Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 69
1.
J Clin Invest ; 134(10)2024 May 15.
Article En | MEDLINE | ID: mdl-38747293

Molecular characterization of vascular anomalies has revealed that affected endothelial cells (ECs) harbor gain-of-function (GOF) mutations in the gene encoding the catalytic α subunit of PI3Kα (PIK3CA). These PIK3CA mutations are known to cause solid cancers when occurring in other tissues. PIK3CA-related vascular anomalies, or "PIKopathies," range from simple, i.e., restricted to a particular form of malformation, to complex, i.e., presenting with a range of hyperplasia phenotypes, including the PIK3CA-related overgrowth spectrum. Interestingly, development of PIKopathies is affected by fluid shear stress (FSS), a physiological stimulus caused by blood or lymph flow. These findings implicate PI3K in mediating physiological EC responses to FSS conditions characteristic of lymphatic and capillary vessel beds. Consistent with this hypothesis, increased PI3K signaling also contributes to cerebral cavernous malformations, a vascular disorder that affects low-perfused brain venous capillaries. Because the GOF activity of PI3K and its signaling partners are excellent drug targets, understanding PIK3CA's role in the development of vascular anomalies may inform therapeutic strategies to normalize EC responses in the diseased state. This Review focuses on PIK3CA's role in mediating EC responses to FSS and discusses current understanding of PIK3CA dysregulation in a range of vascular anomalies that particularly affect low-perfused regions of the vasculature. We also discuss recent surprising findings linking increased PI3K signaling to fast-flow arteriovenous malformations in hereditary hemorrhagic telangiectasias.


Class I Phosphatidylinositol 3-Kinases , Vascular Malformations , Humans , Class I Phosphatidylinositol 3-Kinases/genetics , Class I Phosphatidylinositol 3-Kinases/metabolism , Animals , Vascular Malformations/genetics , Vascular Malformations/pathology , Vascular Malformations/physiopathology , Vascular Malformations/metabolism , Vascular Malformations/enzymology , Endothelial Cells/enzymology , Endothelial Cells/pathology , Endothelial Cells/metabolism , Stress, Mechanical , Gain of Function Mutation , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/genetics , Signal Transduction , Hemangioma, Cavernous, Central Nervous System/genetics , Hemangioma, Cavernous, Central Nervous System/metabolism , Hemangioma, Cavernous, Central Nervous System/physiopathology , Hemangioma, Cavernous, Central Nervous System/pathology
2.
J Invest Dermatol ; 2024 Feb 29.
Article En | MEDLINE | ID: mdl-38431221

Common capillary malformations are red vascular skin lesions, most commonly associated with somatic activating GNAQ or GNA11 mutations. We focused on capillary malformations lacking such a mutation to identify previously unreported genetic causes. We used targeted next-generation sequencing on 82 lesions. Bioinformatic analysis allowed the identification of 9 somatic pathogenic variants in PIK3R1 and PIK3CA, encoding for the regulatory and catalytic subunits of phosphoinositide 3-kinase, respectively. Recharacterization of these lesions unraveled a common phenotype: a pale capillary malformation associated with visible dilated veins. Primary endothelial cells from 2 PIK3R1-mutated lesions were isolated, and PI3k-Akt-mTOR and RAS-RAF-MAPK signaling were assessed by western blot. This unveiled an abnormal increase in Akt phosphorylation, effectively reduced by PI3K pathway inhibitors, such as mTOR, Akt, and PIK3CA inhibitors. The effects of mutant PIK3R1 were further studied using zebrafish embryos. Endothelium-specific expression of PIK3R1 mutants resulted in abnormal development of the posterior capillary-venous plexus. In summary, capillary malformation associated with visible dilated veins emerges as a clinical entity associated with somatic pathogenic variants in PIK3R1 or PIK3CA (nonhotspot). Our findings suggest that the activated Akt signaling can be effectively reversed by PI3K pathway inhibitors. In addition, the proposed zebrafish model holds promise as a valuable tool for future drug screening aimed at developing patient-tailored treatments.

3.
Mol Biol Evol ; 41(2)2024 Feb 01.
Article En | MEDLINE | ID: mdl-38410843

In the African weakly electric fish genus Campylomormyrus, electric organ discharge signals are strikingly different in shape and duration among closely related species, contribute to prezygotic isolation, and may have triggered an adaptive radiation. We performed mRNA sequencing on electric organs and skeletal muscles (from which the electric organs derive) from 3 species with short (0.4 ms), medium (5 ms), and long (40 ms) electric organ discharges and 2 different cross-species hybrids. We identified 1,444 upregulated genes in electric organ shared by all 5 species/hybrid cohorts, rendering them candidate genes for electric organ-specific properties in Campylomormyrus. We further identified several candidate genes, including KCNJ2 and KLF5, and their upregulation may contribute to increased electric organ discharge duration. Hybrids between a short (Campylomormyrus compressirostris) and a long (Campylomormyrus rhynchophorus) discharging species exhibit electric organ discharges of intermediate duration and showed imbalanced expression of KCNJ2 alleles, pointing toward a cis-regulatory difference at this locus, relative to electric organ discharge duration. KLF5 is a transcription factor potentially balancing potassium channel gene expression, a crucial process for the formation of an electric organ discharge. Unraveling the genetic basis of the species-specific modulation of the electric organ discharge in Campylomormyrus is crucial for understanding the adaptive radiation of this emerging model taxon of ecological (perhaps even sympatric) speciation.


Electric Fish , Animals , Electric Fish/genetics , Alleles , Electric Organ/metabolism , Up-Regulation , Potassium Channels/genetics
4.
EBioMedicine ; 99: 104914, 2024 Jan.
Article En | MEDLINE | ID: mdl-38113759

BACKGROUND: Cerebral Cavernous Malformation (CCM) is a rare cerebrovascular disease, characterized by the presence of multiple vascular malformations that may result in intracerebral hemorrhages (ICHs), seizure(s), or focal neurological deficits (FND). Familial CCM (fCCM) is due to loss of function mutations in one of the three independent genes KRIT1 (CCM1), Malcavernin (CCM2), or Programmed Cell death 10 (PDCD10/CCM3). The aim of this study was to identify plasma protein biomarkers of fCCM to assess the severity of the disease and predict its progression. METHODS: Here, we have investigated plasma samples derived from n = 71 symptomatic fCCM patients (40 female/31 male) and n = 17 healthy donors (HD) (9 female/8 male) of the Phase 1/2 Treat_CCM trial, using multiplexed protein profiling approaches. FINDINGS: Biomarkers as sCD14 (p = 0.00409), LBP (p = 0.02911), CXCL4 (p = 0.038), ICAM-1 (p = 0.02013), ANG2 (p = 0.026), CCL5 (p = 0.00403), THBS1 (p = 0.0043), CRP (p = 0.0092), and HDL (p = 0.027), were significantly different in fCCM compared to HDs. Of note, sENG (p = 0.011), THBS1 (p = 0.011) and CXCL4 (p = 0.011), were correlated to CCM genotype. sROBO4 (p = 0.014), TM (p = 0.026) and CRP (p = 0.040) were able to predict incident adverse clinical events, such as ICH, FND or seizure. GDF-15, FLT3L, CXCL9, FGF-21 and CDCP1, were identified as predictors of the formation of new MRI-detectable lesions over 2-year follow-up. Furthermore, the functional relevance of ang2, thbs1, robo4 and cdcp1 markers was validated by zebrafish pre-clinical model of fCCM. INTERPRETATION: Overall, our study identifies a set of biochemical parameters to predict CCM progression, suggesting biological interpretations and potential therapeutic approaches to CCM disease. FUNDING: Italian Medicines Agency, Associazione Italiana per la Ricerca sul Cancro (AIRC), ERC, Leducq Transatlantic Network of Excellence, Swedish Research Council.


Hemangioma, Cavernous, Central Nervous System , Animals , Humans , Male , Female , Hemangioma, Cavernous, Central Nervous System/etiology , Hemangioma, Cavernous, Central Nervous System/genetics , Proto-Oncogene Proteins/genetics , Microtubule-Associated Proteins/genetics , Zebrafish/metabolism , Biomarkers , Seizures , Antigens, Neoplasm , Cell Adhesion Molecules
6.
Development ; 150(18)2023 09 15.
Article En | MEDLINE | ID: mdl-37680191

During zebrafish heart formation, cardiac progenitor cells converge at the embryonic midline where they form the cardiac cone. Subsequently, this structure transforms into a heart tube. Little is known about the molecular mechanisms that control these morphogenetic processes. Here, we use light-sheet microscopy and combine genetic, molecular biological and pharmacological tools to show that the paralogous genes wnt9a/b are required for the assembly of the nascent heart tube. In wnt9a/b double mutants, cardiomyocyte progenitor cells are delayed in their convergence towards the embryonic midline, the formation of the heart cone is impaired and the transformation into an elongated heart tube fails. The same cardiac phenotype occurs when both canonical and non-canonical Wnt signaling pathways are simultaneously blocked by pharmacological inhibition. This demonstrates that Wnt9a/b and canonical and non-canonical Wnt signaling regulate the migration of cardiomyocyte progenitor cells and control the formation of the cardiac tube. This can be partly attributed to their regulation of the timing of cardiac progenitor cell differentiation. Our study demonstrates how these morphogens activate a combination of downstream pathways to direct cardiac morphogenesis.


Myocytes, Cardiac , Zebrafish , Animals , Zebrafish/genetics , Wnt Signaling Pathway/genetics , Cell Differentiation/genetics , Microscopy , Zebrafish Proteins/genetics , Wnt Proteins/genetics
7.
Front Cell Dev Biol ; 11: 1143852, 2023.
Article En | MEDLINE | ID: mdl-37113769

Cardiovascular diseases (CVDs) are the leading cause of death. Of CVDs, congenital heart diseases are the most common congenital defects, with a prevalence of 1 in 100 live births. Despite the widespread knowledge that prenatal and postnatal drug exposure can lead to congenital abnormalities, the developmental toxicity of many FDA-approved drugs is rarely investigated. Therefore, to improve our understanding of drug side effects, we performed a high-content drug screen of 1,280 compounds using zebrafish as a model for cardiovascular analyses. Zebrafish are a well-established model for CVDs and developmental toxicity. However, flexible open-access tools to quantify cardiac phenotypes are lacking. Here, we provide pyHeart4Fish, a novel Python-based, platform-independent tool with a graphical user interface for automated quantification of cardiac chamber-specific parameters, such as heart rate (HR), contractility, arrhythmia score, and conduction score. In our study, about 10.5% of the tested drugs significantly affected HR at a concentration of 20 µM in zebrafish embryos at 2 days post-fertilization. Further, we provide insights into the effects of 13 compounds on the developing embryo, including the teratogenic effects of the steroid pregnenolone. In addition, analysis with pyHeart4Fish revealed multiple contractility defects induced by seven compounds. We also found implications for arrhythmias, such as atrioventricular block caused by chloropyramine HCl, as well as (R)-duloxetine HCl-induced atrial flutter. Taken together, our study presents a novel open-access tool for heart analysis and new data on potentially cardiotoxic compounds.

8.
Sci Rep ; 13(1): 5572, 2023 04 05.
Article En | MEDLINE | ID: mdl-37019926

The capillary-venous pathology cerebral cavernous malformation (CCM) is caused by loss of CCM1/Krev interaction trapped protein 1 (KRIT1), CCM2/MGC4607, or CCM3/PDCD10 in some endothelial cells. Mutations of CCM genes within the brain vasculature can lead to recurrent cerebral hemorrhages. Pharmacological treatment options are urgently needed when lesions are located in deeply-seated and in-operable regions of the central nervous system. Previous pharmacological suppression screens in disease models of CCM led to the discovery that treatment with retinoic acid improved CCM phenotypes. This finding raised a need to investigate the involvement of retinoic acid in CCM and test whether it has a curative effect in preclinical mouse models. Here, we show that components of the retinoic acid synthesis and degradation pathway are transcriptionally misregulated across disease models of CCM. We complemented this analysis by pharmacologically modifying retinoic acid levels in zebrafish and human endothelial cell models of CCM, and in acute and chronic mouse models of CCM. Our pharmacological intervention studies in CCM2-depleted human umbilical vein endothelial cells (HUVECs) and krit1 mutant zebrafish showed positive effects when retinoic acid levels were increased. However, therapeutic approaches to prevent the development of vascular lesions in adult chronic murine models of CCM were drug regiment-sensitive, possibly due to adverse developmental effects of this hormone. A treatment with high doses of retinoic acid even worsened CCM lesions in an adult chronic murine model of CCM. This study provides evidence that retinoic acid signaling is impaired in the CCM pathophysiology and suggests that modification of retinoic acid levels can alleviate CCM phenotypes.


Hemangioma, Cavernous, Central Nervous System , Adult , Humans , Animals , Mice , Hemangioma, Cavernous, Central Nervous System/genetics , Zebrafish/metabolism , Proto-Oncogene Proteins/metabolism , Brain/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Microtubule-Associated Proteins/metabolism
10.
Cell Rep ; 37(1): 109782, 2021 10 05.
Article En | MEDLINE | ID: mdl-34610316

In the zebrafish embryo, the onset of blood flow generates fluid shear stress on endocardial cells, which are specialized endothelial cells that line the interior of the heart. High levels of fluid shear stress activate both Notch and Klf2 signaling, which play crucial roles in atrioventricular valvulogenesis. However, it remains unclear why only individual endocardial cells ingress into the cardiac jelly and initiate valvulogenesis. Here, we show that lateral inhibition between endocardial cells, mediated by Notch, singles out Delta-like-4-positive endocardial cells. These cells ingress into the cardiac jelly, where they form an abluminal cell population. Delta-like-4-positive cells ingress in response to Wnt9a, which is produced in parallel through an Erk5-Klf2-Wnt9a signaling cascade also activated by blood flow. Hence, mechanical stimulation activates parallel mechanosensitive signaling pathways that produce binary effects by driving endocardial cells toward either luminal or abluminal fates. Ultimately, these cell fate decisions sculpt cardiac valve leaflets.


Endocardium/metabolism , Mechanotransduction, Cellular , Signal Transduction , Zebrafish Proteins/metabolism , Animals , Animals, Genetically Modified/metabolism , Embryo, Nonmammalian/metabolism , Embryo, Nonmammalian/pathology , Embryonic Development , Endocardium/cytology , Heart Valves/growth & development , Heart Valves/metabolism , Heart Valves/pathology , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , Mitogen-Activated Protein Kinase 7/metabolism , Morpholinos/metabolism , Receptors, Neurotransmitter/antagonists & inhibitors , Receptors, Neurotransmitter/genetics , Receptors, Neurotransmitter/metabolism , Receptors, Notch/genetics , Receptors, Notch/metabolism , Wnt Proteins/antagonists & inhibitors , Wnt Proteins/genetics , Wnt Proteins/metabolism , Zebrafish/metabolism , Zebrafish Proteins/antagonists & inhibitors , Zebrafish Proteins/genetics
11.
Front Cell Dev Biol ; 9: 731101, 2021.
Article En | MEDLINE | ID: mdl-34422841

The heart is comprised of multiple tissues that contribute to its physiological functions. During development, the growth of myocardium and endocardium is coupled and morphogenetic processes within these separate tissue layers are integrated. Here, we discuss the roles of mechanosensitive Hippo signaling in growth and morphogenesis of the zebrafish heart. Hippo signaling is involved in defining numbers of cardiac progenitor cells derived from the secondary heart field, in restricting the growth of the epicardium, and in guiding trabeculation and outflow tract formation. Recent work also shows that myocardial chamber dimensions serve as a blueprint for Hippo signaling-dependent growth of the endocardium. Evidently, Hippo pathway components act at the crossroads of various signaling pathways involved in embryonic zebrafish heart development. Elucidating how biomechanical Hippo signaling guides heart morphogenesis has direct implications for our understanding of cardiac physiology and pathophysiology.

12.
Front Cell Dev Biol ; 9: 642840, 2021.
Article En | MEDLINE | ID: mdl-33718383

Cardiomyocytes are permanently exposed to mechanical stimulation due to cardiac contractility. Passive myocardial stiffness is a crucial factor, which defines the physiological ventricular compliance and volume of diastolic filling with blood. Heart diseases often present with increased myocardial stiffness, for instance when fibrotic changes modify the composition of the cardiac extracellular matrix (ECM). Consequently, the ventricle loses its compliance, and the diastolic blood volume is reduced. Recent advances in the field of cardiac mechanobiology revealed that disease-related environmental stiffness changes cause severe alterations in cardiomyocyte cellular behavior and function. Here, we review the molecular mechanotransduction pathways that enable cardiomyocytes to sense stiffness changes and translate those into an altered gene expression. We will also summarize current knowledge about when myocardial stiffness increases in the diseased heart. Sophisticated in vitro studies revealed functional changes, when cardiomyocytes faced a stiffer matrix. Finally, we will highlight recent studies that described modulations of cardiac stiffness and thus myocardial performance in vivo. Mechanobiology research is just at the cusp of systematic investigations related to mechanical changes in the diseased heart but what is known already makes way for new therapeutic approaches in regenerative biology.

13.
Curr Opin Hematol ; 28(3): 198-207, 2021 05 01.
Article En | MEDLINE | ID: mdl-33714969

PURPOSE OF REVIEW: The zebrafish embryo has emerged as a powerful model organism to investigate the mechanisms by which biophysical forces regulate vascular and cardiac cell biology during development and disease. A versatile arsenal of methods and tools is available to manipulate and analyze biomechanical signaling. This review aims to provide an overview of the experimental strategies and tools that have been utilized to study biomechanical signaling in cardiovascular developmental processes and different vascular disease models in the zebrafish embryo. Within the scope of this review, we focus on work published during the last two years. RECENT FINDINGS: Genetic and pharmacological tools for the manipulation of cardiac function allow alterations of hemodynamic flow patterns in the zebrafish embryo and various types of transgenic lines are available to report endothelial cell responses to biophysical forces. These tools have not only revealed the impact of biophysical forces on cardiovascular development but also helped to establish more accurate models for cardiovascular diseases including cerebral cavernous malformations, hereditary hemorrhagic telangiectasias, arteriovenous malformations, and lymphangiopathies. SUMMARY: The zebrafish embryo is a valuable vertebrate model in which in-vivo manipulations of biophysical forces due to cardiac contractility and blood flow can be performed. These analyses give important insights into biomechanical signaling pathways that control endothelial and endocardial cell behaviors. The technical advances using this vertebrate model will advance our understanding of the impact of biophysical forces in cardiovascular pathologies.


Cardiovascular Diseases/etiology , Cardiovascular Diseases/metabolism , Cardiovascular System/embryology , Cardiovascular System/metabolism , Mechanotransduction, Cellular , Organogenesis , Signal Transduction , Zebrafish , Animals , Animals, Genetically Modified , Disease Susceptibility , Humans , Models, Animal
14.
J Cell Sci ; 134(1)2021 01 11.
Article En | MEDLINE | ID: mdl-33323504

Steinberg's differential adhesion hypothesis suggests that adhesive mechanisms are important for sorting of cells and tissues during morphogenesis (Steinberg, 2007). During zebrafish vasculogenesis, endothelial cells sort into arterial and venous vessel beds but it is unknown whether this involves adhesive mechanisms. Claudins are tight junction proteins regulating the permeability of epithelial and endothelial tissue barriers. Previously, the roles of claudins during organ development have exclusively been related to their canonical functions in determining paracellular permeability. Here, we use atomic force microscopy to quantify claudin-5-dependent adhesion and find that this strongly contributes to the adhesive forces between arterial endothelial cells. Based on genetic manipulations, we reveal a non-canonical role of Claudin-5a during zebrafish vasculogenesis, which involves the regulation of adhesive forces between adjacent dorsal aortic endothelial cells. In vitro and in vivo studies demonstrate that loss of claudin-5 results in increased motility of dorsal aorta endothelial cells and in a failure of the dorsal aorta to lumenize. Our findings uncover a novel role of claudin-5 in limiting arterial endothelial cell motility, which goes beyond its traditional sealing function during embryonic development.


Tight Junction Proteins , Tight Junctions , Animals , Claudin-4 , Claudin-5/genetics , Claudins , Endothelial Cells , Zebrafish , Zebrafish Proteins
15.
Development ; 147(16)2020 08 25.
Article En | MEDLINE | ID: mdl-32843528

The Hippo-Yap pathway regulates multiple cellular processes in response to mechanical and other stimuli. In Drosophila, the polarity protein Lethal (2) giant larvae [L(2)gl], negatively regulates Hippo-mediated transcriptional output. However, in vertebrates, little is known about its homolog Llgl1. Here, we define a novel role for vertebrate Llgl1 in regulating Yap stability in cardiomyocytes, which impacts heart development. In contrast to the role of Drosophila L(2)gl, Llgl1 depletion in cultured rat cardiomyocytes decreased Yap protein levels and blunted target gene transcription without affecting Yap transcript abundance. Llgl1 depletion in zebrafish resulted in larger and dysmorphic cardiomyocytes, pericardial effusion, impaired blood flow and aberrant valvulogenesis. Cardiomyocyte Yap protein levels were decreased in llgl1 morphants, whereas Notch, which is regulated by hemodynamic forces and participates in valvulogenesis, was more broadly activated. Consistent with the role of Llgl1 in regulating Yap stability, cardiomyocyte-specific overexpression of Yap in Llgl1-depleted embryos ameliorated pericardial effusion and restored blood flow velocity. Altogether, our data reveal that vertebrate Llgl1 is crucial for Yap stability in cardiomyocytes and its absence impairs cardiac development.


