Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
J Neuroinflammation ; 21(1): 126, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734662

ABSTRACT

Myasthenia gravis (MG) is an immune-mediated disease frequently associated with thymic changes. Increased T helper 17 (Th17) cell activity and dysfunctional regulatory T (Treg) cells have been demonstrated in subgroups of MG. On the other hand, hypoxia-inducible factor 1 (HIF-1) has been shown to regulate the Th17/Treg balance by inducing Th17 differentiation while attenuating Treg development. To identify the underlying mechanisms of different thymic pathologies in MG development, we evaluated thymic samples from thymoma-associated myasthenia gravis (TAMG), MG with hyperplasia (TFH-MG) and thymoma without MG (TOMA) patients. Differential gene expression analysis revealed that TAMG and TFH-MG cells are associated with different functional pathways. A higher RORC/FOXP3 ratio provided evidence for Th17/Treg imbalance in TAMG potentially related to increased HIF1A. The hypoxic microenvironment in thymoma may be a driver of TAMG by increasing HIF1A. These findings may lead to new therapeutic approaches targeting HIF1A in the development of TAMG.


Subject(s)
Hypoxia-Inducible Factor 1, alpha Subunit , Myasthenia Gravis , Th17 Cells , Thymoma , Female , Humans , Male , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Myasthenia Gravis/genetics , Myasthenia Gravis/immunology , Myasthenia Gravis/pathology , T-Lymphocytes, Regulatory/metabolism , T-Lymphocytes, Regulatory/immunology , Th17 Cells/metabolism , Th17 Cells/immunology , Thymoma/complications , Thymoma/genetics , Thymoma/immunology , Thymus Gland/pathology , Thymus Neoplasms/complications , Thymus Neoplasms/genetics
2.
Brain ; 147(7): 2334-2343, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38527963

ABSTRACT

Heterozygous RTN2 variants have been previously identified in a limited cohort of families affected by autosomal dominant spastic paraplegia (SPG12-OMIM:604805) with a variable age of onset. Nevertheless, the definitive validity of SPG12 remains to be confidently confirmed due to the scarcity of supporting evidence. In this study, we identified and validated seven novel or ultra-rare homozygous loss-of-function RTN2 variants in 14 individuals from seven consanguineous families with distal hereditary motor neuropathy (dHMN) using exome, genome and Sanger sequencing coupled with deep-phenotyping. All affected individuals (seven males and seven females, aged 9-50 years) exhibited weakness in the distal upper and lower limbs, lower limb spasticity and hyperreflexia, with onset in the first decade of life. Nerve conduction studies revealed axonal motor neuropathy with neurogenic changes in the electromyography. Despite a slowly progressive disease course, all patients remained ambulatory over a mean disease duration of 19.71 ± 13.70 years. Characterization of Caenorhabditis elegans RTN2 homologous loss-of-function variants demonstrated morphological and behavioural differences compared with the parental strain. Treatment of the mutant with an endoplasmic/sarcoplasmic reticulum Ca2+ reuptake inhibitor (2,5-di-tert-butylhydroquinone) rescued key phenotypic differences, suggesting a potential therapeutic benefit for RTN2-disorder. Despite RTN2 being an endoplasmic reticulum (ER)-resident membrane shaping protein, our analysis of patient fibroblast cells did not find significant alterations in ER structure or the response to ER stress. Our findings delineate a distinct form of autosomal recessive dHMN with pyramidal features associated with RTN2 deficiency. This phenotype shares similarities with SIGMAR1-related dHMN and Silver-like syndromes, providing valuable insights into the clinical spectrum and potential therapeutic strategies for RTN2-related dHMN.


Subject(s)
Pedigree , Humans , Male , Female , Child , Adult , Adolescent , Young Adult , Middle Aged , Animals , Lower Extremity/physiopathology , Caenorhabditis elegans , Muscle Spasticity/genetics , Muscle Spasticity/physiopathology , Spastic Paraplegia, Hereditary/genetics , Spastic Paraplegia, Hereditary/physiopathology , Mutation
3.
J Peripher Nerv Syst ; 29(1): 72-81, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38291679

