Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
Article in English | MEDLINE | ID: mdl-39352322

ABSTRACT

PURPOSE: Increasing data suggest that radiation therapy, particularly ablative radiation therapy, alters the natural history of metastatic disease. For patients with metastatic disease enrolled in prospective trials testing systemic therapy, the use of off-protocol radiation therapy to improve clinical symptoms or extend the duration of study systemic therapy may influence study endpoints. We sought to evaluate how often off-protocol radiation therapy was permitted among systemic therapy phase 3 trials, how often off-protocol radiation therapy is used, and whether off-protocol radiation therapy correlated with study outcomes. METHODS AND MATERIALS: Two-arm, superiority-design, phase 3 randomized trials testing systemic therapy were screened from ClinicalTrials.gov. Protocol availability was required to assess the trial approach to off-protocol radiation therapy if not described in the manuscript. Adjusted odds ratios with 95% CI were calculated by logistic regression. RESULTS: A total of 112 trials enrolling 80,134 patients were included, with publication dates between 2010 and 2019. Of these, off-protocol radiation therapy was allowed, not discussed, or prohibited during study systemic therapy in 52% (N =58), 25% (N = 28), and 23% (N = 26) of trials, respectively. However, only 2% (2 of 112) of trials reported off-protocol radiation therapy utilization rates, although no data were reported on the use of ablative off-protocol radiation therapy. No trials evaluated or adjusted for the potential influence of off-protocol radiation therapy on study endpoints. Among the subset of open-label studies, trials permissive toward off-protocol radiation therapy were more likely to meet their primary endpoint (adjusted odds ratio, 4.50; 95% CI, 1.23-20.23; P = .04). CONCLUSIONS: Although most trials allowed off-protocol radiation therapy during the receipt of the study systemic therapy, the influence of off-protocol radiation therapy, especially ablative radiation therapy, on study outcomes is underevaluated among phase 3 systemic therapy trials.

2.
JCO Precis Oncol ; 8: e2400363, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39348660

ABSTRACT

PURPOSE: The primary results of phase III oncology trials may be challenging to interpret, given that results are generally based on P value thresholds. The probability of whether a treatment is beneficial, although more intuitive, is not usually provided. Here, we developed and released a user-friendly tool that calculates the probability of treatment benefit using trial summary statistics. METHODS: We curated 415 phase III randomized trials enrolling 338,600 patients published between 2004 and 2020. A phase III prior probability distribution for the treatment effect was developed on the basis of a three-component zero-mean mixture distribution of the observed z-scores. Using this prior, we computed the probability of clinically meaningful benefit (hazard ratio [HR] <0.8). The distribution of signal-to-noise ratios and power of phase III oncology trials were compared with that of 23,551 randomized trials from the Cochrane Database. RESULTS: The signal-to-noise ratios of phase III oncology trials tended to be much larger than randomized trials from the Cochrane Database. Still, the median power of phase III oncology trials was only 49% (IQR, 14%-95%), and the power was <80% in 65% of trials. Using the phase III oncology-specific prior, only 53% of trials claiming superiority (114 of 216) had a ≥90% probability of clinically meaningful benefits. Conversely, the probability that the experimental arm was superior to the control arm (HR <1) exceeded 90% in 17% of trials interpreted as having no benefit (34 of 199). CONCLUSION: By enabling computation of contextual probabilities for the treatment effect from summary statistics, our robust, highly practical tool, now posted on a user-friendly webpage, can aid the wider oncology community in the interpretation of phase III trials.


Subject(s)
Clinical Trials, Phase III as Topic , Randomized Controlled Trials as Topic , Humans , Neoplasms/therapy , Medical Oncology/methods , Treatment Outcome , Signal-To-Noise Ratio , Evidence-Based Medicine
3.
Clin Cancer Res ; 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39133081

