Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 330
Filter
1.
J Exp Med ; 221(11)2024 Nov 04.
Article in English | MEDLINE | ID: mdl-39316554

ABSTRACT

Dysregulation of the flow of information from genomic DNA to RNA to protein occurs within all cancer types. In this review, we described the current state of understanding of how RNA processing is dysregulated in cancer with a focus on mutations in the RNA splicing factor machinery that are highly prevalent in hematologic malignancies. We discuss the downstream effects of these mutations highlighting both individual genes as well as common pathways that they perturb. We highlight examples of how alterations in RNA processing have been harnessed for therapeutic intent as well as to promote the selective toxicity of cancer cells.


Subject(s)
Neoplasms , RNA Precursors , Humans , RNA Precursors/metabolism , RNA Precursors/genetics , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Mutation , RNA Splicing/genetics , Animals , RNA Processing, Post-Transcriptional/genetics , RNA Splicing Factors/metabolism , RNA Splicing Factors/genetics
2.
Blood ; 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39316649

ABSTRACT

There are few options for patients with relapse/refractory B-cell acute lymphoblastic leukemia (B-ALL), thus this is a major area of unmet medical need. Here, we reveal that inclusion of a poison exon in RBM39, which could be induced both by CDK9 or CDK9 independent CMGC (cyclin-dependent kinases, mitogen-activated protein kinases, glycogen synthase kinases, CDC-like kinases) kinase inhibition, is recognized by the nonsense-mediated mRNA decay (NMD) pathway for degradation. Targeting this poison exon in RBM39 with CMGC inhibitors lead to protein downregulation and inhibition of ALL growth, particularly in relapse/refractory B-ALL. Mechanistically, disruption of co-transcriptional splicing by inhibition of CMGC kinases including DYRK1A, or inhibition of CDK9, which phosphorylate the C-terminal domain of RNA polymerase II (Pol II), results in alteration of SF3B1 and Pol II association. Disruption of SF3B1 and transcriptional elongation complex alters Pol II pausing, which promotes the inclusion of a poison exon in RBM39. Moreover, RBM39 ablation suppresses the growth of human B-ALL, and targeting RBM39 with sulfonamides, which degrade RBM39 protein, showed strong anti-tumor activity in preclinical models. Our data reveal that relapse/refractory B-ALL is susceptible to pharmacologic and genetic inhibition of RBM39 and provide two potential strategies to target this axis.

3.
Mol Cell ; 84(19): 3667-3680, 2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39146933

ABSTRACT

Somatic mutations in genes encoding components of the RNA splicing machinery occur frequently in multiple forms of cancer. The most frequently mutated RNA splicing factors in cancer impact intronic branch site and 3' splice site recognition. These include mutations in the core RNA splicing factor SF3B1 as well as mutations in the U2AF1/2 heterodimeric complex, which recruits the SF3b complex to the 3' splice site. Additionally, mutations in splicing regulatory proteins SRSF2 and RBM10 are frequent in cancer, and there has been a recent suggestion that variant forms of small nuclear RNAs (snRNAs) may contribute to splicing dysregulation in cancer. Here, we describe molecular mechanisms by which mutations in these factors alter splice site recognition and how studies of this process have yielded new insights into cancer pathogenesis and the molecular regulation of splicing. We also discuss data linking mutant RNA splicing factors to RNA metabolism beyond splicing.


Subject(s)
Mutation , Neoplasms , RNA Splicing Factors , RNA Splicing , RNA-Binding Proteins , Humans , Neoplasms/genetics , Neoplasms/metabolism , RNA Splicing Factors/genetics , RNA Splicing Factors/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Splicing Factor U2AF/genetics , Splicing Factor U2AF/metabolism , Serine-Arginine Splicing Factors/genetics , Serine-Arginine Splicing Factors/metabolism , Animals , RNA Splice Sites , Phosphoproteins/genetics , Phosphoproteins/metabolism , Gene Expression Regulation, Neoplastic , RNA, Small Nuclear/genetics , RNA, Small Nuclear/metabolism
4.
bioRxiv ; 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39131366