ABSTRACT

BACKGROUND AND AIMS: This study aimed to identify the clinical characteristics and electrodiagnostic subtypes of Guillain-Barré syndrome (GBS) in Istanbul. METHODS: Patients with GBS were prospectively recruited between April 2019 and March 2022 and two electrodiagnostic examinations were performed on each patient. The criteria of Ho et al., Hadden et al., Rajabally et al., and Uncini et al. were compared for the differentiation of demyelinating and axonal subtypes, and their relations with anti-ganglioside antibodies were analyzed. RESULTS: One hundred seventy-seven patients were included, 69 before the coronavirus disease 2019 pandemic (April 2019-February 2020) and 108 during the pandemic (March 2020-March 2022), without substantial changes in monthly frequencies. As compared with the criteria of Uncini et al., demyelinating GBS subtype diagnosis was more frequent according to the Ho et al. and Hadden et al. criteria (95/162, 58.6% vs. 110/174, 63.2% and 121/174, 69.5%, respectively), and less frequent according to Rajabally et al.'s criteria (76/174, 43.7%). Fourteen patients' diagnoses made using Rajabally et al.'s criteria were shifted to the other subtype with the second electrodiagnostic examination. Of the 106 analyzed patients, 22 had immunoglobulin G anti-ganglioside antibodies (14 with the axonal subtype). They had less frequent sensory symptoms (54.5% vs. 83.1%, p = 0.009), a more frequent history of previous gastroenteritis (54.5% vs. 22.9%, p = 0.007), and a more severe disease as compared with those without antibodies. INTERPRETATION: Serial electrodiagnostic examinations are more helpful for accurate subtype diagnosis of GBS because of the dynamic pathophysiology of the disease. We observed no significant increase in GBS frequency during the pandemic in this metropolis.


Subject(s)
Guillain-Barre Syndrome , Humans , Prospective Studies , Neural Conduction/physiology , Electrodiagnosis/methods , Gangliosides , Antibodies
5.
Clin Exp Immunol ; 215(1): 65-78, 2024 01 09.
Article in English | MEDLINE | ID: mdl-37638717

ABSTRACT

Chronic inflammatory demyelinating polyneuropathy (CIDP), a common and treatable autoimmune neuropathy, is frequently misdiagnosed. The aim of this study is to evaluate the relationship between immunological markers and clinical outcome measures in a mixed cohort of patients with typical CIDP and CIDP variants at different disease stages. Twenty-three typical, 16 multifocal and five distal CIDP patients were included. Twenty-five sex and age-matched healthy controls and 12 patients with Charcot-Marie-Tooth type 1A (CMT1A) disease served as controls. Peripheral B-cell populations were analyzed by flow cytometry. IL6, IL10, TNFA mRNA and mir-21, mir-146a, and mir-155-5p expression levels were evaluated by real-time polymerase chain reaction in peripheral blood mononuclear cells (PBMC) and/or skin biopsy specimens. Results were then assessed for a possible association with clinical disability scores and intraepidermal nerve fiber densities (IENFD) in the distal leg. We detected a significant reduction in naive B cells (P ≤ 0.001), plasma cells (P ≤ 0.001) and regulatory B cells (P < 0.05), and an elevation in switched memory B cells (P ≤ 0.001) in CIDP compared to healthy controls. CMT1A and CIDP patients had comparable B-cell subset distribution. CIDP cases had significantly higher TNFA and IL10 gene expression levels in PBMC compared to healthy controls (P < 0.05 and P ≤ 0.01, respectively). IENFDs in the distal leg showed a moderate negative correlation with switched memory B-cell ratios (r = -0.51, P < 0.05) and a moderate positive correlation with plasma cell ratios (r = 0.46, P < 0.05). INCAT sum scores showed a moderate positive correlation with IL6 gene expression levels in PBMC (r = 0.54, P < 0.05). Altered B-cell homeostasis and IL10 and TNFA gene expression levels imply chronic antigen exposure and overactivity in the humoral immune system, and seem to be a common pathological pathway in both typical CIDP and CIDP variants.


Subject(s)
B-Lymphocyte Subsets , Polyradiculoneuropathy, Chronic Inflammatory Demyelinating , Humans , Polyradiculoneuropathy, Chronic Inflammatory Demyelinating/genetics , Polyradiculoneuropathy, Chronic Inflammatory Demyelinating/diagnosis , Leukocytes, Mononuclear/metabolism , Cytokines/genetics , B-Lymphocyte Subsets/metabolism , Interleukin-10/genetics , Interleukin-6/genetics
6.
J Peripher Nerv Syst ; 28(3): 351-358, 2023 09.
Article in English | MEDLINE | ID: mdl-37448294

