Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 14 de 14
1.
J Eat Disord ; 12(1): 63, 2024 May 21.
Article En | MEDLINE | ID: mdl-38773635

BACKGROUND: Weight gain and nutritional rehabilitation are essential first steps to achieve medical stabilization in anorexia nervosa, and frequent resistance to weight gain requires patients to consume high kilocalorie loads. Adaptive hypometabolism is common when patients begin treatment, and rebound hypermetabolism is suspected to be a significant barrier to weight gain. The aim of this review was to summarize existing data describing metabolic changes in anorexia nervosa during weight restoration. The reported findings challenge current hypotheses of weight gain resistance and highlight key areas for future research. METHODS: Using scoping review guidelines, three databases were searched for studies investigating metabolic changes in anorexia nervosa before and after renourishment. Two reviewers systematically screened the titles and abstracts of 447 articles, and full-text versions of 106 studies were assessed for eligibility. A total of 36 studies were included for review. Data regarding the study description, sample population (including age, weight, BMI, duration of treatment, and caloric intake), and metabolic variable descriptions were extracted. RESULTS: Female patients with anorexia nervosa from studies across 13 countries were included. Across the studies, average BMI increased from 13.7 kg/m2 at admission to 17.57 kg/m2. Patients presented to treatment with clinically reduced energy expenditure levels. After varying levels of nutritional rehabilitation and weight restoration, measured energy expenditure increased significantly in 76% of the studies. Energy expenditure values at the second timepoint increased to the standard range for normal weight female teenagers and adults. Despite these increases, the studies do not indicate the presence of a hypermetabolic state during renourishment. Additionally, all studies including both measured and predicted energy expenditure reported that predicted energy expenditure overestimated measured values. CONCLUSION: This study provides a detailed evaluation of the literature investigating energy expenditure and metabolic rate in patients with anorexia nervosa before and following a period of renourishment. The findings from this review identify important gaps in the current beliefs of energy expenditure in anorexia nervosa and highlight a need for further exploration of metabolic alterations during weight restoration.


Nutritional rehabilitation and weight restoration are two primary goals of anorexia nervosa treatment that pose significant physiological and psychological challenges for patients. Patients often require high caloric loads to continue an adequate weight gain trajectory, but the underlying cause of weight gain resistance remains unknown. We completed a scoping review of research into energy expenditure and metabolic rate during treatment. Our search identified 447 relevant articles from academic databases, and 106 were deemed eligible after screening. We extracted data, including sample characteristics, kilocalorie intake, energy expenditure, and treatment information, from 36 studies. When individuals arrived for treatment, their energy expenditure was lower than that of individuals without an eating disorder due to the prolonged state of nutrient deprivation. After varying amounts of time and kilocalorie intake, most studies reported significant increases in energy expenditure. However, energy expenditure after a period of renourishment did not indicate an overactive metabolism (i.e., "hypermetabolism"). Funders should consider supporting exploration of additional factors that may be functioning as barriers to weight gain during treatment, in pursuit of making treatment more efficient and long-lasting. Additionally, future research describing metabolism in anorexia nervosa should provide more consistent methodologies, robust statical testing, and comprehensive reporting of dietary intake.

2.
Int J Eat Disord ; 56(11): 2001-2011, 2023 Nov.
Article En | MEDLINE | ID: mdl-37548294

OBJECTIVE: The gut microbiota is implicated in several symptoms and biological pathways relevant to anorexia nervosa (AN). Investigations into the role of the gut microbiota in AN are growing, with a specific interest in the changes that occur in response to treatment. Findings suggest that microbial species may be associated with some of the symptoms common in AN, such as depression and gastrointestinal disturbances (GID). Therefore, researchers believe the gut microbiota may have therapeutic relevance. Whilst research in this field is rapidly expanding, the unique considerations relevant to conducting gut microbiota research in individuals with AN must be addressed. METHOD: We provide an overview of the published literature investigating the relationship between the gut microbiota and symptoms and behaviors present in AN, discuss important challenges in gut microbiota research, and offer recommendations for addressing these. We conclude by summarizing research design priorities for the field to move forward. RESULTS: Several ways exist to reduce participant burden and accommodate challenges when researching the gut microbiota in individuals with AN. DISCUSSION: Recommendations from this article are foreseen to encourage scientific rigor and thoughtful protocol planning for microbiota research in AN, including ways to reduce participant burden. Employing such methods will contribute to a better understanding of the role of the gut microbiota in AN pathophysiology and treatment. PUBLIC SIGNIFICANCE: The field of gut microbiota research is rapidly expanding, including the role of the gut microbiota in anorexia nervosa. Thoughtful planning of future research will ensure appropriate data collection for meaningful interpretation while providing a positive experience for the participant. We present current challenges, recommendations for research design and priorities to facilitate the advancement of research in this field.


