Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(10)2023 May 09.
Article in English | MEDLINE | ID: mdl-37239837

ABSTRACT

Drought is one of the most detrimental factors that causes significant effects on crop development and yield. However, the negative effects of drought stress may be alleviated with the aid of exogenous melatonin (MET) and the use of plant-growth-promoting bacteria (PGPB). The present investigation aimed to validate the effects of co-inoculation of MET and Lysinibacillus fusiformis on hormonal, antioxidant, and physio-molecular regulation in soybean plants to reduce the effects of drought stress. Therefore, ten randomly selected isolates were subjected to various plant-growth-promoting rhizobacteria (PGPR) traits and a polyethylene-glycol (PEG)-resistance test. Among these, PLT16 tested positive for the production of exopolysaccharide (EPS), siderophore, and indole-3-acetic acid (IAA), along with higher PEG tolerance, in vitro IAA, and organic-acid production. Therefore, PLT16 was further used in combination with MET to visualize the role in drought-stress mitigation in soybean plant. Furthermore, drought stress significantly damages photosynthesis, enhances ROS production, and reduces water stats, hormonal signaling and antioxidant enzymes, and plant growth and development. However, the co-application of MET and PLT16 enhanced plant growth and development and improved photosynthesis pigments (chlorophyll a and b and carotenoids) under both normal conditions and drought stress. This may be because hydrogen-peroxide (H2O2), superoxide-anion (O2-), and malondialdehyde (MDA) levels were reduced and antioxidant activities were enhanced to maintain redox homeostasis and reduce the abscisic-acid (ABA) level and its biosynthesis gene NCED3 while improving the synthesis of jasmonic acid (JA) and salicylic acid (SA) to mitigate drought stress and balance the stomata activity to maintain the relative water states. This may be possible due to a significant increase in endo-melatonin content, regulation of organic acids, and enhancement of nutrient uptake (calcium, potassium, and magnesium) by co-inoculated PLT16 and MET under normal conditions and drought stress. In addition, co-inoculated PLT16 and MET modulated the relative expression of DREB2 and TFs bZIP while enhancing the expression level of ERD1 under drought stress. In conclusion, the current study found that the combined application of melatonin and Lysinibacillus fusiformis inoculation increased plant growth and could be used to regulate plant function during drought stress as an eco-friendly and low-cost approach.


Subject(s)
Bacillaceae , Drought Resistance , Glycine max , Melatonin , Oxidative Stress , Plant Growth Regulators , Melatonin/pharmacology , Drought Resistance/drug effects , Glycine max/drug effects , Glycine max/metabolism , Glycine max/microbiology , Polyethylene Glycols/pharmacology , Polysaccharides, Bacterial/metabolism , Siderophores/metabolism , Plant Growth Regulators/metabolism , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism
2.
Int J Mol Sci ; 23(23)2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36499068

ABSTRACT

Rice (Oryza sativa L.) is one of the essential staple foods for more than half of the world's population, and its production is affected by different environmental abiotic and biotic stress conditions. The white-backed planthopper (WBPH, Sogatella furcifera) causes significant damage to rice plants, leading to substantial economic losses due to reduced production. In this experiment, we applied exogenous hormones (gibberellic acid and methyl jasmonate) to WBPH-infested rice plants and examined the relative expression of related genes, antioxidant accumulation, the recovery rate of affected plants, endogenous hormones, the accumulation of H2O2, and the rate of cell death using DAB and trypan staining, respectively. The expression of the transcriptional regulator (OsGAI) and gibberellic-acid-mediated signaling regulator (OsGID2) was upregulated significantly in GA 50 µM + WBPH after 36 h. OsGAI was upregulated in the control, GA 50 µM + WBPH, GA 100 µM + WBPH, and MeJA 100 µM + WBPH. However, after 48 h, the OsGID2 was significantly highly expressed in all groups of plants. The glutathione (GSH) values were significantly enhanced by GA 100 µM and MeJA 50 µM treatment. Unlike glutathione (GSH), the catalase (CAT) and peroxidase (POD) values were significantly reduced in control + WBPH plants. However, a slight increase in CAT and POD values was observed in GA 50 + WBPH plants and a reduction in the POD value was observed in GA 100 µM + WBPH and MeJA 50 µM + WBPH plants. GA highly recovered the WBPH-affected rice plants, while no recovery was seen in MeJA-treated plants. MeJA was highly accumulated in control + WBPH, MeJA 50 µM + WBPH, and GA 100 µM + WBPH plants. The H2O2 accumulation was highly decreased in GA-treated plants, while extensive cell death was observed in MeJA-treated plants compared with GA-treated plants. From this study, we can conclude that the exogenous application of GA can overcome the effects of the WBPH and enhance resistance in rice.


