949, 2024 Jun 25.
Article de Chinois | MEDLINE | ID: mdl-38914502

RÉSUMÉ

Plant synthetic biology has significant theoretical advantages in exploration and production of plant natural products. However, its contribution to the field of biosynthesis is currently limited due to the lack of efficient chassis systems and related enabling technologies. Synthetic biologists often avoid tobacco as a chassis system because of its long operation cycle, difficulties in genetic and metabolic modification, complex metabolism and purification background, nicotine toxicity, and challenges in accurately controlling for agricultural production. Nevertheless, the tobacco suspension cell chassis system offers a viable solution to these challenges. The objective of this research was to develop a tobacco suspension cell chassis with high scientific and industrial potential. This chassis should exhibit rapid growth, high biomass, excellent dispersion, high transformation efficiency, and minimal nicotine content. Nicotiana benthamiana, which has high applicability in molecular technology, was used to induce suspension cells. The induced suspension cells, named NBS-1, exhibited rapid growth, excellent dispersion, and high biomass, reaching a maximum biomass of 476.39 g/L (fresh weight), which was significantly higher than that of BY-2. The transformation efficiency of the widely utilized pEAQ-HT transient expression system in NBS-1 reached 81%, which was substantially elevated compared to BY-2. The metabolic characteristics and bias of BY-2 and NBS-1 were analyzed using transcriptome data. It was found that the gene expression of pathways related to biosynthesis of flavonoids and their derivatives in NBS-1 was significantly higher, while the pathways related to alkaloid biosynthesis were significantly lower compared to BY-2. These findings were further validated by the total content of flavonoid and alkaloid. In summary, our research demonstrates NBS-1 possesses minimal nicotine content and provides valuable guidance for selecting appropriate chassis for specific products. In conclusion, this study developed NBS-1, a tobacco suspension cell chassis with excellent growth and transformation, high flavonoid content and minimal nicotine content, which has important guiding significance for the development of tobacco suspension cell chassis.


Sujet(s)
Nicotiana , Nicotiana/métabolisme , Nicotiana/génétique , Biologie synthétique , Végétaux génétiquement modifiés/métabolisme , Génie métabolique/méthodes , Techniques de culture cellulaire/méthodes , Nicotine/métabolisme , Nicotine/biosynthèse , Biomasse
4.
Plant Physiol Biochem ; 213: 108803, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38885564

RÉSUMÉ

Soybean research has gained immense attention due to its extensive use in food, feedstock, and various industrial applications, such as the production of lubricants and engine oils. In oil crops, the process of seed development and storage substances accumulation is intricate and regulated by multiple transcription factors (TFs). In this study, FUSCA3 (GmFUS3) was characterized for its roles in plant development, lipid metabolism, and stress regulation. Expressing GmFUS3 in atfus3 plants restored normal characteristics observed in wild-type plants, including cotyledon morphology, seed shape, leaf structure, and flower development. Additionally, its expression led to a significant increase of 25% triacylglycerols (TAG) and 33% in protein levels. Transcriptomic analysis further supported the involvement of GmFUS3 in various phases of plant development, lipid biosynthesis, lipid trafficking, and flavonoid biosynthesis. To assess the impact of stress on GmFUS3 expression, soybean plants were subjected to different stress conditions, and the its expression was assessed. Transcriptomic data revealed significant alterations in the expression levels of approximately 80 genes linked to reactive oxygen species (ROS) signaling and 40 genes associated with both abiotic and biotic stresses. Additionally, GmFUS3 was found to regulate abscisic acid synthesis and interact with nucleoside diphosphate kinase 1, which is responsible for plant cellular processes, development, and stress response. Overall, this research sheds light on the multifaceted functions of GmFUS3 and its potential applications in enhancing crop productivity and stress tolerance.


Sujet(s)
Régulation de l'expression des gènes végétaux , Glycine max , Stress physiologique , Glycine max/métabolisme , Glycine max/génétique , Glycine max/croissance et développement , Facteurs de transcription/métabolisme , Facteurs de transcription/génétique , Végétaux génétiquement modifiés/métabolisme , Métabolisme lipidique/génétique , Arabidopsis/génétique , Arabidopsis/métabolisme , Protéines végétales/métabolisme , Protéines végétales/génétique , Protéines d'Arabidopsis/métabolisme , Protéines d'Arabidopsis/génétique , Voies et réseaux métaboliques
5.
Int J Mol Sci ; 25(11)2024 May 29.
Article de Anglais | MEDLINE | ID: mdl-38892140

RÉSUMÉ

The study of the mechanisms by which melatonin protects against cadmium (Cd) toxicity in plants is still in its infancy, particularly at the molecular level. In this study, the gene encoding a novel serotonin N-acetyltransferase 3 (SNAT3) in rice, a pivotal enzyme in the melatonin biosynthetic pathway, was cloned. Rice (Oryza sativa) OsSNAT3 is the first identified plant ortholog of archaeon Thermoplasma volcanium SNAT. The purified recombinant OsSNAT3 catalyzed the conversion of serotonin and 5-methoxytryptamine to N-acetylserotonin and melatonin, respectively. The suppression of OsSNAT3 by RNAi led to a decline in endogenous melatonin levels followed by a reduction in Cd tolerance in transgenic RNAi rice lines. In addition, the expression levels of genes encoding the endoplasmic reticulum (ER) chaperones BiP3, BiP4, and BiP5 were much lower in RNAi lines than in the wild type. In transgenic rice plants overexpressing OsSNAT3 (SNAT3-OE), however, melatonin levels were higher than in wild-type plants. SNAT3-OE plants also tolerated Cd stress, as indicated by seedling growth, malondialdehyde, and chlorophyll levels. BiP4 expression was much higher in the SNAT3-OE lines than in the wild type. These results indicate that melatonin engineering could help crops withstand Cd stress, resulting in high yields in Cd-contaminated fields.


Sujet(s)
Arylalkylamine N-Acetyltransferase , Cadmium , Régulation de l'expression des gènes végétaux , Mélatonine , Oryza , Protéines végétales , Végétaux génétiquement modifiés , Stress physiologique , Oryza/génétique , Oryza/métabolisme , Oryza/effets des médicaments et des substances chimiques , Mélatonine/métabolisme , Mélatonine/pharmacologie , Cadmium/métabolisme , Cadmium/toxicité , Protéines végétales/métabolisme , Protéines végétales/génétique , Végétaux génétiquement modifiés/métabolisme , Arylalkylamine N-Acetyltransferase/métabolisme , Arylalkylamine N-Acetyltransferase/génétique , Chaperons moléculaires/métabolisme , Chaperons moléculaires/génétique , Sérotonine/métabolisme
6.
Plant Signal Behav ; 19(1): 2359257, 2024 Dec 31.
Article de Anglais | MEDLINE | ID: mdl-38825861

RÉSUMÉ

Potassium (K+) plays a role in enzyme activation, membrane transport, and osmotic regulation processes. An increase in potassium content can significantly improve the elasticity and combustibility of tobacco and reduce the content of harmful substances. Here, we report that the expression analysis of Nt GF14e, a 14-3-3 gene, increased markedly after low-potassium treatment (LK). Then, chlorophyll content, POD activity and potassium content, were significantly increased in overexpression of Nt GF14e transgenic tobacco lines compared with those in the wild type plants. The net K+ efflux rates were severely lower in the transgenic plants than in the wild type under LK stress. Furthermore, transcriptome analysis identified 5708 upregulated genes and 2787 downregulated genes between Nt GF14e overexpressing transgenic tobacco plants. The expression levels of some potassium-related genes were increased, such as CBL-interacting protein kinase 2 (CIPK2), Nt CIPK23, Nt CIPK25, H+-ATPase isoform 2 a (AHA2a), Nt AHA4a, Stelar K+ outward rectifier 1(SKOR1), and high affinity K+ transporter 5 (HAK5). The result of yeast two-hybrid and luciferase complementation imaging experiments suggested Nt GF14e could interact with CIPK2. Overall, these findings indicate that NtGF14e plays a vital roles in improving tobacco LK tolerance and enhancing potassium nutrition signaling pathways in tobacco plants.


Sujet(s)
Protéines 14-3-3 , Régulation de l'expression des gènes végétaux , Nicotiana , Protéines végétales , Végétaux génétiquement modifiés , Potassium , Nicotiana/génétique , Nicotiana/métabolisme , Protéines 14-3-3/métabolisme , Protéines 14-3-3/génétique , Potassium/métabolisme , Protéines végétales/métabolisme , Protéines végétales/génétique , Végétaux génétiquement modifiés/métabolisme , Stress physiologique/génétique
7.
BMC Biotechnol ; 24(1): 42, 2024 Jun 19.
Article de Anglais | MEDLINE | ID: mdl-38898480