Anorexia Nervosa , Gastrointestinal Microbiome , Humans , Anorexia Nervosa/therapy , Data Collection , Gastrointestinal Microbiome/physiology
3.
Brain Behav ; 13(8): e3115, 2023 08.
Article En | MEDLINE | ID: mdl-37277984

INTRODUCTION: Patients with obsessive-compulsive disorder (OCD) often have limited exposure to a diverse environment and perform repetitive compulsions such as excessive cleaning and washing, which could lead to altered gut microbiome. Therefore, longitudinal studies that investigate changes in gut microbiome before and after cognitive behavioral therapy based on exposure and response prevention (ERP) are warranted. METHODS: All study participants (N = 64) underwent a structured psychiatric diagnostic interview prior to inclusion. Nutritional intake was assessed with a comprehensive food frequency questionnaire. Stool samples were collected from OCD patients before ERP (n = 32) and 1 month after completion of ERP (n = 15), as well as from healthy controls (HCs; n = 32). Taxonomic and functional analyses were performed using data from microbiome whole genome sequencing. RESULTS: Patients with OCD at baseline reported consuming significantly less fiber than HCs (R2  = .12, F(2, 59) = 5.2, p ≤ .01). There were no significant differences in α- and ß-diversity indices, or taxonomic dissimilarities at the species level between patients with OCD and HCs, or within patients before and after ERP. Functional profiling based on gut microbial gene expression was grouped into 56 gut-brain modules with neuroactive potential. None of the gut-brain modules differed significantly in expression between patients with OCD at baseline and HCs or within patients before and after ERP. CONCLUSIONS: The diversity, composition, and functional profile of the gut microbiome in patients with OCD did not differ significantly from HCs and remained stable over time, despite behavioral changes.


Cognitive Behavioral Therapy , Gastrointestinal Microbiome , Obsessive-Compulsive Disorder , Humans , Longitudinal Studies , Obsessive-Compulsive Disorder/diagnosis , Psychiatric Status Rating Scales
4.
Psychosom Med ; 85(8): 727-735, 2023 10 01.
Article En | MEDLINE | ID: mdl-37363967

OBJECTIVE: This study assessed the associations of binge eating, compensatory behaviors, and dietary restraint with the composition and diversity of the intestinal microbiota among participants with binge-eating disorder or bulimia nervosa. METHODS: We analyzed data from 265 participants aged 18 to 45 years with current binge-eating disorder or bulimia nervosa enrolled in the Binge Eating Genetics Initiative study. We evaluated the associations of binge-eating frequency; presence/absence and frequency of vomiting, laxative use, and compulsive exercise; and dietary restraint with abundances of gut microbial genera, species, and diversity (Shannon diversity, Faith phylogenetic diversity, and Peilou's evenness) from 16S rRNA gene sequencing. General linear regression models adjusted for potential confounders, including age and current body mass index, were used to test associations; p values were corrected for the false discovery rate. RESULTS: The normalized abundance of four genus- and species-level gut microbes and three diversity indices were lower among Binge Eating Genetics Initiative participants who reported any laxative use compared with those who reported no laxative use. Vomiting frequency was positively associated with the normalized abundance of the genus Escherichia-Shigella , a potential pathobiont, although the association was attenuated to nonsignificance after adjustment for age, body mass index, and binge-eating episodes. CONCLUSIONS: Laxative use was highly and uniformly predictive of a reduced gut microbial diversity including potential commensals and pathobionts, and should be assessed and accounted for in all future studies of eating disorders and the gut microbiota. Future studies should collect data on specific medications-particularly laxatives-and dietary intake to obtain unbiased estimates of the effect of eating disorders on the gut microbiota and identify potential downstream clinical implications.Trial Registration:ClinicalTrials.gov identifier: NCT04162574 .


