Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomol Tech ; 34(3)2023 Sep 30.
Article in English | MEDLINE | ID: mdl-37969874

ABSTRACT

Metaproteomics research using mass spectrometry data has emerged as a powerful strategy to understand the mechanisms underlying microbiome dynamics and the interaction of microbiomes with their immediate environment. Recent advances in sample preparation, data acquisition, and bioinformatics workflows have greatly contributed to progress in this field. In 2020, the Association of Biomolecular Research Facilities Proteome Informatics Research Group launched a collaborative study to assess the bioinformatics options available for metaproteomics research. The study was conducted in 2 phases. In the first phase, participants were provided with mass spectrometry data files and were asked to identify the taxonomic composition and relative taxa abundances in the samples without supplying any protein sequence databases. The most challenging question asked of the participants was to postulate the nature of any biological phenomena that may have taken place in the samples, such as interactions among taxonomic species. In the second phase, participants were provided a protein sequence database composed of the species present in the sample and were asked to answer the same set of questions as for phase 1. In this report, we summarize the data processing methods and tools used by participants, including database searching and software tools used for taxonomic and functional analysis. This study provides insights into the status of metaproteomics bioinformatics in participating laboratories and core facilities.


Subject(s)
Proteome , Proteomics , Humans , Proteomics/methods , Software , Computational Biology , Databases, Protein
2.
Viruses ; 12(7)2020 07 05.
Article in English | MEDLINE | ID: mdl-32635654

ABSTRACT

The head of Salmonella virus SPN3US is composed of ~50 different proteins and is unusual because within its packaged genome there is a mass (>40 MDa) of ejection or E proteins that enter the Salmonella cell. The assembly mechanisms of this complex structure are poorly understood. Previous studies showed that eight proteins in the mature SPN3US head had been cleaved by the prohead protease. In this study, we present the characterization of SPN3US prohead protease mutants using transmission electron microscopy and mass spectrometry. In the absence of the prohead protease, SPN3US head formation was severely impeded and proheads accumulated on the Salmonella inner membrane. This impediment is indicative of proteolysis being necessary for the release and subsequent DNA packaging of proheads in the wild-type phage. Proteomic analyses of gp245- proheads that the normal proteolytic processing of head proteins had not occurred. Assays of a recombinant, truncated form of the protease found it was active, leading us to hypothesize that the C-terminal propeptide has a role in targeting the protease into the prohead core. Our findings provide new evidence regarding the essential role of proteolysis for correct head assembly in this remarkable parasite.


Subject(s)
Capsid Proteins/metabolism , Capsid/metabolism , Salmonella Phages/metabolism , Virus Assembly , Capsid/ultrastructure , Genome, Viral/genetics , Mass Spectrometry , Microscopy, Electron, Transmission , Salmonella/virology , Salmonella Phages/genetics , Salmonella Phages/ultrastructure , Sequence Analysis, DNA , Virus Internalization
3.
Micromachines (Basel) ; 10(7)2019 Jul 04.
Article in English | MEDLINE | ID: mdl-31277396

ABSTRACT

Bacterial viruses or phages have great potential in the medical and agricultural fields as alternatives to antibiotics to control nuisance populations of pathogenic bacteria. However, current analysis and purification protocols for phages tend to be resource intensive and have numbers of limitations, such as impacting phage viability. The present study explores the potential of employing the electrokinetic technique of insulator-based dielectrophoresis (iDEP) for virus assessment, separation and enrichment. In particular, the application of the parameter "trapping value" (Tv) is explored as a standardized iDEP signature for each phage species. The present study includes mathematical modeling with COMSOL Multiphysics and extensive experimentation. Three related, but genetically and structurally distinct, phages were studied: Salmonella enterica phage SPN3US, Pseudomonas aeruginosa phage ϕKZ and P. chlororaphis phage 201ϕ2-1. This is the first iDEP study on bacteriophages with large and complex virions and the results illustrate their virions can be successfully enriched with iDEP systems and still retain infectivity. In addition, our results indicate that characterization of the negative dielectrophoretic response of a phage in terms of Tv could be used for predicting individual virus behavior in iDEP systems. The findings reported here can contribute to the establishment of protocols to analyze, purify and/or enrich samples of known and unknown phages.

SELECTION OF CITATIONS
SEARCH DETAIL