ABSTRACT

BACKGROUND: Survival analyses of novel agents with long-term responders often exhibit differential hazard rates over time. Such proportional hazards violations (PHVs) may reduce the power of the log-rank test and lead to misinterpretation of trial results. We aimed to characterize the incidence and study attributes associated with PHVs in phase 3 oncology trials and assess the utility of restricted mean survival time (RMST) and MaxCombo as additional analyses. METHODS: Clinicaltrials.gov and PubMed were searched to identify 2-arm, randomized, phase 3 superiority-design cancer trials with time-to-event primary endpoints and published results through 2020. Patient-level data were reconstructed from published Kaplan-Meier curves. PHVs were assessed using Schoenfeld residuals. RESULTS: Three hundred fifty-seven Kaplan-Meier comparisons across 341 trials were analyzed, encompassing 292,831 enrolled patients. PHVs were identified in 85/357 (23.8%; 95%CI 19.7%, 28.5%) comparisons. In multivariable analysis, non-OS endpoints (odds ratio [OR] 2.16 [95%CI 1.21, 3.87]; P=.009) were associated with higher odds of PHVs, and immunotherapy comparisons (OR 1.94 [95%CI 0.98, 3.86]; P=.058) were weakly suggestive of higher odds of PHVs. Few trials with PHVs (25/85, 29.4%) pre-specified a statistical plan to account for PHVs. Fourteen trials with PHVs exhibited discordant statistical signals with RMST or MaxCombo, of which ten (71%) reported negative results. CONCLUSION: PHVs are common across therapy types, and attempts to account for PHVs in statistical design are lacking despite the potential for results exhibiting non-proportional hazards to be misinterpreted.

4.
JCO Clin Cancer Inform ; 8: e2400102, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39213473

ABSTRACT

PURPOSE: A previous study demonstrated that power against the (unobserved) true effect for the primary end point (PEP) of most phase III oncology trials is low, suggesting an increased risk of false-negative findings in the field of late-phase oncology. Fitting models with prognostic covariates is a potential solution to improve power; however, the extent to which trials leverage this approach, and its impact on trial interpretation at scale, is unknown. To that end, we hypothesized that phase III trials using multivariable PEP analyses are more likely to demonstrate superiority versus trials with univariable analyses. METHODS: PEP analyses were reviewed from trials registered on ClinicalTrials.gov. Adjusted odds ratios (aORs) were calculated by logistic regressions. RESULTS: Of the 535 trials enrolling 454,824 patients, 69% (n = 368) used a multivariable PEP analysis. Trials with multivariable PEP analyses were more likely to demonstrate PEP superiority (57% [209 of 368] v 42% [70 of 167]; aOR, 1.78 [95% CI, 1.18 to 2.72]; P = .007). Among trials with a multivariable PEP model, 16 conditioned on covariates and 352 stratified by covariates. However, 108 (35%) of 312 trials with stratified analyses lost power by categorizing a continuous variable, which was especially common among immunotherapy trials (aOR, 2.45 [95% CI, 1.23 to 4.92]; P = .01). CONCLUSION: Trials increasing power by fitting multivariable models were more likely to demonstrate PEP superiority than trials with unadjusted analysis. Underutilization of conditioning models and empirical power loss associated with covariate categorization required by stratification were identified as barriers to power gains. These findings underscore the opportunity to increase power in phase III trials with conventional methodology and improve patient access to effective novel therapies.


Subject(s)
Clinical Trials, Phase III as Topic , Neoplasms , Humans , Endpoint Determination/methods , Endpoint Determination/standards , Medical Oncology/methods , Medical Oncology/standards , Multivariate Analysis , Neoplasms/diagnosis , Neoplasms/therapy , Odds Ratio , Prognosis
5.
Cancer Res Commun ; 4(8): 2183-2188, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39099199

ABSTRACT

Secondary endpoints (SEP) provide crucial information in the interpretation of clinical trials, but their features are not yet well understood. Thus, we sought to empirically characterize the scope and publication rate of SEPs among late-phase oncology trials. We assessed SEPs for each randomized, published phase III oncology trial across all publications and ClinicalTrials.gov, performing logistic regressions to evaluate associations between trial characteristics and SEP publication rates. After screening, a total of 280 trials enrolling 244,576 patients and containing 2,562 SEPs met the inclusion criteria. Only 22% of trials (62/280) listed all SEPs consistently between ClinicalTrials.gov and the trial protocol. The absolute number of SEPs per trial increased over time, and trials sponsored by industry had a greater number of SEPs (median 9 vs. 5 SEPs per trial; P < 0.0001). In total, 69% of SEPs (1,770/2,562) were published. The publication rate significantly varied by SEP category [X2 (5, N = 2,562) = 245.86; P < 0.001]. SEPs that place the most burden on patients, such as patient-reported outcomes and translational correlatives, were published at 63% (246/393) and 44% (39/88), respectively. Trials with more SEPs were associated with lower overall SEP publication rates. Overall, our findings are that SEP publication rates in late-phase oncology trials are highly variable based on the type of SEP. To avoid undue burden on patients and promote transparency of findings, trialists should weigh the biological and clinical relevance of each SEP together with its feasibility at the time of trial design. SIGNIFICANCE: In this investigation, we characterized the utilization and publication rates of SEPs among late-phase oncology trials. Our results draw attention to the proliferation of SEPs in recent years. Although overall publication rates were high, underpublication was detected among endpoints that may increase patient burden (such as translational correlatives and patient-reported outcomes).