Binge-Eating Disorder , Bulimia Nervosa , Bulimia , Feeding and Eating Disorders , Microbiota , Male , Female , Humans , Laxatives , Phylogeny , RNA, Ribosomal, 16S , Vomiting
5.
J Cosmet Dermatol ; 21(11): 6233-6242, 2022 Nov.
Article En | MEDLINE | ID: mdl-35810346

INTRODUCTION: Acne is one of the most common skin concerns of unknown etiology, often connected to the menstrual cycle in women, and possibly to the microbial profile and function. OBJECTIVE: We aimed to investigate how hormonal fluctuation affects hormonal acne-prone skin in different populations in relation to skin clinical parameters and microbial profiles. METHODS: We evaluated skin features by using biophysical and topographical tools. For microbial profiling, we sequenced facial skin microbiota and associated the findings with the skin clinical parameters during the different phases of the menstrual cycle. RESULTS: We identified differences between and within hormonal phases in women of Chinese and Caucasian origin. Changes were discovered in transepidermal water loss (TEWL), sebum level, hydration level, and pore volume. The most abundant identifiable genera in both ethnicities were Cutibacterium, Staphylococcus, and Streptococcus, without any significant abundant differences within the menstrual cycle. Interestingly, 11 bacterial metabolic pathways were downregulated in Chinese compared to Caucasian skin during the follicular phase. The majority of these pathways were associated with skin redox balance, perhaps indicating a weaker oxidative stress response in Chinese versus Caucasian skin. Novosphingobium taxa were increased in the Chinese skin microbiome, which has been reported to protect skin from pollution-mediated oxidative stress. CONCLUSION: Thus, this pilot study explored some of the clinical and metagenomic changes in acne-prone skin, and provide guidance to tailor-personalized skin care regimes during the menstrual cycle. Also, the skin redox status in acne-prone skin, provides more opportunity to tailor-personalized skin care regimes.


Acne Vulgaris , Microbiota , Female , Humans , Pilot Projects , Skin/metabolism , Acne Vulgaris/metabolism , Bacteria/genetics
6.
Eat Disord ; 30(6): 602-617, 2022.
Article En | MEDLINE | ID: mdl-34634228

The study aimed to document the impact of the COVID-19 pandemic on the health and well-being of individuals with past and current eating disorders (ED) in Sweden. We re-contacted participants with a known lifetime history of ED from two previous Swedish studies. Participants completed an online survey about health and functioning at baseline early in the pandemic (Wave 1 ca May/June 2020; N= 982) and six months later (Wave 2 Dec/Jan 2020/21; N= 646). Three important patterns emerged: 1) higher current ED symptoms were associated with greater anxiety, worry, and pandemic-related ED symptom increase; 2) patterns were fairly stable across time, although a concerning percentage (23%) who were symptom-free at Wave 1 reported the re-emergence of symptoms at Wave 2; and 3) only a minority of participants (<50%) with a current ED were in treatment, and of those in treatment, many reported fewer treatment sessions and decreased quality of care. The COVID-19 pandemic appears to pose serious health challenges for individuals with an ED, whether currently symptomatic or in remission. We encourage health service providers and patient advocates to be alert to the needs of individuals with ED and to take active measures to ensure access to appropriate evidence-based care both during and following the pandemic.


COVID-19 , Feeding and Eating Disorders , Humans , COVID-19/epidemiology , Pandemics , Sweden/epidemiology , Feeding and Eating Disorders/epidemiology , Anxiety/epidemiology
7.
Article En | MEDLINE | ID: mdl-34769915