RÉSUMÉ

BACKGROUND: γ-Hexachlorocyclohexane (γ-HCH), an organochlorine insecticide of anthropogenic origin, is a persistent organic pollutant (POP) that causes environmental pollution concerns worldwide. Although many γ-HCH-degrading bacterial strains are available, inoculating them directly into γ-HCH-contaminated soil is ineffective because of the low survival rate of the exogenous bacteria. Another strategy for the bioremediation of γ-HCH involves the use of transgenic plants expressing bacterial enzyme for γ-HCH degradation through phytoremediation. RESULTS: We generated transgenic Arabidopsis thaliana expressing γ-HCH dehydrochlroninase LinA from bacterium Sphingobium japonicum strain UT26. Among the transgenic Arabidopsis T2 lines, we obtained one line (A5) that expressed and accumulated LinA well. The A5-derived T3 plants showed higher tolerance to γ-HCH than the non-transformant control plants, indicating that γ-HCH is toxic for Arabidopsis thaliana and that this effect is relieved by LinA expression. The crude extract of the A5 plants showed γ-HCH degradation activity, and metabolites of γ-HCH produced by the LinA reaction were detected in the assay solution, indicating that the A5 plants accumulated the active LinA protein. In some A5 lines, the whole plant absorbed and degraded more than 99% of γ-HCH (10 ppm) in the liquid medium within 36 h. CONCLUSION: The transgenic Arabidopsis expressing active LinA absorbed and degraded γ-HCH in the liquid medium, indicating the high potential of LinA-expressing transgenic plants for the phytoremediation of environmental γ-HCH. This study marks a crucial step toward the practical use of transgenic plants for the phytoremediation of POPs.


Sujet(s)
Arabidopsis , Dépollution biologique de l'environnement , Lindane , Végétaux génétiquement modifiés , Sphingomonadaceae , Arabidopsis/génétique , Arabidopsis/métabolisme , Végétaux génétiquement modifiés/génétique , Végétaux génétiquement modifiés/métabolisme , Lindane/métabolisme , Sphingomonadaceae/génétique , Sphingomonadaceae/métabolisme , Sphingomonadaceae/enzymologie , Polluants du sol/métabolisme , Protéines bactériennes/génétique , Protéines bactériennes/métabolisme , Lyases/génétique , Lyases/métabolisme
8.
Environ Sci Technol ; 58(26): 11534-11541, 2024 Jul 02.
Article de Anglais | MEDLINE | ID: mdl-38865317

RÉSUMÉ

Pteris vittata is the first-reported arsenic (As) hyperaccumulator, which has been applied to phytoremediation of As-contaminated soil. PvACR3, a key arsenite (AsIII) antiporter, plays an important role in As hyperaccumulation in P. vittata. However, its functions in plants are not fully understood. In this study, the PvACR3 gene was heterologously expressed in tobacco, driven by its native promoter (ProPvACR3). After growing at 5 µM AsIII or 10 µM AsV in hydroponics for 1-5 days, PvACR3-expression enhanced the As levels in leaves by 66.4-113 and 51.8-101%, without impacting the As contents in the roots or stems. When cultivated in As-contaminated soil, PvACR3-expressed transgenic plants accumulated 47.9-85.5% greater As in the leaves than wild-type plants. In addition, PvACR3-expression increased the As resistance in transgenic tobacco, showing that enhanced leaf As levels are not detrimental to its overall As tolerance. PvACR3 was mainly expressed in tobacco leaf veins and was likely to unload AsIII from the vein xylem vessels to the mesophyll cells, thus elevating the leaf As levels. This work demonstrates that heterologously expressing PvACR3 under its native promoter specifically enhances leaf As accumulation in tobacco, which helps to reveal the As-hyperaccumulation mechanism in P. vittata and to enhance the As accumulation in plant leaves for phytoremediation.


Sujet(s)
Arsenic , Nicotiana , Feuilles de plante , Végétaux génétiquement modifiés , Nicotiana/métabolisme , Nicotiana/génétique , Arsenic/métabolisme , Feuilles de plante/métabolisme , Végétaux génétiquement modifiés/métabolisme , Régions promotrices (génétique) , Dépollution biologique de l'environnement , Polluants du sol/métabolisme
9.
Plant Physiol Biochem ; 212: 108768, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38797008

RÉSUMÉ

Potassium (K+) selectivity of high-affinity K+ uptake systems is crucial for plant growth under low K+ and in the presence of inhibitors of K+ uptake that are toxic to plants such as Na+ or Cs+. Here, we express a mutated version of the Arabidopsis AtHAK5 high-affinity K+ transporter consisting on a change of phenylalanine 130 to serine (F130S) in athak5 akt1 double mutant plants. F130S-expressing plants show better growth, increased K+ uptake from low external concentrations and higher K+ contents when grown at low K+ (10 µM) and when grown at low K+ in the presence of Na+ (15 mM) or Cs+ (1 µM). In addition, these plants accumulate less Na+ and Cs+, resulting in lower Na+/K+ and Cs+/K+ ratios, which are important determinants of plant tolerance to salt stress and to Cs+-polluted soils. Structure analysis of AtHAK5 suggest that the F130 residue approaches the intracellular gate of the K+ tunnel of AtHAK5, affecting somehow its ionic selectivity. Modification of transport systems has a large potential to face challenges of future agriculture such as sustainable production under abiotic stress conditions imposed by climate change.


Sujet(s)
Protéines d'Arabidopsis , Arabidopsis , Potassium , Arabidopsis/génétique , Arabidopsis/métabolisme , Potassium/métabolisme , Protéines d'Arabidopsis/génétique , Protéines d'Arabidopsis/métabolisme , Sodium/métabolisme , Végétaux génétiquement modifiés/métabolisme , Mutation , Stress physiologique/génétique , Transporteurs de cations/génétique , Transporteurs de cations/métabolisme , Antiports des ions potassium-hydrogène
10.
Curr Opin Biotechnol ; 87: 103145, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38781701

RÉSUMÉ

Plant-based expression systems have emerged as promising avenues for the production of recombinant N-linked glycoproteins. This review offers insights into the evolution and progress of plant glycoengineering. It delves into the distinctive features of plant-derived N-glycans, the diverse range of plant hosts employed for glycoprotein synthesis, and the advancements in glycoengineering strategies aimed at generating glycoproteins with N-glycan structures akin to those produced in mammalian cell lines. Furthermore, alternative strategies for augmenting glycoengineering efforts and the current spectrum of applications for plant-produced N-glycan recombinant proteins are examined, underscoring their potential significance in biopharmaceutical manufacturing.


Sujet(s)
Glycoprotéines , Végétaux génétiquement modifiés , Protéines recombinantes , Glycoprotéines/métabolisme , Glycoprotéines/biosynthèse , Protéines recombinantes/métabolisme , Protéines recombinantes/biosynthèse , Végétaux génétiquement modifiés/métabolisme , Végétaux génétiquement modifiés/génétique , Polyosides/métabolisme , Polyosides/biosynthèse , Produits agricoles/métabolisme , Glycosylation , Ingénierie des protéines/méthodes , Humains
11.
J Hazard Mater ; 473: 134718, 2024 Jul 15.
Article de Anglais | MEDLINE | ID: mdl-38797079

RÉSUMÉ

Exogenous abscisic acid (ABA) presents a novel approach to mitigate heavy metal (HM) accumulation in plants, yet its efficacy against multiple HMs and potential enhancement methods remain underexplored. In this study, we demonstrated that the exogenous ABA application simultaneously decreased Zn, Cd and Ni accumulation by 22-25 %, 27-39 % and 60-62 %, respectively, in wild-type (WT) Arabidopsis. Conversely, ABA reduced Pb in shoots but increased its root concentration. ABA application also modulated the expression of HM uptake genes, inhibiting IRT1, NRAMP1, NRAMP4, and HMA3, and increasing ZIP1 and ZIP4 expressions. Further analysis revealed that overexpressing the ABA-importing transporter (AIT1) in plants intensified the reduction of Cd, Zn, and Ni, compared to WT. However, the inhibitory effect of exogenous ABA on Pb accumulation was mitigated in shoots with higher AIT1 expression. Furthermore, HMs-induced growth inhibition and the damage to photosynthesis were also alleviated with ABA treatment. Conclusively, AIT1's synergistic effect with ABA effectively reduces Cd, Zn and Ni accumulation, offering a synergistic approach to mitigate HM stress in plants.


Sujet(s)
Acide abscissique , Protéines d'Arabidopsis , Arabidopsis , Métaux lourds , Acide abscissique/métabolisme , Arabidopsis/effets des médicaments et des substances chimiques , Arabidopsis/métabolisme , Arabidopsis/génétique , Protéines d'Arabidopsis/métabolisme , Protéines d'Arabidopsis/génétique , Régulation de l'expression des gènes végétaux/effets des médicaments et des substances chimiques , Métaux lourds/métabolisme , Métaux lourds/toxicité , Facteur de croissance végétal/pharmacologie , Facteur de croissance végétal/métabolisme , Racines de plante/métabolisme , Racines de plante/effets des médicaments et des substances chimiques , Pousses de plante/métabolisme , Pousses de plante/effets des médicaments et des substances chimiques , Végétaux génétiquement modifiés/métabolisme , Végétaux génétiquement modifiés/génétique , Polluants du sol/toxicité , Polluants du sol/métabolisme
12.
J Agric Food Chem ; 72(23): 13205-13216, 2024 Jun 12.
Article de Anglais | MEDLINE | ID: mdl-38809782