Subject(s)
Hemiptera , Oryza , Animals , Oryza/genetics , Hydrogen Peroxide/pharmacology , Hydrogen Peroxide/metabolism , Hemiptera/genetics , Glutathione/metabolism , Hormones/metabolism
3.
Molecules ; 26(17)2021 Aug 24.
Article in English | MEDLINE | ID: mdl-34500550

ABSTRACT

Global warming is impacting the growth and development of economically important but sensitive crops, such as soybean (Glycine max L.). Using pleiotropic signaling molecules, melatonin can relieve the negative effects of high temperature by enhancing plant growth and development as well as modulating the defense system against abiotic stresses. However, less is known about how melatonin regulates the phytohormones and polyamines during heat stress. Our results showed that high temperature significantly increased ROS and decreased photosynthesis efficiency in soybean plants. Conversely, pretreatment with melatonin increased plant growth and photosynthetic pigments (chl a and chl b) and reduced oxidative stress via scavenging hydrogen peroxide and superoxide and reducing the MDA and electrolyte leakage contents. The inherent stress defense responses were further strengthened by the enhanced activities of antioxidants and upregulation of the expression of ascorbate-glutathione cycle genes. Melatonin mitigates heat stress by increasing several biochemicals (phenolics, flavonoids, and proline), as well as the endogenous melatonin and polyamines (spermine, spermidine, and putrescine). Furthermore, the positive effects of melatonin treatment also correlated with a reduced abscisic acid content, down-regulation of the gmNCED3, and up-regulation of catabolic genes (CYP707A1 and CYP707A2) during heat stress. Contrarily, an increase in salicylic acid and up-regulated expression of the defense-related gene PAL2 were revealed. In addition, melatonin induced the expression of heat shock protein 90 (gmHsp90) and heat shock transcription factor (gmHsfA2), suggesting promotion of ROS detoxification via the hydrogen peroxide-mediated signaling pathway. In conclusion, exogenous melatonin improves the thermotolerance of soybean plants and enhances plant growth and development by activating antioxidant defense mechanisms, interacting with plant hormones, and reprogramming the biochemical metabolism.


Subject(s)
Antioxidants/metabolism , Glycine max/drug effects , Homeostasis/drug effects , Melatonin/pharmacology , Oxidation-Reduction/drug effects , Photosynthesis/drug effects , Polyamines/metabolism , Seedlings/drug effects , Thermotolerance/drug effects , Abscisic Acid/metabolism , Down-Regulation/drug effects , Gene Expression Regulation, Plant/drug effects , Glutathione/metabolism , Heat-Shock Response/drug effects , Oxidative Stress/drug effects , Plant Growth Regulators/pharmacology , Plant Proteins/metabolism , Seedlings/metabolism , Signal Transduction/drug effects , Glycine max/metabolism , Stress, Physiological/drug effects , Up-Regulation/drug effects
4.
Int J Mol Sci ; 22(11)2021 Jun 07.
Article in English | MEDLINE | ID: mdl-34200345

ABSTRACT

Efficient accumulation of flavonoids is important for increased tolerance to biotic stress. Although several plant defense mechanisms are known, the roles of many pathways, proteins, and secondary metabolites in stress tolerance are unknown. We generated a flavanone 3-hydroxylase (F3H) overexpressor rice line and inoculated Xanthomonas Oryzae pv. oryzae and compared the control and wildtype inoculated plants. In addition to promoting plant growth and developmental maintenance, the overexpression of F3H increased the accumulation of flavonoids and increased tolerance to bacterial leaf blight (BLB) stress. Moreover, leaf lesion length was higher in the infected wildtype plants compared with infected transgenics. Kaempferol and quercetin, which scavenge reactive oxygen species, overaccumulated in transgenic lines compared with wildtypes in response to pathogenic infection, detected by scanning electron microscopy and spectrophotometry. The induction of F3H altered the antioxidant system and reduced the levels of glutathione peroxidase activity and malondialdehyde (MDA) contents in the transgenic lines compared with the wildtypes. Downstream gene regulation analysis showed that the expression of F3H increased the regulation of flavonol synthase (FLS), dihydroflavonol 4-reductase (DFR), and slender rice mutant (SLR1) during BLB stress. The analysis of SA and JA signaling revealed an antagonistic interaction between both hormones and that F3H induction significantly promoted SA and inhibited JA accumulation in the transgenic lines. SA-dependent nonexpressor pathogenesis-related (NPR1) and Xa1 showed significant upregulation in the infected transgenic lines compared with the infected control and wildtype lines. Thus, the overexpression of F3H was essential for increasing BLB stress tolerance.