Assessment of body composition is fundamental in diagnosis and treatment of anorexia nervosa (AN). The gold standard dual-energy X-ray absorptiometry (DXA) is expensive and not universally available. Bioelectrical impedance analysis (BIA) is a non-invasive, inexpensive method relative to DXA. We compared DXA and BIA in the assessment of fat-free mass (FFM), fat mass (FM), and body fat percentage (BF%) in women with AN upon admission (ANT1) and discharge (ANT2) from an inpatient specialist unit with a referent healthy control (HC) group. The study population consisted of 31 ANT1, 25 ANT2, and 52 HC women with median age of 21 years. Body composition was measured by DXA and Tanita foot-to-foot BIA. Comparison between the two methods was done using Bland-Altman analysis, Pearson's correlation coefficient, Lin's concordance correlation coefficient, and linear regression. The mean difference (bias) in FM and BF% values obtained by DXA and BIA in ANT1 (FM: +1.01 kg, BF%: +2.26%) and ANT2 (FM: +1.49 kg, BF%: +1.66%) were comparable to HC (FM: -1.32 kg, BF%: -2.29%) although in opposite directions. Less bias was observed in FFM values in ANT1 (-0.46 kg) and ANT2 (-0.86 kg) than in HC (+2.03 kg); however, the limits of agreement between the two methods were wider in ANT1 and ANT2 than in HC for all measurements. No association was observed between age, percentage of total body water, and the time spent on the inpatient specialist unit with the difference in estimates of body composition between DXA and BIA. Comparison of DXA and BIA suggests that DXA should remain the gold standard for measuring body composition; the development of more specific BIA equations is required to improve validity and precision of BIA in patients with AN. Despite ease and cost in both BIA access and operation, the suitability of BIA in a low bodyweight eating disorders population remains questionable.


Anorexia Nervosa , Absorptiometry, Photon , Adult , Anorexia Nervosa/diagnosis , Body Composition , Body Mass Index , Electric Impedance , Female , Humans , Inpatients , Young Adult
8.
Curr Opin Endocr Metab Res ; 19: 46-51, 2021 Aug.
Article En | MEDLINE | ID: mdl-34458645

The intestinal microbiota is a diverse microbial community that colonizes the gastrointestinal tract of animals. Abnormal changes in intestinal microbiota has been associated with multiple diseases including inflammatory bowel diseases and obesity; however, emerging evidence suggests a role for the gut microbiota in anxiety and depression via the gut-brain axis. As this microbial community is associated with weight dysregulation and host behavior it is not surprising that the intestinal microbiota may have a role to play in anorexia nervosa (AN). In this review we examine recent studies linking the gut microbiota with nutrition, psychopathology, and ultimately AN. We also review potential gut microbiota-based therapies for AN.

9.
Psychosom Med ; 83(7): 679-692, 2021 09 01.
Article En | MEDLINE | ID: mdl-34117156

OBJECTIVE: This systematic review sought to comprehensively summarize gut microbiota research in psychiatric disorders following PRISMA guidelines. METHODS: Literature searches were performed on databases using keywords involving gut microbiota and psychiatric disorders. Articles in English with human participants up until February 13, 2020, were reviewed. Risk of bias was assessed using a modified Newcastle-Ottawa Scale for microbiota studies. RESULTS: Sixty-nine of 4231 identified studies met the inclusion criteria for extraction. In most studies, gut microbiota composition differed between individuals with psychiatric disorders and healthy controls; however, limited consistency was observed in the taxonomic profiles. At the genus level, the most replicated findings were higher abundance of Bifidobacterium and lower abundance of Roseburia and Faecalibacterium among patients with psychiatric disorders. CONCLUSIONS: Gut bacteria that produce short-chain fatty acids, such as Roseburia and Faecalibacterium, could be less abundant in patients with psychiatric disorders, whereas commensal genera, for example, Bifidobacterium, might be more abundant compared with healthy controls. However, most included studies were hampered by methodological shortcomings including small sample size, unclear diagnostics, failure to address confounding factors, and inadequate bioinformatic processing, which might contribute to inconsistent results. Based on our findings, we provide recommendations to improve quality and comparability of future microbiota studies in psychiatry.