RÉSUMÉ

Calcium (Ca2+) is a second messenger in various physiological processes within plants. The significance of the Ca2+/H+ exchanger (CAX) has been established in facilitating Ca2+ transport in plants; however, disease resistance functions of the CAX gene remain elusive. In this study, we conducted sequence characterization and expression analysis for a sugarcane CAX gene, ScCAX4 (GenBank Accession Number: MW206380). In order to further investigate the disease resistance functions, this gene was then transiently overexpressed in Nicotiana benthamiana leaves, which were subsequently inoculated with Fusarium solani var. coeruleum. Results showed that ScCAX4 overexpression increased the susceptibility of N. benthamiana to pathogen infection by regulating the expression of genes related to salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) pathways, suggesting its negative role in disease resistance. Furthermore, we genetically transformed the ScCAX4 gene into N. benthamiana and obtained three positive T2 generation lines. Interestingly, the symptomatology of transgenic plants was consistent with that of transient overexpression after pathogen inoculation. Notably, the JA content in transgenic overexpression lines was significantly higher than that in the wild-type. RNA-seq revealed that ScCAX4 could mediate multiple signaling pathways, and the JA signaling pathway played a key role in modulating disease resistance. Finally, a regulatory model was depicted for the increased susceptibility to pathogen infection conferred by the ScCAX4 gene. This study provides genetic resources for sugarcane molecular breeding and the research direction for plant CAX genes.


Sujet(s)
Cyclopentanes , Résistance à la maladie , Fusarium , Régulation de l'expression des gènes végétaux , Oxylipines , Maladies des plantes , Protéines végétales , Saccharum , Acide salicylique , Maladies des plantes/microbiologie , Maladies des plantes/génétique , Résistance à la maladie/génétique , Protéines végétales/génétique , Protéines végétales/métabolisme , Protéines végétales/immunologie , Saccharum/génétique , Saccharum/microbiologie , Saccharum/métabolisme , Saccharum/immunologie , Fusarium/physiologie , Oxylipines/métabolisme , Acide salicylique/métabolisme , Cyclopentanes/métabolisme , Végétaux génétiquement modifiés/génétique , Végétaux génétiquement modifiés/microbiologie , Végétaux génétiquement modifiés/immunologie , Végétaux génétiquement modifiés/métabolisme , Nicotiana/génétique , Nicotiana/microbiologie , Nicotiana/métabolisme , Nicotiana/immunologie , Éthylènes/métabolisme
13.
Curr Opin Biotechnol ; 87: 103142, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38735192

RÉSUMÉ

Plant synthetic biology has the capability to provide solutions to global challenges in the production and supply of medicines. Recent advances in 'omics' technologies have accelerated gene discoveries in medicinal plant research so that even multistep biosynthetic pathways for bioactive plant natural products with high structural complexity can be reconstituted in heterologous plant expression systems more rapidly. This review provides an overview of concept and strategies used to produce high-value plant natural products in heterologous plant systems and highlights recent successes in engineering the biosynthesis of conventional and new medicines in alternative plant hosts.


Sujet(s)
Produits biologiques , Biologie synthétique , Biologie synthétique/méthodes , Humains , Produits biologiques/métabolisme , Plantes médicinales/métabolisme , Plantes médicinales/génétique , Plantes médicinales/composition chimique , Végétaux génétiquement modifiés/génétique , Végétaux génétiquement modifiés/métabolisme , Plantes/métabolisme , Plantes/génétique , Génie métabolique/méthodes
14.
Plant Physiol Biochem ; 211: 108726, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38744083

RÉSUMÉ

Tea is one of the most prevalent non-alcoholic beverages. The leaves of tea plants hyperaccumulate anthocyanins under cold stress, resulting in enhanced bitterness. Previously, we determined that the RING-type E3 ubiquitin ligase CsMIEL1 from the tea plant (Camellia sinensis (L.) O. Kuntze) is involved in the response to stress conditions. This study aimed to determine the role of CsMIEL1 in anthocyanin accumulation at the post-translational modification level. The results showed that the heterologous expression of CsMIEL1 led to an 86% decrease in anthocyanin levels, resulting in a significant decrease in the mRNA levels of related genes in Arabidopsis at low temperatures but no significant differences in other phenotypes. Furthermore, multi-omics analysis and yeast two-hybrid library screening were performed to identify potential downstream targets of CsMIEL1. The results showed that the overexpression of CsMIEL1 resulted in 45% (448) of proteins being differentially expressed, of which 8% (36) were downregulated in A.thaliana, and most of these differentially expressed proteins (DEPs) were clustered in the plant growth and secondary metabolic pathways. Among the 71 potential targets that may interact with CsMIEL1, CsMYB90 and CsGSTa, which are related to anthocyanin accumulation, were selected. In subsequent analyses, these two proteins were verified to interact with CsMIEL1 via yeast two-hybrid (Y2H) and pull-down analyses in vitro. In summary, we explored the potential mechanism by which the E3 ligase relieves anthocyanin hyperaccumulation at low temperatures in tea plants. These results provide a new perspective on the mechanisms of anthocyanin regulation and the molecular breeding of tea plants.