Cell Cycle Proteins/metabolism , Heart/embryology , Myocytes, Cardiac/metabolism , Trans-Activators/metabolism , Zebrafish Proteins/metabolism , Zebrafish/embryology , Animals , Cell Cycle Proteins/genetics , Protein Stability , Trans-Activators/genetics , YAP-Signaling Proteins , Zebrafish/genetics , Zebrafish Proteins/genetics
16.
Trends Mol Med ; 26(9): 874-887, 2020 09.
Article En | MEDLINE | ID: mdl-32692314

Cerebral cavernous malformations (CCMs) are pathologies of the brain vasculature characterized by capillary-venous angiomas that result in recurrent cerebral hemorrhages. Familial forms are caused by a clonal loss of any of three CCM genes in endothelial cells, which causes the activation of a novel pathophysiological pathway involving mitogen-activated protein kinase and Krüppel-like transcription factor KLF2/4 signaling. Recent work has shown that cavernomas can undergo strong growth when CCM-deficient endothelial cells recruit wild-type neighbors through the secretion of cytokines. This suggests a treatment strategy based on targeting signalopathic events between CCM-deficient endothelial cells and their environment. Such approaches will have to consider recent evidence implicating 'third hits' from hypoxia-induced angiogenesis signaling or the microbiome in modulating the development of cerebral hemorrhages.


Hemangioma, Cavernous, Central Nervous System/drug therapy , Hemangioma, Cavernous, Central Nervous System/pathology , Signal Transduction/drug effects , Animals , Endothelial Cells/pathology , Endothelium, Vascular/drug effects , Endothelium, Vascular/pathology , Humans , Signal Transduction/physiology
17.
Cell Rep ; 32(2): 107883, 2020 07 14.
Article En | MEDLINE | ID: mdl-32668254

The formation of cardiac valves depends on mechanical forces exerted by blood flow. Endocardial cells lining the interior of the heart are sensitive to these stimuli and respond by rearranging into luminal cells subjected to shear stress and abluminal cells not exposed to it. The mechanisms by which endocardial cells sense these dynamic biomechanical stimuli and how they evoke different cellular responses are largely unknown. Here, we show that blood flow activates two parallel mechanosensitive pathways, one mediated by Notch and the other by Klf2a. Both pathways negatively regulate the angiogenesis receptor Vegfr3/Flt4, which becomes restricted to abluminal endocardial cells. Its loss disrupts valve morphogenesis and results in the occurrence of Notch signaling within abluminal endocardial cells. Our work explains how antagonistic activities by Vegfr3/Flt4 on the abluminal side and by Notch on the luminal side shape cardiac valve leaflets by triggering unique differences in the fates of endocardial cells.


Heart Valves/embryology , Mechanotransduction, Cellular , Organogenesis , Receptor, Notch1/metabolism , Vascular Endothelial Growth Factor Receptor-3/metabolism , Zebrafish Proteins/metabolism , Zebrafish/embryology , Animals , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Kruppel-Like Transcription Factors , Mice, Inbred C57BL , Signal Transduction
18.
Methods Mol Biol ; 2152: 207-224, 2020.
Article En | MEDLINE | ID: mdl-32524555

Our knowledge of the structure, localization, and interaction partners of cerebral cavernous malformations (CCM) proteins is mainly based on cell culture studies that lack the physiology of a three-dimensional multi-tissue environment. Uncovering the subcellular localization and the dynamic behavior of CCM proteins is an important aspect of characterizing the endothelial cell biology of CCM scaffold formation and for describing interactions with other protein complexes. However, the generation of specific antibodies to locate CCM scaffolds within cells has been challenging. To overcome the lack of functional antibodies, here, we describe the methodology involved in the generation of a construct for the expression of a fluorescently labeled CCM fusion construct and in the establishment of a transgenic zebrafish reporter line. The transgenic expression of fluorescently labeled CCM proteins within the developing zebrafish vasculature makes it possible to study the detailed subcellular localization and the dynamics of CCM proteins in vivo.