ABSTRACT

Langerhans cell Histiocytosis (LCH) and Erdheim-Chester disease (ECD) are clonal myeloid disorders, associated with MAP-Kinase activating mutations and an increased risk of neurodegeneration. Surprisingly, we found pervasive PU.1+ microglia mutant clones across the brain of LCH and ECD patients with and without neurological symptoms, associated with microgliosis, reactive astrocytosis, and neuronal loss. The disease predominated in the grey nuclei of the rhombencephalon, a topography attributable to a local proliferative advantage of mutant microglia. Presence of clinical symptoms was associated with a longer evolution of the disease and a larger size of PU.1+ clones (p= 0.0003). Genetic lineage tracing of PU.1+ clones suggest a resident macrophage lineage or a bone marrow precursor origin depending on patients. Finally, a CSF1R-inhibitor depleted mutant microglia and limited neuronal loss in mice suggesting an alternative to MAPK inhibitors. These studies characterize a progressive neurodegenerative disease, caused by clonal proliferation of inflammatory microglia (CPIM), with a decade(s)-long preclinical stage of incipient disease that represent a therapeutic window for prevention of neuronal death.

5.
Mol Cell ; 84(14): 2591-2592, 2024 07 25.
Article in English | MEDLINE | ID: mdl-39059366

ABSTRACT

In this issue of Molecular Cell, Harada et al.1 and Karasu et al.2 identify CCAR1 as a novel regulator of the Fanconi anemia/BRCA DNA repair pathway via modulating the splicing of the mRNA encoding FANCA.


Subject(s)
DNA Repair , RNA Splicing , Humans , Fanconi Anemia Complementation Group A Protein/genetics , Fanconi Anemia Complementation Group A Protein/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Fanconi Anemia/genetics , Fanconi Anemia/metabolism , BRCA1 Protein/genetics , BRCA1 Protein/metabolism
6.
Cancer Immunol Res ; 12(10): 1361-1379, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38959337

ABSTRACT

Chimeric antigen receptor (CAR) T-cell therapy has resulted in remarkable clinical success in the treatment of B-cell malignancies. However, its clinical efficacy in solid tumors is limited, primarily by target antigen heterogeneity. To overcome antigen heterogeneity, we developed CAR T cells that overexpress LIGHT, a ligand of both lymphotoxin-ß receptor on cancer cells and herpes virus entry mediator on immune cells. LIGHT-expressing CAR T cells displayed both antigen-directed cytotoxicity mediated by the CAR and antigen-independent killing mediated through the interaction of LIGHT with lymphotoxin-ß receptor on cancer cells. Moreover, CAR T cells expressing LIGHT had immunostimulatory properties that improved the cells' proliferation and cytolytic profile. These data indicate that LIGHT-expressing CAR T cells may provide a way to eliminate antigen-negative tumor cells to prevent antigen-negative disease relapse.


Subject(s)
Immunotherapy, Adoptive , Receptors, Chimeric Antigen , T-Lymphocytes , Tumor Necrosis Factor Ligand Superfamily Member 14 , Humans , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/metabolism , Immunotherapy, Adoptive/methods , Tumor Necrosis Factor Ligand Superfamily Member 14/metabolism , T-Lymphocytes/immunology , Animals , Cell Line, Tumor , Cytotoxicity, Immunologic , Mice , Lymphotoxin beta Receptor/immunology , Lymphotoxin beta Receptor/metabolism , Antigens, Neoplasm/immunology , Xenograft Model Antitumor Assays , Neoplasms/immunology , Neoplasms/therapy
7.
bioRxiv ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-39026820

ABSTRACT

RBM10 modulates transcriptome-wide cassette exon splicing. Loss-of-function RBM10 mutations are enriched in thyroid cancers with distant metastases. Analysis of transcriptomes and genes mis-spliced by RBM10 loss showed pro-migratory and RHO/RAC signaling signatures. RBM10 loss increases cell velocity. Cytoskeletal and ECM transcripts subject to exon-inclusion events included vinculin (VCL), tenascin C (TNC) and CD44. Knockdown of the VCL exon inclusion transcript in RBM10-null cells reduced cell velocity, whereas knockdown of TNC and CD44 exon-inclusion isoforms reduced invasiveness. RAC1-GTP levels were increased in RBM10-null cells. Mouse Hras G12V /Rbm1O KO thyrocytes develop metastases that are reversed by RBM10 or by combined knockdown of VCL, CD44 and TNC inclusion isoforms. Thus, RBM10 loss generates exon inclusions in transcripts regulating ECM-cytoskeletal interactions, leading to RAC1 activation and metastatic competency. Moreover, a CRISPR-Cas9 screen for synthetic lethality with RBM10 loss identified NFkB effectors as central to viability, providing a therapeutic target for these lethal thyroid cancers.