Sujet(s)
Anthocyanes , Camellia sinensis , Basse température , Protéines végétales , Anthocyanes/métabolisme , Camellia sinensis/métabolisme , Camellia sinensis/génétique , Protéines végétales/métabolisme , Protéines végétales/génétique , Régulation de l'expression des gènes végétaux , Arabidopsis/génétique , Arabidopsis/métabolisme , Ubiquitin-protein ligases/métabolisme , Ubiquitin-protein ligases/génétique , Végétaux génétiquement modifiés/métabolisme
15.
Plant Physiol Biochem ; 211: 108671, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38703500

RÉSUMÉ

Salvia castanea Diels, a close wild relative to the medicinal plant, Salvia miltiorrhiza Bunge, primarily grows in high-altitude regions. While the two species share similar active compounds, their content varies significantly. WRKY transcription factors are key proteins, which regulate plant growth, stress response, and secondary metabolism. We identified 46 ScWRKY genes in S. castanea and found that ScWRKY35 was a highly expressed gene associated with secondary metabolites accumulation. This study aimed to explore the role of ScWRKY35 gene in regulating the accumulation of secondary metabolites and its response to UV and cadmium (Cd) exposure in S. miltiorrhiza. It was found that transgenic S. miltiorrhiza hairy roots overexpressing ScWRKY35 displayed upregulated expression of genes related to phenolic acid synthesis, resulting in increased salvianolic acid B (SAB) and rosmarinic acid (RA) contents. Conversely, tanshinone pathway gene expression decreased, leading to lower tanshinone levels. Further, overexpression of ScWRKY35 upregulated Cd transport protein HMA3 in root tissues inducing Cd sequestration. In contrast, the Cd uptake gene NRAMP1 was downregulated, reducing Cd absorption. In response to UV radiation, ScWRKY35 overexpression led to an increase in the accumulation of phenolic acid and tanshinone contents, including upregulation of genes associated with salicylic acid (SA) and jasmonic acid (JA) synthesis. Altogether, these findings highlight the role of ScWRKY35 in enhancing secondary metabolites accumulation, as well as in Cd and UV stress modulation in S. miltiorrhiza, which offers a novel insight into its phytochemistry and provides a new option for the genetic improvement of the plants.


Sujet(s)
Cadmium , Depsides , Régulation de l'expression des gènes végétaux , Protéines végétales , Salvia miltiorrhiza , Salvia miltiorrhiza/génétique , Salvia miltiorrhiza/métabolisme , Protéines végétales/génétique , Protéines végétales/métabolisme , Cadmium/métabolisme , Depsides/métabolisme , Métabolisme secondaire/génétique , Stress physiologique/génétique , Facteurs de transcription/génétique , Facteurs de transcription/métabolisme , Benzofuranes/métabolisme , , Cinnamates/métabolisme , Végétaux génétiquement modifiés/métabolisme , Végétaux génétiquement modifiés/génétique , Rayons ultraviolets , Racines de plante/métabolisme , Racines de plante/génétique , Abiétanes/métabolisme , Abiétanes/biosynthèse , Hydroxybenzoates/métabolisme
16.
Int J Mol Sci ; 25(9)2024 May 02.
Article de Anglais | MEDLINE | ID: mdl-38732182

RÉSUMÉ

Anthocyanins are water-soluble flavonoid pigments that play a crucial role in plant growth and metabolism. They serve as attractants for animals by providing plants with red, blue, and purple pigments, facilitating pollination and seed dispersal. The fruits of solanaceous plants, tomato (Solanum lycopersicum) and eggplant (Solanum melongena), primarily accumulate anthocyanins in the fruit peels, while the ripe fruits of Atropa belladonna (Ab) have a dark purple flesh due to anthocyanin accumulation. In this study, an R2R3-MYB transcription factor (TF), AbMYB1, was identified through association analysis of gene expression and anthocyanin accumulation in different tissues of A. belladonna. Its role in regulating anthocyanin biosynthesis was investigated through gene overexpression and RNA interference (RNAi). Overexpression of AbMYB1 significantly enhanced the expression of anthocyanin biosynthesis genes, such as AbF3H, AbF3'5'H, AbDFR, AbANS, and Ab3GT, leading to increased anthocyanin production. Conversely, RNAi-mediated suppression of AbMYB1 resulted in decreased expression of most anthocyanin biosynthesis genes, as well as reduced anthocyanin contents in A. belladonna. Overall, AbMYB1 was identified as a fruit-expressed R2R3-MYB TF that positively regulated anthocyanin biosynthesis in A. belladonna. This study provides valuable insights into the regulation of anthocyanin biosynthesis in Solanaceae plants, laying the foundation for understanding anthocyanin accumulation especially in the whole fruits of solanaceous plants.


Sujet(s)
Anthocyanes , Fruit , Régulation de l'expression des gènes végétaux , Protéines végétales , Facteurs de transcription , Anthocyanes/biosynthèse , Anthocyanes/métabolisme , Fruit/métabolisme , Fruit/génétique , Facteurs de transcription/génétique , Facteurs de transcription/métabolisme , Protéines végétales/génétique , Protéines végétales/métabolisme , Végétaux génétiquement modifiés/métabolisme , Végétaux génétiquement modifiés/génétique , Interférence par ARN
17.
BMC Biotechnol ; 24(1): 35, 2024 May 24.
Article de Anglais | MEDLINE | ID: mdl-38790016

RÉSUMÉ

Fusarium head blight (FHB) is a devastating fungal disease affecting different cereals, particularly wheat, and poses a serious threat to global wheat production. Chitinases and ß-glucanases are two important proteins involved in lysing fungal cell walls by targeting essential macromolecular components, including chitin and ß-glucan micro fibrils. In our experiment, a transgenic wheat (Triticum aestivum) was generated by introducing chitinase and glucanase genes using Biolistic technique and Recombinant pBI121 plasmid (pBI-ChiGlu (-)). This plasmid contained chitinase and glucanase genes as well as nptII gene as a selectable marker. The expression of chitinase and glucanase was individually controlled by CaMV35S promoter and Nos terminator. Immature embryo explants from five Iranian cultivars (Arta, Moghan, Sisun, Gascogen and A-Line) were excised from seeds and cultured on callus induction medium to generate embryonic calluses. Embryogenic calluses with light cream color and brittle texture were selected and bombarded using gold nanoparticles coated with the recombinant pBI-ChiGlu plasmid. Bombarded calluses initially were transferred to selective callus induction medium, and later, they were transfferd to selective regeneration medium. The selective agent was kanamycin at a concentration of 25 mg/l in both media. Among five studied cultivars, A-Line showed the highest transformation percentage (4.8%), followed by the Sisun, Gascogen and Arta in descending order. PCR and Southern blot analysis confirmed the integration of genes into the genome of wheat cultivars. Furthermore, in an in-vitro assay, the growth of Fusarium graminearum was significantly inhibited by using 200 µg of leaf protein extract from transgenic plants. According to our results, the transgenic plants (T1) showed the resistance against Fusarium when were compared to the non-transgenic plants. All transgenic plants showed normal fertility and no abnormal response was observed in their growth and development.


Sujet(s)
Chitinase , Résistance à la maladie , Fusarium , Maladies des plantes , Triticum , Chitinase/génétique , Chitinase/métabolisme , Résistance à la maladie/génétique , Fusarium/génétique , Glucan 1,3-beta-glucosidase/génétique , Glucan 1,3-beta-glucosidase/métabolisme , Iran , Maladies des plantes/microbiologie , Maladies des plantes/génétique , Végétaux génétiquement modifiés/génétique , Végétaux génétiquement modifiés/métabolisme , Triticum/génétique , Triticum/métabolisme , Triticum/microbiologie
18.
J Hazard Mater ; 472: 134517, 2024 Jul 05.
Article de Anglais | MEDLINE | ID: mdl-38739960

RÉSUMÉ

Cadmium (Cd) is a heavy metal pollutant mainly originating from the discharge of industrial sewage, irrigation with contaminated water, and the use of fertilizers. The phytoremediation of Cd polluted soil depends on the identification of the associated genes in hyperaccumulators. Here, a novel Cd tolerance gene (SpCTP3) was identified in hyperaccumulator Sedum plumbizincicola. The results of Cd2+ binding and thermodynamic analyses, revealed the CXXC motif in SpCTP3 functions is a Cd2+ binding site. A mutated CXXC motif decreased binding to Cd by 59.93%. The subcellular localization analysis suggested that SpCTP3 is primarily a cytoplasmic protein. Additionally, the SpCTP3-overexpressing (OE) plants were more tolerant to Cd and accumulated more Cd than wild-type Sedum alfredii (NHE-WT). The Cd concentrations in the cytoplasm of root and leaf cells were significantly higher (53.75% and 71.87%, respectively) in SpCTP3-OE plants than in NHE-WT. Furthermore, malic acid levels increased and decreased in SpCTP3-OE and SpCTP3-RNAi plants, respectively. Moreover, SpCTP3 interacted with malate dehydrogenase 1 (MDH1). Thus, SpCTP3 helps regulate the subcellular distribution of Cd and increases Cd accumulation when it is overexpressed in plants, ultimately Cd tolerance through its interaction with SpMDH1. This study provides new insights relevant to improving the Cd uptake by Sedum plumbizincicola.


Sujet(s)
Dépollution biologique de l'environnement , Cadmium , Protéines végétales , Sedum , Polluants du sol , Cadmium/toxicité , Cadmium/métabolisme , Sedum/métabolisme , Sedum/génétique , Sedum/effets des médicaments et des substances chimiques , Protéines végétales/métabolisme , Protéines végétales/génétique , Polluants du sol/toxicité , Polluants du sol/métabolisme , Racines de plante/métabolisme , Racines de plante/effets des médicaments et des substances chimiques , Végétaux génétiquement modifiés/métabolisme , Régulation de l'expression des gènes végétaux/effets des médicaments et des substances chimiques , Malate dehydrogenase/métabolisme , Malate dehydrogenase/génétique
19.
Biotechnol J ; 19(5): e2300715, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38797727

RÉSUMÉ

Human erythropoietin (hEPO) is one of the most in-demand biopharmaceuticals, however, its production is challenging. When produced in a plant expression system, hEPO results in extensive plant tissue damage and low expression. It is demonstrated that the modulation of the plant protein synthesis machinery enhances hEPO production. Co-expression of basic leucine zipper transcription factors with hEPO prevents plant tissue damage, boosts expression, and increases hEPO solubility. bZIP28 co-expression up-regulates genes associated with the unfolded protein response, indicating that the plant tissue damage caused by hEPO expression is due to the native protein folding machinery being overwhelmed and that this can be overcome by co-expressing bZIP28.


Sujet(s)
Facteurs de transcription à motif basique et à glissière à leucines , Érythropoïétine , Nicotiana , Facteurs de transcription à motif basique et à glissière à leucines/génétique , Facteurs de transcription à motif basique et à glissière à leucines/métabolisme , Érythropoïétine/génétique , Érythropoïétine/métabolisme , Humains , Nicotiana/génétique , Nicotiana/métabolisme , Végétaux génétiquement modifiés/génétique , Végétaux génétiquement modifiés/métabolisme , Protéines recombinantes/génétique , Protéines recombinantes/métabolisme , Régulation de l'expression des gènes végétaux , Réponse aux protéines mal repliées/génétique
20.
J Agric Food Chem ; 72(21): 12281-12294, 2024 May 29.
Article de Anglais | MEDLINE | ID: mdl-38747520

RÉSUMÉ

This study investigated the effect of AgNPs and AgNO3, at concentrations equivalent, on the production of primary and secondary metabolites on transgenic soybean plants through an NMR-based metabolomics. The plants were cultivated in a germination chamber following three different treatments: T0 (addition of water), T1 (addition of AgNPs), and T2 (addition of AgNO3). Physiological characteristics, anatomical analyses through microscopic structures, and metabolic profile studies were carried out to establish the effect of abiotic stress on these parameters in soybean plants. Analysis of the 1H NMR spectra revealed the presence of amino acids, organic acids, sugars, and polyphenols. The metabolic profiles of plants with AgNP and AgNO3 were qualitatively similar to the metabolic profile of the control group, suggesting that the application of silver does not affect secondary metabolites. From the PCA, it was possible to differentiate the three treatments applied, mainly based on the content of fatty acids, pinitol, choline, and betaine.


Sujet(s)
Glycine max , Spectroscopie par résonance magnétique , Métabolomique , Nanoparticules métalliques , Végétaux génétiquement modifiés , Argent , Glycine max/métabolisme , Glycine max/génétique , Glycine max/composition chimique , Glycine max/effets des médicaments et des substances chimiques , Glycine max/croissance et développement , Argent/métabolisme , Argent/composition chimique , Nanoparticules métalliques/composition chimique , Spectroscopie par résonance magnétique/méthodes , Végétaux génétiquement modifiés/génétique , Végétaux génétiquement modifiés/métabolisme , Végétaux génétiquement modifiés/composition chimique , Acides aminés/métabolisme , Acides gras/métabolisme , Acides gras/composition chimique
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...