Animals, Genetically Modified , Gene Expression , Hemangioma, Cavernous, Central Nervous System/genetics , Hemangioma, Cavernous, Central Nervous System/metabolism , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Animals , Biomarkers , Cloning, Molecular , Endocardium/metabolism , Endothelial Cells/metabolism , Endothelium/metabolism , Genes, Reporter , Humans , Mice, Knockout , Mutation , Protein Transport , Recombinant Fusion Proteins/genetics , Zebrafish
19.
Chemistry ; 26(65): 14838-14843, 2020 Nov 20.
Article En | MEDLINE | ID: mdl-32501570

Oxidation of protein methionines to methionine-sulfoxides (MetOx) is associated with several age-related diseases. In healthy cells, MetOx is reduced to methionine by two families of conserved methionine sulfoxide reductase enzymes, MSRA and MSRB that specifically target the S- or R-diastereoisomers of methionine-sulfoxides, respectively. To directly interrogate MSRA and MSRB functions in cellular settings, we developed an NMR-based biosensor that we call CarMetOx to simultaneously measure both enzyme activities in single reaction setups. We demonstrate the suitability of our strategy to delineate MSR functions in complex biological environments, including cell lysates and live zebrafish embryos. Thereby, we establish differences in substrate specificities between prokaryotic and eukaryotic MSRs and introduce CarMetOx as a highly sensitive tool for studying therapeutic targets of oxidative stress-related human diseases and redox regulated signaling pathways.


Biosensing Techniques , Humans , Methionine , Methionine Sulfoxide Reductases/metabolism , Oxidation-Reduction , Substrate Specificity
20.
Stroke ; 51(4): 1272-1278, 2020 04.
Article En | MEDLINE | ID: mdl-31992178

Background and Purpose- Cerebral cavernous malformations (CCMs) are vascular malformations of the brain that lead to cerebral hemorrhages. A pharmacological treatment is needed especially for patients with nonoperable deep-seated lesions. We and others obtained CCM mouse models that were useful for mechanistic studies and rapid trials testing the preventive effects of candidate drugs. The shortened lifespan of acute mouse models hampered evaluation of compounds that would not only prevent lesion appearance but also cure preexisting lesions. Indirubin-3'-monoxime previously demonstrated its efficacy to reverse the cardiac phenotype of ccm2m201 zebrafish mutants and to prevent lesion development in an acute CCM2 mouse model. In the present article, we developed and characterized a novel chronic CCM2 mouse model and evaluated the curative therapeutic effect of indirubin-3'-monoxime after CCM lesion development. Methods- The chronic mouse model was obtained by a postnatal induction of brain-endothelial-cell-specific ablation of the Ccm2 gene using the inducible Slco1c1-CreERT2 mouse line. Results- We obtained a fully penetrant novel CCM chronic mouse model without any obvious off-target phenotypes and compatible with long-term survival. By 3 months of age, CCM lesions ranging in size from small isolated lesions to multiple caverns developed throughout the brain. Lesion burden was quantified in animals from 1 week to 5 months of age. Clear signs of intracerebral hemorrhages were noticed in brain-endothelial-cell-specific ablation of the Ccm2 gene. In contrast with its preventive effect in the acute CCM2 mouse model, a 20 mg/kg indirubin-3'-monoxime treatment for 3 weeks in 3-month old animals neither had any beneficial effect on the lesion burden nor alleviated cerebral hemorrhages. Conclusions- The brain-endothelial-cell-specific ablation of the Ccm2 gene chronic model is a strongly improved disease model for the CCM community whose challenge today is to decipher which candidate drugs might have a curative effect on patients' preexisting lesions. Visual Overview- An online visual overview is available for this article.


Brain/pathology , Central Nervous System Neoplasms/genetics , Central Nervous System Neoplasms/pathology , Disease Models, Animal , Hemangioma, Cavernous, Central Nervous System/genetics , Hemangioma, Cavernous, Central Nervous System/pathology , Microfilament Proteins/genetics , Animals , Central Nervous System Neoplasms/metabolism , Hemangioma, Cavernous, Central Nervous System/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microfilament Proteins/deficiency
...