8.
J Clin Invest ; 134(12)2024 May 07.
Article in English | MEDLINE | ID: mdl-38713535

ABSTRACT

Splicing factor mutations are common in myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML), but how they alter cellular functions is unclear. We show that the pathogenic SRSF2P95H/+ mutation disrupts the splicing of mitochondrial mRNAs, impairs mitochondrial complex I function, and robustly increases mitophagy. We also identified a mitochondrial surveillance mechanism by which mitochondrial dysfunction modifies splicing of the mitophagy activator PINK1 to remove a poison intron, increasing the stability and abundance of PINK1 mRNA and protein. SRSF2P95H-induced mitochondrial dysfunction increased PINK1 expression through this mechanism, which is essential for survival of SRSF2P95H/+ cells. Inhibition of splicing with a glycogen synthase kinase 3 inhibitor promoted retention of the poison intron, impairing mitophagy and activating apoptosis in SRSF2P95H/+ cells. These data reveal a homeostatic mechanism for sensing mitochondrial stress through PINK1 splicing and identify increased mitophagy as a disease marker and a therapeutic vulnerability in SRSF2P95H mutant MDS and AML.


Subject(s)
Leukemia, Myeloid, Acute , Mitochondria , Mitophagy , Protein Kinases , Serine-Arginine Splicing Factors , Animals , Humans , Mice , Amino Acid Substitution , Cell Line, Tumor , Hematologic Neoplasms/genetics , Hematologic Neoplasms/pathology , Hematologic Neoplasms/metabolism , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Leukemia, Myeloid, Acute/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Mitochondria/pathology , Mitophagy/genetics , Mutation, Missense , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/pathology , Myelodysplastic Syndromes/metabolism , Protein Kinases/genetics , Protein Kinases/metabolism , RNA Splicing , Serine-Arginine Splicing Factors/genetics , Serine-Arginine Splicing Factors/metabolism
9.
Nature ; 629(8014): 1149-1157, 2024 May.
Article in English | MEDLINE | ID: mdl-38720070

ABSTRACT

In somatic tissue differentiation, chromatin accessibility changes govern priming and precursor commitment towards cellular fates1-3. Therefore, somatic mutations are likely to alter chromatin accessibility patterns, as they disrupt differentiation topologies leading to abnormal clonal outgrowth. However, defining the impact of somatic mutations on the epigenome in human samples is challenging due to admixed mutated and wild-type cells. Here, to chart how somatic mutations disrupt epigenetic landscapes in human clonal outgrowths, we developed genotyping of targeted loci with single-cell chromatin accessibility (GoT-ChA). This high-throughput platform links genotypes to chromatin accessibility at single-cell resolution across thousands of cells within a single assay. We applied GoT-ChA to CD34+ cells from patients with myeloproliferative neoplasms with JAK2V617F-mutated haematopoiesis. Differential accessibility analysis between wild-type and JAK2V617F-mutant progenitors revealed both cell-intrinsic and cell-state-specific shifts within mutant haematopoietic precursors, including cell-intrinsic pro-inflammatory signatures in haematopoietic stem cells, and a distinct profibrotic inflammatory chromatin landscape in megakaryocytic progenitors. Integration of mitochondrial genome profiling and cell-surface protein expression measurement allowed expansion of genotyping onto DOGMA-seq through imputation, enabling single-cell capture of genotypes, chromatin accessibility, RNA expression and cell-surface protein expression. Collectively, we show that the JAK2V617F mutation leads to epigenetic rewiring in a cell-intrinsic and cell type-specific manner, influencing inflammation states and differentiation trajectories. We envision that GoT-ChA will empower broad future investigations of the critical link between somatic mutations and epigenetic alterations across clonal populations in malignant and non-malignant contexts.


Subject(s)
Chromatin , Epigenesis, Genetic , Genotype , Mutation , Single-Cell Analysis , Animals , Female , Humans , Male , Mice , Antigens, CD34/metabolism , Cell Differentiation/genetics , Chromatin/chemistry , Chromatin/genetics , Chromatin/metabolism , Epigenesis, Genetic/genetics , Epigenome/genetics , Genome, Mitochondrial/genetics , Genotyping Techniques , Hematopoiesis/genetics , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/pathology , Inflammation/genetics , Inflammation/pathology , Janus Kinase 2/genetics , Janus Kinase 2/metabolism , Megakaryocytes/metabolism , Megakaryocytes/pathology , Membrane Proteins/genetics , Myeloproliferative Disorders/genetics , Myeloproliferative Disorders/metabolism , Myeloproliferative Disorders/pathology , RNA/genetics , Clone Cells/metabolism
10.
bioRxiv ; 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38712254

ABSTRACT

Splicing factor mutations are common in myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML), but how they alter cellular functions is unclear. We show that the pathogenic SRSF2P95H/+ mutation disrupts the splicing of mitochondrial mRNAs, impairs mitochondrial complex I function, and robustly increases mitophagy. We also identified a mitochondrial surveillance mechanism by which mitochondrial dysfunction modifies splicing of the mitophagy activator PINK1 to remove a poison intron, increasing the stability and abundance of PINK1 mRNA and protein. SRSF2P95H-induced mitochondrial dysfunction increased PINK1 expression through this mechanism, which is essential for survival of SRSF2P95H/+ cells. Inhibition of splicing with a glycogen synthase kinase 3 inhibitor promoted retention of the poison intron, impairing mitophagy and activating apoptosis in SRSF2P95H/+ cells. These data reveal a homeostatic mechanism for sensing mitochondrial stress through PINK1 splicing and identify increased mitophagy as a disease marker and a therapeutic vulnerability in SRSF2P95H mutant MDS and AML.

11.
Br J Haematol ; 205(1): 127-137, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38613141

ABSTRACT

Histiocytic neoplasms are diverse clonal haematopoietic disorders, and clinical disease is mediated by tumorous infiltration as well as uncontrolled systemic inflammation. Individual subtypes include Langerhans cell histiocytosis (LCH), Rosai-Dorfman-Destombes disease (RDD) and Erdheim-Chester disease (ECD), and these have been characterized with respect to clinical phenotypes, driver mutations and treatment paradigms. Less is known about patients with mixed histiocytic neoplasms (MXH), that is two or more coexisting disorders. This international collaboration examined patients with biopsy-proven MXH with respect to component disease subtypes, oncogenic driver mutations and responses to conventional (chemotherapeutic or immunosuppressive) versus targeted (BRAF or MEK inhibitor) therapies. Twenty-seven patients were studied with ECD/LCH (19/27), ECD/RDD (6/27), RDD/LCH (1/27) and ECD/RDD/LCH (1/27). Mutations previously undescribed in MXH were identified, including KRAS, MAP2K2, MAPK3, non-V600-BRAF, RAF1 and a BICD2-BRAF fusion. A repeated-measure generalized estimating equation demonstrated that targeted treatment was statistically significantly (1) more likely to result in a complete response (CR), partial response (PR) or stable disease (SD) (odds ratio [OR]: 17.34, 95% CI: 2.19-137.00, p = 0.007), and (2) less likely to result in progression (OR: 0.08, 95% CI: 0.03-0.23, p < 0.0001). Histiocytic neoplasms represent an entity with underappreciated clinical and molecular diversity, poor responsiveness to conventional therapy and exquisite sensitivity to targeted therapy.


Subject(s)
Erdheim-Chester Disease , Mutation , Humans , Male , Female , Adult , Middle Aged , Erdheim-Chester Disease/genetics , Erdheim-Chester Disease/drug therapy , Aged , Adolescent , Molecular Targeted Therapy , Young Adult , Histiocytosis, Langerhans-Cell/genetics , Histiocytosis, Langerhans-Cell/drug therapy , Child , Histiocytosis, Sinus/genetics , Histiocytosis, Sinus/drug therapy , Histiocytosis, Sinus/pathology , Proto-Oncogene Proteins B-raf/genetics , Protein Kinase Inhibitors/therapeutic use , Child, Preschool
12.
Clin Cancer Res ; 30(11): 2333-2341, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38578606

ABSTRACT

Bruton's tyrosine kinase (BTK) is central to the survival of malignant and normal B lymphocytes and has been a crucial therapeutic target of several generations of kinase inhibitors and newly developed degraders. These new means for targeting BTK have added additional agents to the armamentarium for battling cancers dependent on B-cell receptor (BCR) signaling, including chronic lymphocytic leukemia and other non-Hodgkin lymphomas. However, the development of acquired resistance mutations to each of these classes of BTK inhibitors has led to new challenges in targeting BTK as well as novel insights into BCR signaling. The first-generation covalent BTK inhibitor ibrutinib is susceptible to mutations affecting the covalent binding site, cysteine 481 (C481). Newer noncovalent BTK inhibitors, such as pirtobrutinib, overcome C481 mutation-mediated resistance but are susceptible to other kinase domain mutations, particularly at residues Threonine 474 and Leucine 528. In addition, these novel BTK inhibitor resistance mutations have been shown biochemically and in patients to cause cross-resistance to some covalent BTK inhibitors. Importantly, newer generation covalent BTK inhibitors zanubrutinib and acalabrutinib are susceptible to the same mutations that confer resistance to noncovalent inhibitors. The BTK L528W mutation is of particular interest as it disrupts the kinase activity of BTK, rendering it kinase dead. This observation suggests that BTK may act independently of its kinase activity as a scaffold. Thus, the timely development of BTK degrading proteolysis targeting drugs has allowed for degradation, rather than just enzymatic inhibition, of BTK in B-cell lymphomas, and early clinical trials to evaluate BTK degraders are underway.


Subject(s)
Agammaglobulinaemia Tyrosine Kinase , Protein Kinase Inhibitors , Humans , Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Agammaglobulinaemia Tyrosine Kinase/metabolism , Agammaglobulinaemia Tyrosine Kinase/genetics , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/pharmacology , Pyrimidines/therapeutic use , Pyrazoles/therapeutic use , Drug Resistance, Neoplasm/genetics , Piperidines/therapeutic use , Mutation , Adenine/analogs & derivatives , Molecular Targeted Therapy , Signal Transduction/drug effects , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Animals
13.
Mol Cell ; 84(10): 1886-1903.e10, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38688280

ABSTRACT

Mutations in the RNA splicing factor gene SF3B1 are common across hematologic and solid cancers and result in widespread alterations in splicing, yet there is currently no therapeutic means to correct this mis-splicing. Here, we utilize synthetic introns uniquely responsive to mutant SF3B1 to identify trans factors required for aberrant mutant SF3B1 splicing activity. This revealed the G-patch domain-containing protein GPATCH8 as required for mutant SF3B1-induced splicing alterations and impaired hematopoiesis. GPATCH8 is involved in quality control of branchpoint selection, interacts with the RNA helicase DHX15, and functionally opposes SURP and G-patch domain containing 1 (SUGP1), a G-patch protein recently implicated in SF3B1-mutant diseases. Silencing of GPATCH8 corrected one-third of mutant SF3B1-dependent splicing defects and was sufficient to improve dysfunctional hematopoiesis in SF3B1-mutant mice and primary human progenitors. These data identify GPATCH8 as a novel splicing factor required for mis-splicing by mutant SF3B1 and highlight the therapeutic impact of correcting aberrant splicing in SF3B1-mutant cancers.


Subject(s)
Hematologic Neoplasms , Muscle Proteins , Mutation , Phosphoproteins , RNA Splicing Factors , Animals , Humans , Mice , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/metabolism , HEK293 Cells , Hematologic Neoplasms/genetics , Hematologic Neoplasms/pathology , Hematologic Neoplasms/metabolism , Hematopoiesis/genetics , Introns , Phosphoproteins/genetics , Phosphoproteins/metabolism , RNA Helicases/genetics , RNA Helicases/metabolism , RNA Splicing , RNA Splicing Factors/genetics , RNA Splicing Factors/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Muscle Proteins/genetics , Muscle Proteins/metabolism
14.
Cancer Cell ; 42(4): 507-509, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38458185

ABSTRACT

The mSWI/SNF subunits ARID1A and SMARCA4 are mutated in B cell lymphomas. Now, Barisic et al. and Deng et al. find that loss of ARID1A or SMARCA4 contributes to lymphomagenesis by causing B cells to aberrantly re-enter germinal centers where they undergo repeated rounds of proliferation and somatic hypermutation.


