Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Diabetes Metab Syndr Obes ; 16: 515-522, 2023.
Article in English | MEDLINE | ID: mdl-36852180

ABSTRACT

Background and Aims: SARS-CoV-2 infection has been recorded in 230 countries to date. Obesity has a negative impact on one's quality of life and is one of the main causes of mortality globally. Obesity affects the immune system, making the host more susceptible to infectious infections. Also, obesity commonly provokes the severity of respiratory diseases so the correlation of LEP rs7799039 Polymorphism in corpulent patients with COVID-19 infection was clearly investigated in the current study. Methods: A total of 232 patients were recruited, 116 patients were obese with COVID-19 infection, and 116 patients were non obese COVID-19. Fasting blood glucose test (FBG), hemoglobin A1C (HbA1C), complete blood count (CBC), international normalized ratio (INR), urea, alanine transaminase (ALT), aspartate aminotransferase (AST), D dimer and C-reactive protein (CRP) were estimated. C.T. scan was performed for each patient, and C.T. severity score was calculated. Genotyping for the leptin rs7799039 SNPs was performed by TaqMan® (Applied Biosystems Step One TM Real-time PCR). Results: Regarding LEP polymorphism, all individuals of non-obese groups significantly had the homozygous allele GG (100%), whereas only 56% of obese groups had GG alleles (P = 0.001). The severity scores significantly (P = 0.001) varied regarding LEP polymorphism regarding Rs7799039, where the largest proportion of those with Grade IV had the homozygous allele AA (57.1%). Conclusion: There was a correlation between the leptin gene allelic discrimination and COVID-19 CT brutality in obese patients. The A allele was considered a risk factor for severity in COVID-19 patients while the G allele contributes to decreasing that risk.

2.
Environ Sci Pollut Res Int ; 28(44): 62703-62715, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34215984

ABSTRACT

Phytoremediation of eight metals in mangrove forests was investigated by focusing on Avicennia marina at three locations along the Egyptian Red Sea coast. Average concentrations of metals in sediment followed the sequence Fe > Mn > Zn > Pb > Cr > Cu > Ni, while Cd was below the detection limit. Metal pollution index and enrichment factor indicated contamination of sediment by Pb, Cu, and Mn. Translocation factors from roots to seeds and leaves were highest for Cd and Mn, respectively, while bioaccumulation factors showed the highest absorptivity of Ni by roots to seeds and leaves organs. The variety in metals mobility and bioaccumilation may be attributed to the physicochemical properties of metals that affect their solubility and bioavailability. Multivariable analysis indicated the contribution of water and sediment characteristics to metal absorption. The study presents that the integrating approach of water, sediment, and plants may be a cornerstone for better recognizing the mangrove environment.


Subject(s)
Avicennia , Metals, Heavy , Water Pollutants, Chemical , Environmental Monitoring , Geologic Sediments , Indian Ocean , Metals, Heavy/analysis , Water Pollutants, Chemical/analysis
3.
Environ Monit Assess ; 191(7): 425, 2019 Jun 10.
Article in English | MEDLINE | ID: mdl-31183611

ABSTRACT

In the Egyptian Red Sea coast, nutrient salts, major ions, and heavy metals ion concentrations were examined in mangroves and the results were compared to respective concentrations in a reference area. Water samples were collected during the four seasons of 2012 from three different mangrove regions, Safaga, Abo Gheson, and El Quseer, besides, a mangrove free region, Marsa Alam. A temporal variation in the chemical composition of seawater of the mangrove and reference regions was recorded. Phosphorous and nitrogen forms were measured and calculated. Fe, Mn, Cu, Zn, Ni, Cr, Cd, and Pb ions were measured in water samples. Redfield nitrogen to phosphorous ratio explained the oligotrophic nature of the Red Sea. Ca and Mg ions besides total alkalinity showed negligible variations. The relatively greater concentration values of ammonium, 242.11 µg/l, dissolved inorganic nitrogen, 315.55 µg/l, and oxidizable organic matter, 0.4 mg-O2/l, may be caused by the impact of mangroves. Seawater contamination by heavy metals was assessed, using the metal index, in the mangrove regions which, compared to the reference region, were highly contaminated. Analysis of variance showed no significant variation among mangrove stations. Principal component analysis suggested that El Quseer and Safaga, mangrove regions, were contaminated by metal ions. Safaga possessed the highest concentration of Cd and Zn ions, while the highest concentrations of Mn, Cu, Ni, and Pb ions were observed at El Quseer. This may be attributed to industrial and shipping activities. It is concluded that the mangrove ecosystem along the Red Sea highly affects marine environment.


Subject(s)
Ammonium Compounds/analysis , Avicennia , Metals, Heavy/analysis , Nitrogen/analysis , Phosphorus/analysis , Water Pollutants, Chemical/analysis , Egypt , Environmental Monitoring , Indian Ocean , Salts , Seasons , Seawater/analysis
SELECTION OF CITATIONS
SEARCH DETAIL