Subject(s)
Antioxidants/metabolism , Disease Resistance/immunology , Flavonoids/metabolism , Hormones/metabolism , Mixed Function Oxygenases/metabolism , Oryza/immunology , Plant Diseases/immunology , Disease Resistance/genetics , Gene Expression Regulation, Plant , Mixed Function Oxygenases/genetics , Oryza/genetics , Oryza/metabolism , Oryza/microbiology , Plant Diseases/genetics , Plant Diseases/microbiology , Plant Leaves/genetics , Plant Leaves/immunology , Plant Leaves/metabolism , Plant Leaves/microbiology , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/immunology , Plants, Genetically Modified/metabolism , Plants, Genetically Modified/microbiology , Stress, Physiological , Xanthomonas/physiology
5.
AoB Plants ; 13(4): plab026, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34234933

ABSTRACT

Melatonin is an indolamine bioactive molecule that regulates a wide range of physiological processes during plant growth and enhances abiotic stress tolerance. Here we examined the putative role of exogenous melatonin application (foliar or root zone) in improving drought stress tolerance in soybean seedlings. Pre-treatment of soybean seedlings with melatonin (50 and 100 µM) was found to significantly mitigate the negative effects of drought stress on plant growth-related parameters and chlorophyll content. The beneficial impacts against drought were more pronounced by melatonin application in the rhizosphere than in foliar treatments. The melatonin-induced enhanced tolerance could be attributed to improved photosynthetic activity, reduction of abscisic acid and drought-induced oxidative damage by lowering the accumulation of reactive oxygen species and malondialdehyde. Interestingly, the contents of jasmonic acid and salicylic acid were significantly higher following melatonin treatment in the root zone than in foliar treatment compared with the control. The activity of major antioxidant enzymes such as superoxide dismutase, catalase, polyphenol oxidase, peroxidase and ascorbate peroxidase was stimulated by melatonin application. In addition, melatonin counteracted the drought-induced increase in proline and sugar content. These findings revealed that modifying the endogenous plant hormone content and antioxidant enzymes by melatonin application improved drought tolerance in soybean seedlings. Our findings provide evidence for the stronger physiological role of melatonin in the root zone than in leaves, which may be useful in the large-scale field level application during drought.

6.
PLoS One ; 12(8): e0182281, 2017.
Article in English | MEDLINE | ID: mdl-28763486

ABSTRACT

The plastid genomes of different plant species exhibit significant variation, thereby providing valuable markers for exploring evolutionary relationships and population genetics. Glycine soja (wild soybean) is recognized as the wild ancestor of cultivated soybean (G. max), representing a valuable genetic resource for soybean breeding programmes. In the present study, the complete plastid genome of G. soja was sequenced using Illumina paired-end sequencing and then compared it for the first time with previously reported plastid genome sequences from nine other Glycine species. The G. soja plastid genome was 152,224 bp in length and possessed a typical quadripartite structure, consisting of a pair of inverted repeats (IRa/IRb; 25,574 bp) separated by small (178,963 bp) and large (83,181 bp) single-copy regions, with a 51-kb inversion in the large single-copy region. The genome encoded 134 genes, including 87 protein-coding genes, eight ribosomal RNA genes, and 39 transfer RNA genes, and possessed 204 randomly distributed microsatellites, including 15 forward, 25 tandem, and 34 palindromic repeats. Whole-plastid genome comparisons revealed an overall high degree of sequence similarity between G. max and G. gracilis and some divergence in the intergenic spacers of other species. Greater numbers of indels and SNP substitutions were observed compared with G. cyrtoloba. The sequence of the accD gene from G. soja was highly divergent from those of the other species except for G. max and G. gracilis. Phylogenomic analyses of the complete plastid genomes and 76 shared genes yielded an identical topology and indicated that G. soja is closely related to G. max and G. gracilis. The complete G. soja genome sequenced in the present study is a valuable resource for investigating the population and evolutionary genetics of Glycine species and can be used to identify related species.


Subject(s)
Chloroplasts/genetics , Genome, Plastid , Glycine max/genetics , Evolution, Molecular , Genetic Markers , Genetic Variation , Genetics, Population , Microsatellite Repeats , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL