Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
EMBO Mol Med ; 15(5): e17052, 2023 05 08.
Article En | MEDLINE | ID: mdl-36994913

We propose a new therapeutic strategy for Alzheimer's disease (AD). Brain peptide p3-Alcß37 is generated from the neuronal protein alcadein ß through cleavage of γ-secretase, similar to the generation of amyloid ß (Aß) derived from Aß-protein precursor/APP. Neurotoxicity by Aß oligomers (Aßo) is the prime cause prior to the loss of brain function in AD. We found that p3-Alcß37 and its shorter peptide p3-Alcß9-19 enhanced the mitochondrial activity of neurons and protected neurons against Aßo-induced toxicity. This is due to the suppression of the Aßo-mediated excessive Ca2+ influx into neurons by p3-Alcß. Successful transfer of p3-Alcß9-19 into the brain following peripheral administration improved the mitochondrial viability in the brain of AD mice model, in which the mitochondrial activity is attenuated by increasing the neurotoxic human Aß42 burden, as revealed through brain PET imaging to monitor mitochondrial function. Because mitochondrial dysfunction is common in the brain of AD patients alongside increased Aß and reduced p3-Alcß37 levels, the administration of p3-Alcß9-19 may be a promising treatment for restoring, protecting, and promoting brain functions in patients with AD.


Alzheimer Disease , Amyloid beta-Peptides , Mice , Animals , Humans , Amyloid beta-Peptides/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Brain/metabolism , Neurons/metabolism , Amyloid Precursor Protein Secretases/metabolism
2.
Neurobiol Aging ; 123: 63-74, 2023 03.
Article En | MEDLINE | ID: mdl-36638682

Apolipoprotein E4 (apoE4) is a risk factor for Alzheimer's disease (AD). Here, we investigated brain amyloid-ß (Aß) accumulation throughout the aging process in an amyloid precursor protein (APP) knock-in (KI) mouse model of AD that expresses human APPNL-G-F with or without human apoE4 or apoE3. Brain Aß42 levels were significantly lower in 9-month-old mice that express human isoforms of apoE than in age-matched APP-KI control mice. Linear accumulation of Aß42 began in 5-month-old apoE4 mice, and a strong increase in Aß42 levels was observed in 21-month-old apoE3 mice. Aß42 levels in cerebroventricular fluid were higher in apoE3 than in apoE4 mice at 6-7 months of age, suggesting that apoE3 is more efficient at clearing Aß42 than apoE4 at these ages. However, apoE3 protein levels were lower than apoE4 protein levels in the brains of 21-month-old apoE3 and apoE4 mice, respectively, which may explain the rapid increase in brain Aß42 burden in apoE3 mice. We identified genes that were downregulated in a human apoE-dependent (apoE4 > apoE3) and age-dependent (apoE3 = apoE4) manner, which may regulate brain Aß burden and/or AD progression. Analysis of gene expression in AD mouse models helps identify molecular mechanisms of pleiotropy by the human APOE gene during aging.


Alzheimer Disease , Humans , Mice , Animals , Alzheimer Disease/metabolism , Apolipoprotein E4/genetics , Apolipoprotein E4/metabolism , Apolipoprotein E3/genetics , Apolipoprotein E3/metabolism , Mice, Transgenic , Apolipoproteins E/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Brain/metabolism , Aging/genetics , Aging/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism , Gene Expression
...