Subject(s)
DNA Helicases , Germinal Center , Humans , DNA Helicases/genetics , Nuclear Proteins/genetics , Transcription Factors/genetics
15.
Blood ; 143(7): 566-567, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38358848
17.
bioRxiv ; 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-38328106

ABSTRACT

Somatic genetic heterogeneity resulting from post-zygotic DNA mutations is widespread in human tissues and can cause diseases, however few studies have investigated its role in neurodegenerative processes such as Alzheimer's Disease (AD). Here we report the selective enrichment of microglia clones carrying pathogenic variants, that are not present in neuronal, glia/stromal cells, or blood, from patients with AD in comparison to age-matched controls. Notably, microglia-specific AD-associated variants preferentially target the MAPK pathway, including recurrent CBL ring-domain mutations. These variants activate ERK and drive a microglia transcriptional program characterized by a strong neuro-inflammatory response, both in vitro and in patients. Although the natural history of AD-associated microglial clones is difficult to establish in human, microglial expression of a MAPK pathway activating variant was previously shown to cause neurodegeneration in mice, suggesting that AD-associated neuroinflammatory microglial clones may contribute to the neurodegenerative process in patients.

18.
Sci Transl Med ; 16(728): eade2774, 2024 01 03.
Article in English | MEDLINE | ID: mdl-38170787

ABSTRACT

Splicing modulation is a promising treatment strategy pursued to date only in splicing factor-mutant cancers; however, its therapeutic potential is poorly understood outside of this context. Like splicing factors, genes encoding components of the cohesin complex are frequently mutated in cancer, including myelodysplastic syndromes (MDS) and secondary acute myeloid leukemia (AML), where they are associated with poor outcomes. Here, we showed that cohesin mutations are biomarkers of sensitivity to drugs targeting the splicing factor 3B subunit 1 (SF3B1) H3B-8800 and E-7107. We identified drug-induced alterations in splicing, and corresponding reduced gene expression, of a number of DNA repair genes, including BRCA1 and BRCA2, as the mechanism underlying this sensitivity in cell line models, primary patient samples and patient-derived xenograft (PDX) models of AML. We found that DNA damage repair genes are particularly sensitive to exon skipping induced by SF3B1 modulators due to their long length and large number of exons per transcript. Furthermore, we demonstrated that treatment of cohesin-mutant cells with SF3B1 modulators not only resulted in impaired DNA damage response and accumulation of DNA damage, but it sensitized cells to subsequent killing by poly(ADP-ribose) polymerase (PARP) inhibitors and chemotherapy and led to improved overall survival of PDX models of cohesin-mutant AML in vivo. Our findings expand the potential therapeutic benefits of SF3B1 splicing modulators to include cohesin-mutant MDS and AML.


Subject(s)
Leukemia, Myeloid, Acute , Myelodysplastic Syndromes , Humans , Cohesins , Myelodysplastic Syndromes/drug therapy , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/metabolism , RNA Splicing , RNA Splicing Factors/genetics , Mutation/genetics , Transcription Factors/metabolism , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , DNA Repair/genetics , Phosphoproteins/genetics , Phosphoproteins/metabolism , DNA Damage
19.
Nat Cancer ; 5(1): 47-65, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37904045

ABSTRACT

Telomerase enables replicative immortality in most cancers including acute myeloid leukemia (AML). Imetelstat is a first-in-class telomerase inhibitor with clinical efficacy in myelofibrosis and myelodysplastic syndromes. Here, we develop an AML patient-derived xenograft resource and perform integrated genomics, transcriptomics and lipidomics analyses combined with functional genetics to identify key mediators of imetelstat efficacy. In a randomized phase II-like preclinical trial in patient-derived xenografts, imetelstat effectively diminishes AML burden and preferentially targets subgroups containing mutant NRAS and oxidative stress-associated gene expression signatures. Unbiased, genome-wide CRISPR/Cas9 editing identifies ferroptosis regulators as key mediators of imetelstat efficacy. Imetelstat promotes the formation of polyunsaturated fatty acid-containing phospholipids, causing excessive levels of lipid peroxidation and oxidative stress. Pharmacological inhibition of ferroptosis diminishes imetelstat efficacy. We leverage these mechanistic insights to develop an optimized therapeutic strategy using oxidative stress-inducing chemotherapy to sensitize patient samples to imetelstat causing substantial disease control in AML.


Subject(s)
Ferroptosis , Leukemia, Myeloid, Acute , Oligonucleotides , Telomerase , Humans , Telomerase/genetics , Telomerase/metabolism , Leukemia, Myeloid, Acute/drug therapy , Fatty Acids
SELECTION OF CITATIONS
SEARCH DETAIL