ABSTRACT

BACKGROUND AND AIMS: Homozygous loss-of-function mutations in the RETREG1 gene result in Hereditary Sensory Autonomic Neuropathy Type 2B. Clinical features include pain loss, autonomic disturbances, and upper motor neuron features. METHODS: We evaluated the clinical and genetic features of seven patients from four families with RETREG1 variants. RESULTS: Five patients were male. The median age of disease onset was 7.00 ± 2.81 (between 2 and 10 years). A combination of painless wounds, trophic changes, and foot ulcerations was the presenting symptom in five patients and walking difficulties in two. Motor symptoms were present in five patients. In a median disease duration of 30.00 ± 12.88 years, five patients had osteomyelitis, and three had toe amputations. A history of renal disease was present in one family. In another family, three affected siblings had short stature and a history of delayed puberty. Although sensory signs predominated the clinical findings, various degrees of motor signs such as muscle weakness, spasticity, and brisk tendon reflexes were noted in all patients. Nerve conduction studies showed axonal sensory-motor neuropathy in five patients and sensory neuropathy in two. Three pathogenic variants were identified in the RETREG1 gene. Two unrelated patients had a homozygous c.433C > T/p.(Gln145*), one a homozygous c.826delA/p.(Ser276Valfs*8), and the last had a novel homozygous c.102delC/p.(Ala35Glnfs*349) variants. INTERPRETATION: In our study, all patients showed signs and symptoms consistent with pain insensitivity. Although shadowed by sensory symptoms, motor signs were noted in our patients. Further studies are necessary to clarify the causal relationship between extra-neurological features and RETREG1 mutations.


Subject(s)
Hereditary Sensory and Autonomic Neuropathies , Humans , Male , Child, Preschool , Child , Female , Pain , Muscle Weakness
7.
J Neuroimmunol ; 381: 578129, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37329662

ABSTRACT

Thymoma associated myasthenia gravis (TAMG) is a small disease subgroup with autoantibodies against the acetylcholine receptor. The aim of this study was to assess the role of T helper (Th) cells in TAMG compared to thymoma patients without MG (TOMA) and healthy controls (HC). Peripheral blood cells were used for intracellular cytokine measurements and phenotyping of CD4+ Th cells. IL-21 and IL-4 productions and peripheral Th cells were higher in TAMG compared to TOMA patients and HC. Increases of ICOS and Th17 population were detected both in TAMG and TOMA groups. Higher IL-10 and Th1 population have been observed related to thymectomy. ICOS expression and Th17 induced by thymoma may contribute to the development of TAMG.


Subject(s)
Myasthenia Gravis , Thymoma , Thymus Neoplasms , Humans , Thymoma/complications , Th17 Cells , Interleukin-17 , Thymus Neoplasms/complications , Inducible T-Cell Co-Stimulator Protein
8.
Article in English | MEDLINE | ID: mdl-36935613

ABSTRACT

SOD1 is the first identified causative gene for amyotrophic lateral sclerosis. Recently, a novel syndrome, presenting with severe childhood-onset spastic tetraplegia and axial hypotonia caused by the homozygous truncating variants in the SOD1 gene, is described. A 22-month-old boy was admitted with a loss of motor functions that began at the age of 9 months. Neurological was significant for axial hypotonia with spastic tetraplegia and hyperekplexia-like jerky movements. In WES, we found a novel homozygous variant (c.52_56del5ins154) in the SOD1 gene, resulting in a total loss of SOD1 mRNA expression in the real-time PCR analysis. Western blot analyses confirmed the lack of protein production. Erythrocyte superoxide dismutase enzymatic activity was nearly abolished. The heterozygous family members displayed reduced superoxide dismutase 1 protein expression and enzymatic activity (by about 40%), compared with the healthy control. Our study expanded the mutation spectrum of SOD1.


Subject(s)
Amyotrophic Lateral Sclerosis , Humans , Infant , Male , Amyotrophic Lateral Sclerosis/genetics , Muscle Hypotonia/genetics , Mutation , Superoxide Dismutase/genetics , Superoxide Dismutase-1/genetics
9.
Muscle Nerve ; 66(6): 736-743, 2022 12.
Article in English | MEDLINE | ID: mdl-36151750

