Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Sci Rep ; 14(1): 10053, 2024 05 02.
Article En | MEDLINE | ID: mdl-38698047

Type 2 diabetes mellitus is a worldwide public health issue. In the globe, Egypt has the ninth-highest incidence of diabetes. Due to its crucial role in preserving cellular homeostasis, the autophagy process has drawn a lot of attention in recent years, Therefore, the purpose of this study was to evaluate the traditional medication metformin with the novel therapeutic effects of cinnamondehyde on adipocyte and hepatic autophagy in a model of high-fat diet/streptozotocin-diabetic rats. The study was conducted on 40 male albino rats, classified into 2 main groups, the control group and the diabetic group, which was subdivided into 4 subgroups (8 rats each): untreated diabetic rats, diabetic rats received oral cinnamaldehyde 40 mg/kg/day, diabetic rats received oral metformin 200 mg/kg/day and diabetic rats received a combination of both cinnamaldehyde and metformin daily for 4 weeks. The outcomes demonstrated that cinnamaldehyde enhanced the lipid profile and glucose homeostasis. Moreover, Cinnamaldehyde had the opposite effects on autophagy in both tissues; by altering the expression of genes that control autophagy, such as miRNA 30a and mammalian target of rapamycin (mTOR), it reduced autophagy in adipocytes and stimulated it in hepatic tissues. It may be inferred that by increasing the treatment efficacy of metformin and lowering its side effects, cinnamaldehyde could be utilized as an adjuvant therapy with metformin for the treatment of type 2 diabetes.


Acrolein , Acrolein/analogs & derivatives , Adipocytes , Autophagy , Diabetes Mellitus, Experimental , Liver , Metformin , Animals , Acrolein/pharmacology , Acrolein/therapeutic use , Autophagy/drug effects , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Liver/drug effects , Liver/metabolism , Liver/pathology , Male , Rats , Adipocytes/drug effects , Adipocytes/metabolism , Metformin/pharmacology , Diet, High-Fat/adverse effects , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , MicroRNAs/metabolism , MicroRNAs/genetics , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Streptozocin , Blood Glucose/metabolism , TOR Serine-Threonine Kinases/metabolism
2.
Sci Rep ; 13(1): 15480, 2023 09 19.
Article En | MEDLINE | ID: mdl-37726284

Obesity has harmful consequences on reproductive outcomes and the rapid increase in obesity is assumed to be influenced by epigenetics and trans-generation effects. Our study aimed to explore the effect of maternal and/or paternal obesity on the ovarian tissues of the first-generation female offspring in rats. The study was conducted on 40 adult Wistar albino rats (20 males and 20 females). Obesity was induced by feeding them an obesogenic diet for 3 months. The pregnancy was induced in the females by mating with males in four combinations: healthy mother with healthy father (control parents, CP), healthy mother with obese fathers (OF), obese mothers with healthy father (OM), and obese mother with obese father (obese parents, OP). After delivery, the female offspring at two months were sacrificed, and the blood and ovarian tissues were collected to assess the studied parameters. Our result showed differential impacts of maternal and paternal obesity on the ovarian health of the female offspring. The female offspring of obese OM or OP showed early signs of obesity. These metabolic abnormalities were associated with signs of ovarian lesions, impaired folliculogenesis, and decreased oocyte quality and also showed significant alterations in mitochondrial biogenesis, redox status, inflammation, and microRNAs expression (miR-149 and miR-494). In conclusion, altered ovarian expression of microRNAs and associated impaired mitochondrial biogenesis pathways may be the root causes for the observed intergeneration transmission of the obesogenic phenotype.


MicroRNAs , Ovarian Cysts , Ovarian Neoplasms , Female , Male , Pregnancy , Humans , Rats , Animals , Organelle Biogenesis , Rats, Wistar , Obesity/genetics , Fathers
3.
Mol Cell Biochem ; 450(1-2): 105-112, 2019 Jan.
Article En | MEDLINE | ID: mdl-29909574

Vitamin D3 deficiency was found to be tightly linked to many health problems including metabolic syndrome, cancer, cardiovascular diseases, and type 2 diabetes mellitus. In our study, we tested the possible antidiabetic effects of one of vitamin D3 analogs, alfacalcidol, solely or in a combination with metformin on type 2 diabetic rats. Type 2 diabetic model rats were induced by feeding high-fat diet for 4 weeks followed by intraperitoneal injection of streptozotocin. In addition to the control group, the diabetic rats were divided into four groups: untreated, metformin-treated, alfacalcidol-treated, and combination-treated group (metformin + alfacalcidol) for 4 weeks. The level of fasting blood glucose, fasting serum insulin, homeostatic model of insulin resistance, serum lipid profile, liver enzymes, calcium, phosphorus, and 25-hydroxyvitamin D3 were also determined. Besides, sterol regulatory element binding protein-1c (SREBP-1c) and vitamin D receptors (VDR) gene expression at mRNA and protein levels were evaluated. The level of significance was fixed at P ≤ 0.05 for all statistical tests. Alfacalcidol, solely or combined with metformin, significantly ameliorated glucose homeostasis and lipid profile parameters (P < 0.001) with a neutral effect on calcium and phosphorus levels. Significant downregulation of mRNA expression of SREBP-1c in the liver, white as well as brown adipose tissues (P < 0.001) and different patterns of mRNA expression of VDR gene in pancreas and white adipose tissue were observed in rats treated with alfacalcidol solely or in combination with metformin. Vitamin D3 analogs can modulate glucose parameters and lipid metabolism in a diabetic rat model and it provides additional protective effects when combined with metformin.


Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Gene Expression Regulation/drug effects , Hydroxycholecalciferols/pharmacology , Liver/metabolism , Receptors, Calcitriol , Animals , Calcifediol/metabolism , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Male , Metformin/pharmacology , Rats , Rats, Sprague-Dawley , Receptors, Calcitriol/agonists , Receptors, Calcitriol/biosynthesis , Sterol Regulatory Element Binding Protein 1/biosynthesis
...