Gastrointestinal Microbiome , Mental Disorders , Bacteria , Bifidobacterium , Faecalibacterium , Humans
10.
BMC Psychiatry ; 20(1): 507, 2020 10 14.
Article En | MEDLINE | ID: mdl-33054774

BACKGROUND: Anorexia nervosa (AN) is a severe disorder, for which genetic evidence suggests psychiatric as well as metabolic origins. AN has high somatic and psychiatric comorbidities, broad impact on quality of life, and elevated mortality. Risk factor studies of AN have focused on differences between acutely ill and recovered individuals. Such comparisons often yield ambiguous conclusions, as alterations could reflect different effects depending on the comparison. Whereas differences found in acutely ill patients could reflect state effects that are due to acute starvation or acute disease-specific factors, they could also reflect underlying traits. Observations in recovered individuals could reflect either an underlying trait or a "scar" due to lasting effects of sustained undernutrition and illness. The co-twin control design (i.e., monozygotic [MZ] twins who are discordant for AN and MZ concordant control twin pairs) affords at least partial disambiguation of these effects. METHODS: Comprehensive Risk Evaluation for Anorexia nervosa in Twins (CREAT) will be the largest and most comprehensive investigation of twins who are discordant for AN to date. CREAT utilizes a co-twin control design that includes endocrinological, neurocognitive, neuroimaging, genomic, and multi-omic approaches coupled with an experimental component that explores the impact of an overnight fast on most measured parameters. DISCUSSION: The multimodal longitudinal twin assessment of the CREAT study will help to disambiguate state, trait, and "scar" effects, and thereby enable a deeper understanding of the contribution of genetics, epigenetics, cognitive functions, brain structure and function, metabolism, endocrinology, microbiology, and immunology to the etiology and maintenance of AN.


Anorexia Nervosa , Twins, Monozygotic , Anorexia Nervosa/genetics , Diseases in Twins/genetics , Humans , Quality of Life , Risk Factors , Twins, Monozygotic/genetics
11.
Psychiatry Clin Neurosci ; 73(9): 518-525, 2019 Sep.
Article En | MEDLINE | ID: mdl-31056797

Anorexia nervosa (AN) has one of the highest mortality rates of any psychiatric disorder. Treatments are often ineffective and relapse is common. Most research attempting to understand the underlying causes and maintenance factors of AN has focused on environmental contributions, yet there is much to be explored in terms of biological risk and maintenance factors. In this paper, we focus primarily on AN research related to genetics and the complex microbial community in the gut (intestinal microbiota), and how these impact our conceptualization of this disorder. Emerging research identifying significant negative genetic correlations between AN and obesity suggests that the conditions may represent 'metabolic bookends'. The identification of underlying biological mechanisms may provide both insight into extreme weight dysregulation on both ends of the spectrum and new possible points of entry for AN treatment. Additionally, the reported microbial imbalance (dysbiosis) in the gut microbiota in AN patients, potentially due to a nutrient- and energy-deprived gut environment, implies alterations in functional and metabolic capacity of the gut microbiome. The extent to which AN and obesity can also be considered to be 'microbiome bookends' requires further investigation. Finally, we discuss ongoing and future AN projects exploring the interplay between host genomics, the environment, and cumulative microbial genomes (microbiome) as well as interventions at the microbial and gut level.


Anorexia Nervosa/genetics , Anorexia Nervosa/microbiology , Dysbiosis/microbiology , Gastrointestinal Microbiome , Anorexia Nervosa/metabolism , Dysbiosis/metabolism , Gene-Environment Interaction , Humans , Obesity/genetics , Satiety Response
12.
Dev Neurosci ; 40(3): 198-208, 2018.
Article En | MEDLINE | ID: mdl-29874640

Necrotizing enterocolitis (NEC) increases the risk of brain injury and impaired neurodevelopment. Rapid brain maturation prior to birth may explain why preterm brains are particularly vulnerable to serious infections. Using pigs as models, we hypothesized that preterm birth was associated with altered blood-cerebrospinal fluid (CSF) barrier (BCSFB) function and cerebral structural deficits, and that NEC was associated with systemic inflammation, BCSFB disruption, and neuroinflammation. First, cesarean-delivered preterm and term pigs (n = 43-44) were euthanized at birth to investigate BCSFB function and markers of brain structural maturation, or on day 5 to measure markers of blood-brain barrier maturation in the hippocampus and striatum (experiment 1). Next, preterm pigs (n = 162) were fed increasing volumes of infant formula to assess NEC lesions, systemic inflammation, BCSFB permeability, cerebral histopathology, hippocampal micro-glial density, and cytokine levels on day 5 (experiments 2 and 3). In experiment 1, preterm newborns had increased CSF-plasma ratios of albumin and raffinose, reduced CSF glucose levels, as well as increased cerebral hydration and reduced white matter myelination compared with term animals. We observed lower hippocampal (but not striatal) perivascular astrocyte coverage for the first 5 days after preterm birth, accompanied by altered cell junction protein levels. In experiments 2 and- 3, piglets with severe NEC lesions showed reduced blood thrombocytes and increased plasma C-reactive protein and interleukin-6 levels. NEC was associated with increased CSF-plasma albumin and raffinose ratios, reduced CSF leukocyte numbers, and increased cerebral hydration. In the hippocampus, NEC was associated with pyramidal neuron loss and increased interleukin-6 levels. In the short term, NEC did not affect cerebral myelination or microglia density. In conclusion, altered BCSFB properties and brain structural deficits were observed in pigs after preterm birth. Acute gastrointestinal NEC lesions were associated with systemic inflammation, increased BCSFB permeability and region-specific neuronal damage. The results demonstrate the importance of early interventions against NEC to prevent brain injury in preterm infants.


Blood-Brain Barrier/pathology , Brain/pathology , Cytokines/metabolism , Enterocolitis, Necrotizing/pathology , Inflammation/pathology , Animals , Animals, Newborn , Brain/metabolism , Neurons/pathology , Premature Birth/metabolism , Premature Birth/pathology , Swine
13.
NPJ Biofilms Microbiomes ; 2: 16014, 2016.
Article En | MEDLINE | ID: mdl-28721249

The ligand-induced transcription factor, aryl hydrocarbon receptor (AhR) is known for its capacity to tune adaptive immunity and xenobiotic metabolism-biological properties subject to regulation by the indigenous microbiome. The objective of this study was to probe the postulated microbiome-AhR crosstalk and whether such an axis could influence metabolic homeostasis of the host. Utilising a systems-biology approach combining in-depth 1H-NMR-based metabonomics (plasma, liver and skeletal muscle) with microbiome profiling (small intestine, colon and faeces) of AhR knockout (AhR-/-) and wild-type (AhR+/+) mice, we assessed AhR function in host metabolism. Microbiome metabolites such as short-chain fatty acids were found to regulate AhR and its target genes in liver and intestine. The AhR signalling pathway, in turn, was able to influence microbiome composition in the small intestine as evident from microbiota profiling of the AhR+/+ and AhR-/- mice fed with diet enriched with a specific AhR ligand or diet depleted of any known AhR ligands. The AhR-/- mice also displayed increased levels of corticosterol and alanine in serum. In addition, activation of gluconeogenic genes in the AhR-/- mice was indicative of on-going metabolic stress. Reduced levels of ketone bodies and reduced expression of genes involved in fatty acid metabolism in the liver further underscored this observation. Interestingly, exposing AhR-/- mice to a high-fat diet showed resilience to glucose intolerance. Our data suggest the existence of a bidirectional AhR-microbiome axis, which influences host metabolic pathways.

14.
Sci Transl Med ; 6(263): 263ra158, 2014 Nov 19.
Article En | MEDLINE | ID: mdl-25411471

Pivotal to brain development and function is an intact blood-brain barrier (BBB), which acts as a gatekeeper to control the passage and exchange of molecules and nutrients between the circulatory system and the brain parenchyma. The BBB also ensures homeostasis of the central nervous system (CNS). We report that germ-free mice, beginning with intrauterine life, displayed increased BBB permeability compared to pathogen-free mice with a normal gut flora. The increased BBB permeability was maintained in germ-free mice after birth and during adulthood and was associated with reduced expression of the tight junction proteins occludin and claudin-5, which are known to regulate barrier function in endothelial tissues. Exposure of germ-free adult mice to a pathogen-free gut microbiota decreased BBB permeability and up-regulated the expression of tight junction proteins. Our results suggest that gut microbiota-BBB communication is initiated during gestation and propagated throughout life.


Blood-Brain Barrier , Intestines/microbiology , Microbiota , Animals , Female , Mice , Permeability , Pregnancy , Tight Junctions/metabolism
...