Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Extracell Vesicles ; 6(1): 1407213, 2017.
Article in English | MEDLINE | ID: mdl-30044885

ABSTRACT

In the past years, extracellular vesicles (EVs) have become an important field of research since EVs have been found to play a central role in biological processes. In pathogens, EVs are involved in several events during the host-pathogen interaction, including invasion, immunomodulation, and pathology as well as parasite-parasite communication. In this report, we summarised the role of EVs in infections caused by viruses, bacteria, fungi, protozoa, and helminths based on the talks and discussions carried out during the International Society for Extracellular Vesicles (ISEV) workshop held in São Paulo (November, 2016), Brazil, entitled Cross-organism Communication by Extracellular Vesicles: Hosts, Microbes and Parasites.

2.
Sci Signal ; 7(350): ra105, 2014 Nov 04.
Article in English | MEDLINE | ID: mdl-25372052

ABSTRACT

Linear consensus motifs are short contiguous sequences of residues within a protein that can form recognition modules for protein interaction or catalytic modification. Protein kinase specificity and the matching of kinases to substrates have been mostly defined by phosphorylation sites that occur in linear consensus motifs. However, phosphorylation can also occur within sequences that do not match known linear consensus motifs recognized by kinases and within flexible loops. We report the identification of Thr(253) in α-tubulin as a site that is phosphorylated by protein kinase C ßI (PKCßI). Thr(253) is not part of a linear PKC consensus motif. Instead, Thr(253) occurs within a region on the surface of α-tubulin that resembles a PKC phosphorylation site consensus motif formed by basic residues in different parts of the protein, which come together in the folded protein to form the recognition motif for PKCßI. Mutations of these basic residues decreased substrate phosphorylation, confirming the presence of this "structurally formed" consensus motif and its importance for the protein kinase-substrate interaction. Analysis of previously reported protein kinase A (PKA) and PKC substrates identified sites within structurally formed consensus motifs in many substrates of these two kinase families. Thus, the concept of consensus phosphorylation site motif needs to be expanded to include sites within these structurally formed consensus motifs.


Subject(s)
Phosphotransferases/chemistry , Amino Acid Motifs , Animals , Catalysis , Cattle , Cyclic AMP-Dependent Protein Kinases/chemistry , Green Fluorescent Proteins/chemistry , HEK293 Cells , HeLa Cells , Humans , Lysine/chemistry , Molecular Docking Simulation , Mutagenesis, Site-Directed , Mutation , Phosphorylation , Protein Folding , Protein Kinase C/chemistry , Threonine/chemistry , Tubulin/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...