ABSTRACT

INTRODUCTION/AIMS: Epidermal nerve fiber involvement in chronic inflammatory demyelinating neuropathy (CIDP) has been reported in a limited number of patients. We quantified small-fiber involvement in a mixed cohort of patients with typical CIDP and CIDP variants to evaluate relationships with clinical outcome measures at different disease stages. METHODS: Intraepidermal nerve fiber densities (IENFDs) were evaluated by skin punch biopsies of 23 patients with CIDP and 13 healthy controls at the forearm, thigh, and distal leg. Skin sections were optimally interpreted in all three regions in 16 CIDP patients and 10 age- and sex-matched healthy controls. Statistical analysis was performed in these subjects. RESULTS: The IENFDs in forearm, thigh, and distal leg were similar among seven typical CIDP and nine CIDP variants. IENFDs in those regions were significantly reduced in CIDP compared with healthy controls, with a moderate negative correlation with scores on the International Neuropathy Cause and Treatment (INCAT) Upper Limb Functional Disability Scale. The reduction in IENFD compared with controls was more remarkable in the distal leg. In clinically unstable CIDP patients, the IENFDs of distal leg and forearm were significantly reduced compared with stable CIDP patients and controls. Stable CIDP patients had significantly reduced IENFDs in distal leg and forearm compared with controls. DISCUSSION: In this exploratory study, we confirm that small fibers are also affected in CIDP. Larger studies are needed to explore longitudinal changes of IENFD in CIDP and its relation to disease stage.


Subject(s)
Polyradiculoneuropathy, Chronic Inflammatory Demyelinating , Humans , Skin/innervation , Biopsy , Nerve Fibers/pathology
10.
Nat Rev Dis Primers ; 8(1): 41, 2022 06 16.
Article in English | MEDLINE | ID: mdl-35710757

ABSTRACT

Genetic pain loss includes congenital insensitivity to pain (CIP), hereditary sensory neuropathies and, if autonomic nerves are involved, hereditary sensory and autonomic neuropathy (HSAN). This heterogeneous group of disorders highlights the essential role of nociception in protecting against tissue damage. Patients with genetic pain loss have recurrent injuries, burns and poorly healing wounds as disease hallmarks. CIP and HSAN are caused by pathogenic genetic variants in >20 genes that lead to developmental defects, neurodegeneration or altered neuronal excitability of peripheral damage-sensing neurons. These genetic variants lead to hyperactivity of sodium channels, disturbed haem metabolism, altered clathrin-mediated transport and impaired gene regulatory mechanisms affecting epigenetic marks, long non-coding RNAs and repetitive elements. Therapies for pain loss disorders are mainly symptomatic but the first targeted therapies are being tested. Conversely, chronic pain remains one of the greatest unresolved medical challenges, and the genes and mechanisms associated with pain loss offer new targets for analgesics. Given the progress that has been made, the coming years are promising both in terms of targeted treatments for pain loss disorders and the development of innovative pain medicines based on knowledge of these genetic diseases.


Subject(s)
Channelopathies , Hereditary Sensory and Autonomic Neuropathies , Pain Insensitivity, Congenital , Hereditary Sensory and Autonomic Neuropathies/complications , Hereditary Sensory and Autonomic Neuropathies/diagnosis , Hereditary Sensory and Autonomic Neuropathies/genetics , Humans , Pain/genetics , Pain Insensitivity, Congenital/genetics
11.
Noro Psikiyatr Ars ; 59(1): 77-79, 2022.
Article in English | MEDLINE | ID: mdl-35317495

ABSTRACT

Hereditary transthyretin amyloidosis (hATTR) is caused by the mutations of the transthyretin (TTR) gene. Length dependent sensory-motor neuropathy with autonomic involvement is the hallmark of the disease. However, it can manifest with unusual phenotypes. A 53-year-old man presented with progressive weakness in lower limbs and operated for lumbar spinal stenosis. The progression of weakness restarted after two years with the addition of symptoms related to polyneuropathy. Electrodiagnostic studies revealed sensorimotor polyneuropathy with autonomic involvement. Sural nerve biopsy disclosed amyloid deposits. Genetic testing of TTR gene identified Glu89Gln mutation. Two years after the diagnosis, he had another decompressive surgery for lumbar spinal stenosis. Histopathological examination of ligamentum flavum specimens revealed amyloid deposits. During the follow up, he was diagnosed with laryngeal amyloidosis, which is an unusual manifestation. Seven years after the diagnosis, he died due to cardiac complications. Our patient suggested that hATTR with Glu89Gln may present with atypical symptoms. Clinicians should carefully look for hATTR in recurrent lumbar stenosis.

12.
Acta Neurol Scand ; 145(5): 619-626, 2022 May.
Article in English | MEDLINE | ID: mdl-35130357

ABSTRACT

OBJECTIVES: Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is caused by the SACS gene variants. Main clinical features include early-onset and progressive cerebellar ataxia, spasticity, sensorimotor polyneuropathy. However, the phenotypic spectrum expanded with the increased availability of next-generation sequencing methods. MATERIALS AND METHODS: Herein, we describe the clinical features of nine patients from seven unrelated families with SACS variants from the cohort of the Neuromuscular Disorders Unit of the Neurology Department of the Istanbul University, Istanbul Faculty of Medicine. RESULTS: Seven patients were male. Seven patients in our cohort had disease onset in the first decade of life. Eight patients were born to consanguineous marriages. Distal weakness in the lower limbs was a prominent feature in all of our patients. Seven patients had ataxia, and six patients had spasticity. Interestingly, one patient showed an isolated Charcot-Marie-Tooth-like phenotype. Five patients showed sensorimotor demyelinating polyneuropathy in the nerve conduction studies. Linear pontine hypointensity was the most frequent cranial magnetic resonance imaging (MRI) abnormality. Two patients with a later disease onset had a homozygous c.11542_11544delATT (p.Ile3848del) variant. The rest of the identified variants were scattered throughout the SACS gene. CONCLUSIONS: Atypical clinical features in our patients highlight that the phenotypic spectrum of ARSACS can be observed in a wide range.


Subject(s)
Heat-Shock Proteins , Spinocerebellar Ataxias , Heat-Shock Proteins/genetics , Humans , Male , Muscle Spasticity/diagnostic imaging , Muscle Spasticity/genetics , Mutation/genetics , Spinocerebellar Ataxias/congenital , Spinocerebellar Ataxias/diagnostic imaging , Spinocerebellar Ataxias/genetics , Spinocerebellar Ataxias/pathology
13.
Acta Neurol Belg ; 122(4): 939-945, 2022 Aug.
Article in English | MEDLINE | ID: mdl-34101140

ABSTRACT

Cerebellar ataxia, neuropathy, vestibular areflexia syndrome (CANVAS) is a late-onset, slowly progressive disorder characterized by cerebellar ataxia, sensory neuropathy and bilateral vestibulopathy. Recently, a biallelic intronic AAGGG repeat expansion, (AAGGG)exp, in the Replication Factor C1 (RFC1) gene was identified as the cause of this disorder. In this study, we describe the phenotypic features of five patients from five different families diagnosed as CANVAS. The mean age at onset was 49.00 ± 9.05 years (between 34 and 56 years) and the most frequent presenting symptom in CANVAS was gait ataxia, followed by sensory disturbances. Persistent coughing was prominent in three patients, and it preceded the onset of ataxia and sensory symptoms in two patients. Parental consanguinity was present in three patients. Two patients showed symptoms or signs suggesting autonomic involvement. Sural nerve biopsy revealed axonal neuropathy in two patients. The mean age at onset was 49.00 ± 9.05 years (between 34 and 56 years) and the most frequent presenting symptom in CANVAS was gait ataxia, followed by sensory disturbances. Persistent coughing was prominent in three patients, and it preceded the onset of ataxia and sensory symptoms in two patients. Parental consanguinity was present in three patients. Two patients showed symptoms or signs suggesting autonomic involvement. Sural nerve biopsy revealed axonal neuropathy in two patients. Our study describes clinical findings, histopathological features and diagnostic clues of CANVAS from Turkey, a country with a high consanguineous marriage rate. Repeat expansion in the RFC1 gene should be considered in all cases with late-onset ataxia, especially when sensory disturbances, vestibular involvement and persistent coughing coexist.


Subject(s)
Bilateral Vestibulopathy , Cerebellar Ataxia , Peripheral Nervous System Diseases , Vestibular Diseases , Adult , Ataxia/complications , Bilateral Vestibulopathy/complications , Bilateral Vestibulopathy/diagnosis , Bilateral Vestibulopathy/genetics , Cerebellar Ataxia/complications , Cerebellar Ataxia/genetics , Gait Ataxia , Humans , Middle Aged , Peripheral Nervous System Diseases/complications , Sensation Disorders/complications , Syndrome , Vestibular Diseases/etiology
14.
Neurol Genet ; 7(5): e621, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34476298

ABSTRACT

BACKGROUND AND OBJECTIVES: Inherited peripheral neuropathies (IPNs) are a group of genetic disorders of the peripheral nervous system in which neuropathy is the only or the most predominant clinical feature. The most common type of IPN is Charcot-Marie-Tooth (CMT) disease. Autosomal recessive CMT (ARCMT) is generally more severe than dominant CMT and its genetic basis is poorly understood due to high clinical and genetic diversity. Here, we report clinical and genetic findings from 56 consanguineous Turkish families initially diagnosed with CMT disease. METHODS: We initially screened the GDAP1 gene in our cohort as it is the most commonly mutated ARCMT gene. Next, whole-exome sequencing and homozygosity mapping based on whole-exome sequencing (HOMWES) analysis was performed. To understand the molecular impact of candidate causative genes, functional analyses were performed in patient primary fibroblasts. RESULTS: Biallelic recurrent mutations in the GDAP1 gene have been identified in 6 patients. Whole-exome sequencing and HOMWES analysis revealed 16 recurrent and 13 novel disease-causing alleles in known IPN-related genes and 2 novel candidate genes: 1 for a CMT-like disease and 1 for autosomal recessive cerebellar ataxia with axonal neuropathy. We have achieved a potential genetic diagnosis rate of 62.5% (35/56 families) in our cohort. Considering only the variants that meet the American College for Medical Genetics and Genomics (ACMG) classification as pathogenic or likely pathogenic, the definitive diagnosis rate was 55.35% (31/56 families). DISCUSSION: This study paints a genetic landscape of the Turkish ARCMT population and reports additional candidate genes that might help enlighten the mechanism of pathogenesis of the disease.

15.
Acta Neurol Scand ; 144(6): 640-646, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34322872

ABSTRACT

OBJECTIVES: Hereditary amyloidogenic transthyretin (ATTRv) amyloidosis is an autosomal dominant disorder caused by mutations of the transthyretin (TTR) gene. The mutant ATTRv protein causes a systemic accumulation of amyloid fibrils in various organs. TTR is an important protein in the central nervous system physiology for the maintenance of normal cognitive process during aging, amidated neuropeptide processing, and nerve regeneration. The neuroprotective effect of transthyretin has been widely documented in animal models. Cognitive consequences of the mutant TTR in hereditary ATTRv amyloidosis patients remain still to be elucidated. We designed this study to investigate the cognitive involvement in ATTRv amyloidosis. METHODS: Detailed neuropsychological tests and cranial MRIs were performed. Biomarkers including amyloid beta 1-42, total tau, and phosphorylated tau were investigated in the cerebrospinal fluid samples. RESULTS: Median age of the cohort was 52 years (ranges 34-72). Neuropsychological assessment results were compatible with impaired executive functions (in all patients except one with only bilateral carpal tunnel syndrome, long-term visual and long-term verbal memory (severe in four patients and moderate in one). Visuospatial judgment and perception were impaired in six. Mean cerebrospinal fluid Aß1-42 (pg/ml) was 878.0 ± 249.5 in patients with cortical atrophyin MRI whereas 1210.0 ± 45.9 in patients without any cortical atrophy. Cranial MRI showed cortical atrophy in six patients (6/10). CONCLUSION: Our data showed the significance of the TTR protein in cognitive functions and highlighted the importance of the close follow-up of cognitive functions in ATTRv amyloidosis patients.


Subject(s)
Amyloid Neuropathies, Familial , Amyloid beta-Peptides , Adult , Aged , Amyloid Neuropathies, Familial/complications , Amyloid Neuropathies, Familial/diagnostic imaging , Amyloid Neuropathies, Familial/genetics , Cognition , Humans , Middle Aged , Prealbumin/genetics
16.
Noro Psikiyatr Ars ; 58(1): 21-25, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33795948

ABSTRACT

INTRODUCTION: Neuromyelitis optica spectrum disorder (NMOSD) is an inflammatory, demyelinating syndrome of the central nervous system (CNS) that predominantly affects the spinal cord and optic nerves. Since it was first described, new information about the pathophysiology gained momentum with the discovery of an antibody against Aquaporin-4, a water channel protein that is predominantly found in the astrocytes. In our study, we evaluated the clinical features of NMOSD and clinically related CNS disorders. METHOD: In our study, we recruited patients that were followed by Clinic for Multiple Sclerosis and Myelin Disorders at Istanbul University between 1979 and 2016. RESULTS: Thirty-five NMOSD, fifteen relapsing inflammatory optic neuropathy (RION) and ten opticospinal multiple sclerosis (OSMS) patients were recruited in our study. Forty-eight patients (%80) were female and twelve (%20) were male. Age, sex, follow-up period, annualized relapse rate, relapses in the first two years and progression index were similar between the groups. Cerebrospinal fluid (CSF) protein levels were higher in the NMOSD group. Concomitant autoimmune disorders were observed in six NMOSD patients and two OSMS patients. One patient with RION had nonspecific white matter lesions without gadolinium enhancement in the brain MRI. CONCLUSION: Laboratory and imaging findings suggests that NMOSD is a distinct disorder than RION and OSMS. Further studies are needed to say specific comments about the existence of OSMS.

17.
Mov Disord ; 36(7): 1676-1688, 2021 07.
Article in English | MEDLINE | ID: mdl-33624863

ABSTRACT

BACKGROUND: The genetic and epidemiological features of hereditary ataxias have been reported in several populations; however, Turkey is still unexplored. Due to high consanguinity, recessive ataxias are more common in Turkey than in Western European populations. OBJECTIVE: To identify the prevalence and genetic structure of hereditary ataxias in the Turkish population. METHODS: Our cohort consisted of 1296 index cases and 324 affected family members. Polymerase chain reaction followed by Sanger sequencing or fragment analysis were performed to screen for the trinucleotide repeat expansions in families with a dominant inheritance pattern, as well as in sporadic cases. The expansion in the frataxin (FXN) gene was tested in all autosomal recessive cases and in sporadic cases with a compatible phenotype. Whole-exome sequencing was applied to 251 probands, selected based on the family history, age of onset, and phenotype. RESULTS: Mutations in known ataxia genes were identified in 30% of 1296 probands. Friedreich's ataxia was found to be the most common recessive ataxia in Turkey, followed by autosomal recessive spastic ataxia of Charlevoix-Saguenay. Spinocerebellar ataxia types 2 and 1 were the most common dominant ataxias. Whole-exome sequencing was performed in 251 probands with an approximate diagnostic yield of 50%. Forty-eight novel variants were found in a plethora of genes, suggesting a high heterogeneity. Variants of unknown significance were discussed in light of clinical data. CONCLUSION: With the large sample size recruited across the country, we consider that our results provide an accurate picture of the frequency of hereditary ataxias in Turkey. © 2021 International Parkinson and Movement Disorder Society.


Subject(s)
Optic Atrophy , Spinocerebellar Ataxias , Spinocerebellar Degenerations , Humans , Muscle Spasticity , Turkey/epidemiology
18.
Noro Psikiyatr Ars ; 57(2): 154-159, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32550783

ABSTRACT

Some respiratory viruses have long been known to cause neurological involvement. A novel coronavirus, leading to severe acute respiratory syndrome, also called coronavirus disease 19 (COVID-19), seems to be a new member of neuroinvasive viruses. While severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) keeps on spreading around the world rapidly, reports about the neurological manifestations associated with SARS-CoV-2, increases day by day. It is reported that a variety of symptoms and syndromes such as headache, dizziness, confusion, ataxia, epilepsy, ischemic stroke, neuropathic pain and myopathy are common especially in more severe COVID-19 patients. It is also suggested that the development of neurological complications is strongly associated with a poor outcome. On the other hand, hyposmia can be the unique symptom in COVID-19 carriers and this can serve as a marker for identifying the otherwise asymptomatically infected patients. It is thought that SARS-CoV-2 may cause neurological symptoms through direct or indirect mechanisms. Nevertheless, neuroinvasion capability of SARS-CoV2 is confirmed by the presence of the virus, in the cerebrospinal fluid of a COVID-19 patient with encephalitis, and this is proven by gene sequencing. In conclusion, during the COVID-19 pandemic, it is crucial to be aware of the possible neurological complications of the disease. Therefore, in this review, we aimed to report neurological manifestations associated with SARS-CoV-2 and possible underlying pathophysiological mechanisms. Due to the high homology of SARS-CoV-2 with other human coronaviruses such as SARS-CoV or Middle East Respiratory Syndrome (MERS)-CoV, reviewing the neurological involvement also associated with these coronaviruses will provide an idea about the long-term complications of COVID-19.

19.
Front Immunol ; 11: 809, 2020.
Article in English | MEDLINE | ID: mdl-32508812

ABSTRACT

Myasthenia gravis (MG) is an autoimmune disease mediated by autoantibodies predominantly against the acetylcholine receptor (AChR). Specific T cell subsets are required for long-term antibody responses, and cytokines secreted mainly from CD4+ T cells regulate B cell antibody production. The aim of this study was to assess the differences in the cytokine expressions of CD4+ T cells in MG patients with AChR antibodies (AChR-MG) and the effect of immunosuppressive (IS) therapy on cytokine activity and to test these findings also in MG patients without detectable antibodies (SN-MG). Clinically diagnosed AChR-MG and SN-MG patients were included. The AChR-MG patients were grouped as IS-positive and -negative and compared with age- and sex-matched healthy controls. Peripheral blood mononuclear cells were used for ex vivo intracellular cytokine production, and subsets of CD4+ T cells and circulating follicular helper T (cTfh) cells were detected phenotypically by the expression of the chemokine and the costimulatory receptors. Thymocytes obtained from patients who had thymectomy were also analyzed. IL-21, IL-4, IL-10, and IL-17A productions in CD4+ T cells were increased in AChR-MG compared to those in healthy controls. IS treatment enhanced IL-10 and reduced IFN-γ production in AChR-MG patients compared to those in IS-negative patients. Increased IL-21 and IL-4 productions were also demonstrated in SN-MG patients. Among CD4+ T cells, Th17 cells were increased in both disease subgroups. Treatment induced higher proportions of Th2 cells in AChR-MG patients. Both CXCR5+ and CXCR5- CD4+ T cells expressed higher programmed cell death protein 1 (PD-1) and inducible costimulatory (ICOS) in AChR-MG and SN-MG groups, mostly irrespective of the treatment. Based on chemokine receptors on CXCR5+PD-1+ in CD4+ T (cTfh) cells, in AChR-MG patients without treatment, the proportions of Tfh17 cells were higher than those in the treated group, whereas the Tfh1 cells were decreased compared with those in the controls. The relevance of CXCR5 and PD-1 in the pathogenesis of AChR-MG was also suggested by the increased presence of these molecules on mature CD4 single-positive thymocytes from the thymic samples. The study provides further evidence for the importance of IL-21, IL-17A, IL-4, and IL-10 in AChR-MG. Disease-related CD4+T cells are identified mainly as PD-1+ or ICOS+ with or without CXCR5, resembling cTfh cells in the circulation or probably in the thymus. AChR-MG and SN-MG seem to have some similar characteristics. IS treatment has distinctive effects on cytokine expression.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Inducible T-Cell Co-Stimulator Protein/metabolism , Interleukin-17/biosynthesis , Interleukin-4/biosynthesis , Interleukins/biosynthesis , Myasthenia Gravis/immunology , Programmed Cell Death 1 Receptor/metabolism , Adolescent , Adult , Aged , Autoantibodies/immunology , Female , Humans , Immunosuppression Therapy/methods , Immunosuppressive Agents/therapeutic use , Male , Middle Aged , Myasthenia Gravis/therapy , Receptors, Cholinergic/immunology , Signal Transduction/drug effects , Young Adult
20.
Hum Mutat ; 41(8): e7-e45, 2020 08.
Article in English | MEDLINE | ID: mdl-32579787

ABSTRACT

The last decade has proven that amyotrophic lateral sclerosis (ALS) is clinically and genetically heterogeneous, and that the genetic component in sporadic cases might be stronger than expected. This study investigates 1,200 patients to revisit ALS in the ethnically heterogeneous yet inbred Turkish population. Familial ALS (fALS) accounts for 20% of our cases. The rates of consanguinity are 30% in fALS and 23% in sporadic ALS (sALS). Major ALS genes explained the disease cause in only 35% of fALS, as compared with ~70% in Europe and North America. Whole exome sequencing resulted in a discovery rate of 42% (53/127). Whole genome analyses in 623 sALS cases and 142 population controls, sequenced within Project MinE, revealed well-established fALS gene variants, solidifying the concept of incomplete penetrance in ALS. Genome-wide association studies (GWAS) with whole genome sequencing data did not indicate a new risk locus. Coupling GWAS with a coexpression network of disease-associated candidates, points to a significant enrichment for cell cycle- and division-related genes. Within this network, literature text-mining highlights DECR1, ATL1, HDAC2, GEMIN4, and HNRNPA3 as important genes. Finally, information on ALS-related gene variants in the Turkish cohort sequenced within Project MinE was compiled in the GeNDAL variant browser (www.gendal.org).


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Databases, Genetic , Genome-Wide Association Study , Genotype , Humans , Internet , Phenotype , Turkey , Whole Genome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL
...