Subject(s)
Clinical Trials, Phase III as Topic , Humans , Neoplasms/therapy , Medical Oncology/statistics & numerical data , Randomized Controlled Trials as Topic/statistics & numerical data , Endpoint Determination
6.
medRxiv ; 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39108512

ABSTRACT

Most oncology trials define superiority of an experimental therapy compared to a control therapy according to frequentist significance thresholds, which are widely misinterpreted. Posterior probability distributions computed by Bayesian inference may be more intuitive measures of uncertainty, particularly for measures of clinical benefit such as the minimum clinically important difference (MCID). Here, we manually reconstructed 194,129 individual patient-level outcomes across 230 phase III, superiority-design, oncology trials. Posteriors were calculated by Markov Chain Monte Carlo sampling using standard priors. All trials interpreted as positive had probabilities > 90% for marginal benefits (HR < 1). However, 38% of positive trials had ≤ 90% probabilities of achieving the MCID (HR < 0.8), even under an enthusiastic prior. A subgroup analysis of 82 trials that led to regulatory approval showed 30% had ≤ 90% probability for meeting the MCID under an enthusiastic prior. Conversely, 24% of negative trials had > 90% probability of achieving marginal benefits, even under a skeptical prior, including 12 trials with a primary endpoint of overall survival. Lastly, a phase III oncology-specific prior from a previous work, which uses published summary statistics rather than reconstructed data to compute posteriors, validated the individual patient-level data findings. Taken together, these results suggest that Bayesian models add considerable unique interpretative value to phase III oncology trials and provide a robust solution for overcoming the discrepancies between refuting the null hypothesis and obtaining a MCID.

7.
Int J Cancer ; 155(11): 1939-1943, 2024 Dec 01.
Article in English | MEDLINE | ID: mdl-39138841

ABSTRACT

Disease progression in clinical trials is commonly defined by radiologic measures. However, clinical progression may be more meaningful to patients, may occur even when radiologic criteria for progression are not met, and often requires a change in therapy in clinical practice. The objective of this study was to determine the utilization of clinical progression criteria within progression-based trial endpoints among phase III trials testing systemic therapies for metastatic solid tumors. The primary manuscripts and protocols of phase III trials were reviewed for whether clinical events, such as refractory pain, tumor bleeding, or neurologic compromise, could constitute a progression event. Univariable logistic regression computed odds ratios (OR) and 95% CI for associations between trial-level covariates and clinical progression. A total of 216 trials enrolling 148,190 patients were included, with publication dates from 2006 through 2020. A major change in clinical status was included in the progression criteria of 13% of trials (n = 27), most commonly as a secondary endpoint (n = 22). Only 59% of trials (n = 16) reported distinct clinical progression outcomes that constituted the composite surrogate endpoint. Compared with other disease sites, genitourinary trials were more likely to include clinical progression definitions (16/33 [48%] vs. 11/183 [6%]; OR, 14.72; 95% CI, 5.99 to 37.84; p < .0001). While major tumor-related clinical events were seldom considered as disease progression events, increased attention to clinical progression may improve the meaningfulness and clinical applicability of surrogate endpoints for patients with metastatic solid tumors.


Subject(s)
Clinical Trials, Phase III as Topic , Disease Progression , Neoplasms , Humans , Neoplasms/pathology , Neoplasms/therapy , Endpoint Determination/methods
8.
Oncologist ; 29(7): 547-550, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38824414

ABSTRACT

Missing visual elements (MVE) in Kaplan-Meier (KM) curves can misrepresent data, preclude curve reconstruction, and hamper transparency. This study evaluated KM plots of phase III oncology trials. MVE were defined as an incomplete y-axis range or missing number at risk table in a KM curve. Surrogate endpoint KM curves were additionally evaluated for complete interpretability, defined by (1) reporting the number of censored patients and (2) correspondence of the disease assessment interval with the number at risk interval. Among 641 trials enrolling 518 235 patients, 116 trials (18%) had MVE in KM curves. Industry sponsorship, larger trials, and more recently published trials were correlated with lower odds of MVE. Only 3% of trials (15 of 574) published surrogate endpoint KM plots with complete interpretability. Improvements in the quality of KM curves of phase III oncology trials, particularly for surrogate endpoints, are needed for greater interpretability, reproducibility, and transparency in oncology research.


Subject(s)
Clinical Trials, Phase III as Topic , Kaplan-Meier Estimate , Humans , Clinical Trials, Phase III as Topic/standards , Neoplasms/therapy , Medical Oncology/standards , Medical Oncology/methods
9.
JAMA Netw Open ; 7(3): e243379, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38546648

ABSTRACT

Importance: Subgroup analyses are often performed in oncology to investigate differential treatment effects and may even constitute the basis for regulatory approvals. Current understanding of the features, results, and quality of subgroup analyses is limited. Objective: To evaluate forest plot interpretability and credibility of differential treatment effect claims among oncology trials. Design, Setting, and Participants: This cross-sectional study included randomized phase 3 clinical oncology trials published prior to 2021. Trials were screened from ClinicalTrials.gov. Main Outcomes and Measures: Missing visual elements in forest plots were defined as a missing point estimate or use of a linear x-axis scale for hazard and odds ratios. Multiplicity of testing control was recorded. Differential treatment effect claims were rated using the Instrument for Assessing the Credibility of Effect Modification Analyses. Linear and logistic regressions evaluated associations with outcomes. Results: Among 785 trials, 379 studies (48%) enrolling 331 653 patients reported a subgroup analysis. The forest plots of 43% of trials (156 of 363) were missing visual elements impeding interpretability. While 4148 subgroup effects were evaluated, only 1 trial (0.3%) controlled for multiple testing. On average, trials that did not meet the primary end point conducted 2 more subgroup effect tests compared with trials meeting the primary end point (95% CI, 0.59-3.43 tests; P = .006). A total of 101 differential treatment effects were claimed across 15% of trials (55 of 379). Interaction testing was missing in 53% of trials (29 of 55) claiming differential treatment effects. Trials not meeting the primary end point were associated with greater odds of no interaction testing (odds ratio, 4.47; 95% CI, 1.42-15.55, P = .01). The credibility of differential treatment effect claims was rated as low or very low in 93% of cases (94 of 101). Conclusions and Relevance: In this cross-sectional study of phase 3 oncology trials, nearly half of trials presented a subgroup analysis in their primary publication. However, forest plots of these subgroup analyses largely lacked essential features for interpretation, and most differential treatment effect claims were not supported. Oncology subgroup analyses should be interpreted with caution, and improvements to the quality of subgroup analyses are needed.


Subject(s)
Medical Oncology , Neoplasms , Humans , Cross-Sectional Studies , Neoplasms/therapy , Odds Ratio , Randomized Controlled Trials as Topic , Clinical Trials, Phase III as Topic
10.
J Natl Cancer Inst ; 116(6): 990-994, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38331394

ABSTRACT

Differential censoring, which refers to censoring imbalance between treatment arms, may bias the interpretation of survival outcomes in clinical trials. In 146 phase III oncology trials with statistically significant time-to-event surrogate primary endpoints, we evaluated the association between differential censoring in the surrogate primary endpoints, control arm adequacy, and the subsequent statistical significance of overall survival results. Twenty-four (16%) trials exhibited differential censoring that favored the control arm, whereas 15 (10%) exhibited differential censoring that favored the experimental arm. Positive overall survival was more common in control arm differential censoring trials (63%) than in trials without differential censoring (37%) or with experimental arm differential censoring (47%; odds ratio = 2.64, 95% confidence interval = 1.10 to 7.20; P = .04). Control arm differential censoring trials more frequently used suboptimal control arms at 46% compared with 20% without differential censoring and 13% with experimental arm differential censoring (odds ratio = 3.60, 95% confidence interval = 1.29 to 10.0; P = .007). The presence of control arm differential censoring in trials with surrogate primary endpoints, especially in those with overall survival conversion, may indicate an inadequate control arm and should be examined and explained.


Subject(s)
Neoplasms , Humans , Neoplasms/mortality , Neoplasms/therapy , Clinical Trials, Phase III as Topic , Research Design/standards , Medical Oncology/standards
11.
Lancet Oncol ; 24(12): 1387-1398, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38039992

ABSTRACT

BACKGROUND: Stereotactic body radiotherapy (SBRT) has the potential to ablate localised pancreatic ductal adenocarcinoma. Selective dismutase mimetics sensitise tumours while reducing normal tissue toxicity. This trial was designed to establish the efficacy and toxicity afforded by the selective dismutase mimetic avasopasem manganese when combined with ablative SBRT for localised pancreatic ductal adenocarcinoma. METHODS: In this adaptive, randomised, double-blind, placebo-controlled, phase 1b/2 trial, patients aged 18 years or older with borderline resectable or locally advanced pancreatic cancer who had received at least 3 months of chemotherapy and had an Eastern Cooperative Oncology Group performance status of 0-2 were enrolled at six academic sites in the USA. Eligible patients were randomly assigned (1:1), with block randomisation (block sizes of 6-12) with a maximum of 24 patients per group, to receive daily avasopasem (90 mg) or placebo intravenously directly before (ie, within 180 min) SBRT (50, 55, or 60 Gy in five fractions, adaptively assigned in real time by Bayesian estimates of 90-day safety and efficacy). Patients and physicians were masked to treatment group allocation, but not to SBRT dose. The primary objective was to find the optimal dose of SBRT with avasopasem or placebo as determined by the late onset EffTox method. All analyses were done on an intention-to-treat basis. This study is registered with ClinicalTrials.gov, NCT03340974, and is complete. FINDINGS: Between Jan 25, 2018, and April 29, 2020, 47 patients were screened, of whom 42 were enrolled (median age was 71 years [IQR 63-75], 23 [55%] were male, 19 [45%] were female, 37 [88%] were White, three [7%] were Black, and one [2%] each were unknown or other races) and randomly assigned to avasopasem (n=24) or placebo (n=18); the placebo group was terminated early after failing to meet prespecified efficacy parameters. At data cutoff (June 28, 2021), the avasopasem group satisfied boundaries for both efficacy and toxicity. Late onset EffTox efficacy response was observed in 16 (89%) of 18 patients at 50 Gy and six (100%) of six patients at 55 Gy in the avasopasem group, and was observed in three (50%) of six patients at 50 Gy and nine (75%) of 12 patients at 55 Gy in the placebo group, and the Bayesian model recommended 50 Gy or 55 Gy in five fractions with avasopasem for further study. Serious adverse events of any cause were reported in three (17%) of 18 patients in the placebo group and six (25%) of 24 in the avasopasem group. In the placebo group, grade 3 adverse events within 90 days of SBRT were abdominal pain, acute cholangitis, pyrexia, increased blood lactic acid, and increased lipase (one [6%] each); no grade 4 events occurred. In the avasopasem group, grade 3-4 adverse events within 90 days of SBRT were acute kidney injury, increased blood alkaline phosphatase, haematoma, colitis, gastric obstruction, lung infection, abdominal abscess, post-surgical atrial fibrillation, and pneumonia leading to respiratory failure (one [4%] each).There were no treatment-related deaths but one late death in the avasopasem group due to sepsis in the setting of duodenal obstruction after off-study treatment was reported as potentially related to SBRT. INTERPRETATION: SBRT that uses 50 or 55 Gy in five fractions can be considered for patients with localised pancreatic ductal adenocarcinoma. The addition of avasopasem might further enhance disease outcomes. A larger phase 2 trial (GRECO-2, NCT04698915) is underway to validate these results. FUNDING: Galera Therapeutics.


Subject(s)
Adenocarcinoma , Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Radiosurgery , Humans , Male , Female , Aged , Adenocarcinoma/radiotherapy , Adenocarcinoma/drug therapy , Pancreatic Neoplasms/radiotherapy , Pancreatic Neoplasms/drug therapy , Radiosurgery/adverse effects , Bayes Theorem , Carcinoma, Pancreatic Ductal/radiotherapy , Carcinoma, Pancreatic Ductal/drug therapy , Double-Blind Method , Antineoplastic Combined Chemotherapy Protocols/therapeutic use
12.
Eur J Cancer ; 194: 113357, 2023 11.
Article in English | MEDLINE | ID: mdl-37827064

ABSTRACT

BACKGROUND: The 'Table 1 Fallacy' refers to the unsound use of significance testing for comparing the distributions of baseline variables between randomised groups to draw erroneous conclusions about balance or imbalance. We performed a cross-sectional study of the Table 1 Fallacy in phase III oncology trials. METHODS: From ClinicalTrials.gov, 1877 randomised trials were screened. Multivariable logistic regressions evaluated predictors of the Table 1 Fallacy. RESULTS: A total of 765 randomised controlled trials involving 553,405 patients were analysed. The Table 1 Fallacy was observed in 25% of trials (188 of 765), with 3% of comparisons deemed significant (59 of 2353), approximating the typical 5% type I error assertion probability. Application of trial-level multiplicity corrections reduced the rate of significant findings to 0.3% (six of 2345 tests). Factors associated with lower odds of the Table 1 Fallacy included industry sponsorship (adjusted odds ratio [aOR] 0.29, 95% confidence interval [CI] 0.18-0.47; multiplicity-corrected P < 0.0001), larger trial size (≥795 versus <280 patients; aOR 0.32, 95% CI 0.19-0.53; multiplicity-corrected P = 0.0008), and publication in a European versus American journal (aOR 0.06, 95% CI 0.03-0.13; multiplicity-corrected P < 0.0001). CONCLUSIONS: This study highlights the persistence of the Table 1 Fallacy in contemporary oncology randomised controlled trials, with one of every four trials testing for baseline differences after randomisation. Significance testing is a suboptimal method for identifying unsound randomisation procedures and may encourage misleading inferences. Journal-level enforcement is a possible strategy to help mitigate this fallacy.


Subject(s)
Neoplasms , Humans , Prevalence , Cross-Sectional Studies , Neoplasms/epidemiology , Neoplasms/therapy , Randomized Controlled Trials as Topic
13.
Liver Cancer ; 12(3): 198-208, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37593365

ABSTRACT

Introduction: Tumor-related liver failure (TRLF) is the most common cause of death in patients with intrahepatic cholangiocarcinoma (ICC). Though we previously showed that liver radiotherapy (L-RT) for locally advanced ICC is associated with less frequent TRLF and longer overall survival (OS), the role of L-RT for patients with extrahepatic metastatic disease (M1) remains undefined. We sought to compare outcomes for M1 ICC patients treated with and without L-RT. Methods: We reviewed ICC patients that found to have M1 disease at initial diagnosis at a single institution between 2010 and 2021 who received L-RT, matching them with an institutional cohort by propensity score and a National Cancer Database (NCDB) cohort by frequency technique. The median biologically effective dose was 97.5 Gy (interquartile range 80.5-97.9 Gy) for L-RT. Patients treated with other local therapies or supportive care alone were excluded. We analyzed survival with Cox proportional hazard modeling. Results: We identified 61 patients who received L-RT and 220 who received chemotherapy alone. At median follow-up of 11 months after diagnosis, median OS was 9 months (95% confidence interval [CI] 8-11) and 21 months (CI: 17-26) for patients receiving chemotherapy alone and L-RT, respectively. TRLF was the cause of death more often in the patients who received chemotherapy alone compared to those who received L-RT (82% vs. 47%; p = 0.001). On multivariable propensity score-matched analysis, associations with lower risk of death included duration of upfront chemotherapy (hazard ratio [HR] 0.82; p = 0.005) and receipt of L-RT (HR: 0.40; p = 0.002). The median OS from diagnosis for NCDB chemotherapy alone cohort was shorter than that of the institutional L-RT cohort (9 vs. 22 months; p < 0.001). Conclusion: For M1 ICC, L-RT associated with a lower rate of death due to TRLF and longer OS versus those treated with chemotherapy alone. Prospective studies of L-RT in this setting are warranted.

14.
Cureus ; 15(5): e38748, 2023 May.
Article in English | MEDLINE | ID: mdl-37303453

ABSTRACT

Peripartum cardiomyopathy (PPCM) is a cause of heart failure that develops within five months postpartum. Biventricular thrombosis is a rare complication of PPCM with only a few cases reported in the literature. Here, we report a case of PPCM with biventricular thrombosis that was successfully treated with medical management.

15.
Oncologist ; 28(4): 327-332, 2023 04 06.
Article in English | MEDLINE | ID: mdl-36715178

ABSTRACT

BACKGROUND: Limited data from small series have suggested that brain metastases from biliary tract cancers (BrM-BTC) affect ≤2% of patients with BTC. We sought to review our experience with patients with BrM-BTC and to identify associations of tumor-related molecular alterations with outcomes. MATERIALS AND METHODS: A retrospective review of patients with BTC seen at a tertiary referral center from 2005 to 2021 was performed; patients with BrM-BTC were identified, and clinical and molecular data were collected. RESULTS: Twenty-one of 823 patients with BTC (2.6%) developed BrM. For patients with BrM-BTC, median follow-up time was 27.9 months after primary BTC diagnosis and 3.1 months after BrM diagnosis. Median time from primary diagnosis to diagnosis of BrM was 14.4 [range, 1.1-66.0] months. Median overall survival (OS) from primary diagnosis was 31.5 [2.9-99.8] months and median OS from BrM diagnosis was 4.2 [0.2-33.8] months. Patients who underwent BrM-directed therapy trended toward longer OS following BrM diagnosis than patients receiving supportive care only (median 6.5 vs 0.8 months, P = .060). The BrM-BTC cohort was enriched for BRAF (30%), PIK3CA (25%), and GNAS (20%) mutations. patients with BrM-BTC with BRAF mutations trended toward longer OS following BrM diagnosis (median 13.1 vs 4.2 months, P = .131). CONCLUSION: This is the largest series of patients with BrM-BTC to date and provides molecular characterization of this rare subgroup of patients with BTC. Patients with BrM-BTC may be more likely to have BRAF mutations. With advances in targeted therapy for patients with BTC with actionable mutations, continued examination of shifting patterns of failure, with emphasis on BrM, is warranted.


Subject(s)
Bile Duct Neoplasms , Biliary Tract Neoplasms , Brain Neoplasms , Cholangiocarcinoma , Humans , Proto-Oncogene Proteins B-raf/genetics , Biliary Tract Neoplasms/genetics , Mutation , Brain Neoplasms/genetics , Retrospective Studies , Cholangiocarcinoma/pathology , Bile Duct Neoplasms/drug therapy
16.
Cancers (Basel) ; 14(4)2022 Feb 18.
Article in English | MEDLINE | ID: mdl-35205795

ABSTRACT

Prior malignancy exclusion criteria (PMEC) are often utilized in cancer clinical trials; however, the incidence of PMEC and the association of PMEC with trial participant age disparities remain poorly understood. This study aimed to identify age disparities in oncologic randomized clinical trials as a result of PMEC. Using a comprehensive collection of modern phase III cancer clinical trials obtained via ClinicalTrials.gov, we assessed the incidence and covariates associated with trials excluding patients with prior cancers within 5+ years from registration (PMEC-5). Using the National Cancer Institute Surveillance, Epidemiology, and End Results (SEER) database, we further sought to determine the correlation between PMEC-5 and age disparities. PMEC-5 were used in 41% of all trials, with higher PMEC-5 utilization among industry-supported trials as well as trials evaluating a targeted therapy. Comparing trial patient median ages with population-matched median ages by disease site and time-period, we assessed the association between PMEC-5 and age disparities among trial participants. PMEC-5 were independently associated with heightened age disparities, which further worsened with longer exclusionary timeframes. Together, PMEC likely contribute to age disparities, suggesting that eligibility criteria modernization through narrower PMEC timeframes may work toward reducing such disparities in cancer clinical trial enrollment.

17.
BMC Cancer ; 22(1): 174, 2022 Feb 16.
Article in English | MEDLINE | ID: mdl-35172762

ABSTRACT

BACKGROUND: Both modified FOLFIRINOX (mFFX) and gemcitabine/nab-paclitaxel chemotherapy regimens have been shown to improve clinical outcomes in patients with pancreatic cancer, and are often used interchangeably as the standard of care. Preclinical studies often do not use these regimens, since administering these multiagent approaches can be difficult. In this study, we assessed the feasibility of administering these two chemotherapy regimens in spontaneous pancreatic tumors using KPC mice with the ultimate goal of advancing preclinical studies. METHODS: KPC mice were created by breeding KrasLSL-G12D/+ to Trp53fl/fl;Ptf1αCre/+, resulting in KrasLSL-G12D/+;p53fl/+;Ptf1αCre/+ mice. At 14 weeks of age, mice were palpated for spontaneous tumor growth that was verified using ultrasounds. Mice with tumors under 15 mm in diameter were used. The mice were assigned to one of seven treatment regimens: 1 cycle of mFFX (FFX X1), 2 cycles of mFFX (FFX X2), 1 cycle of mFFXwith 40 Gy SBRT (FFX SBRT), 1 cycle of gemcitabine/nab-paclitaxel (GEM/AB X1), 2 cycles of gemcitabine/nab-paclitaxel (GEM/AB X2), 2 cycles of gemcitabine/nab-paclitaxel with 40 Gy SBRT (GEM/AB SBRT), or saline only (control). RESULTS: In total, 92 mice were included. The median OS in the FFX X2 group was slightly longer that the median OS in the FFX X1 group (15 days vs 11 days, P = 0.003). Mice in the GEM/AB X2 group had longer OS when compared to mice in the GEM/AB X1 group (33.5 vs 13 days, P = 0.001). Mice treated with chemotherapy survived longer than untreated control animals (median OS: 6.5 days, P < 0.001). Moreover, in mice treated with chemotherapy, mice that received 2 cycles of GEM/AB X2 had the longest survival, while the FFX X1 group had the poorest OS (P < 0.001). The addition of chemotherapy was associated with reduced number of myeloid and lymphoid cell types, except for CD4 + cells whose levels were largely unaltered only in tumors treated with gemcitabine/nab-paclitaxel. Lastly, chemotherapy followed by consolidative SBRT trended towards increased local control and survival. CONCLUSIONS: We demonstrate the utility and feasibility of clinically relevant mFOLFIRINOX and gemcitabine/nab-paclitaxel in preclinical models of pancreatic cancer.


Subject(s)
Albumins/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Deoxycytidine/analogs & derivatives , Disease Models, Animal , Paclitaxel/administration & dosage , Pancreatic Neoplasms/drug therapy , Animals , Deoxycytidine/administration & dosage , Feasibility Studies , Fluorouracil/administration & dosage , Humans , Irinotecan/administration & dosage , Leucovorin/administration & dosage , Mice , Oxaliplatin/administration & dosage , Gemcitabine
18.
Int J Radiat Oncol Biol Phys ; 113(1): 135-142, 2022 05 01.
Article in English | MEDLINE | ID: mdl-34986381

ABSTRACT

PURPOSE: Trastuzumab is associated with cardiac dysfunction in patients with human epidermal growth factor receptor 2 (HER-2)-positive breast cancer. The current study examines the effect of radiation therapy (RT) on cardiotoxicity in this patient population. METHODS AND MATERIALS: The Herceptin Adjuvant (HERA) trial is a phase 3 prospective, randomized clinical trial that established the efficacy of trastuzumab in HER-2-positive breast cancer. The current study is a retrospective analysis of 3321 trial patients treated with trastuzumab, with or without RT. Cardiac function was closely monitored over a median follow-up period of 11 years. The primary endpoint of the current study was to determine the effect of RT on left ventricular ejection fraction (LVEF) and the occurrence of cardiovascular events. RESULTS: Patients were divided into 3 groups: 1270 patients received trastuzumab and left-sided RT (group 1); 1271 patients received trastuzumab and right-sided RT (group 2); and 780 patients received trastuzumab with no RT (group 3). The incidence of decline in LVEF documented by echocardiography was 9.18%, 8.99%, and 8.80%, respectively, with no significant differences among the 3 groups (P = .073). The incidence of cardiovascular events was low in all groups, with the lowest incidence noted in group 3 (0.62%) followed by group 2 (0.92%) and group 1 (1.08%) (P = .619). Univariate and multivariate competing-risks regression showed that left-sided and right-sided RT delivery did not significantly increase the risk of LVEF decline or cardiovascular events. CONCLUSIONS: Our analysis of the HERA trial suggests that RT does not significantly increase the risk of cardiotoxicity in HER-2-positive breast cancer patients treated with trastuzumab. Continued monitoring of patients is needed to investigate late effects of contemporary treatments for breast cancer patients.


Subject(s)
Breast Neoplasms , Cardiotoxicity , Breast Neoplasms/drug therapy , Breast Neoplasms/radiotherapy , Cardiotoxicity/etiology , Female , Humans , Prospective Studies , Receptor, ErbB-2 , Retrospective Studies , Stroke Volume , Trastuzumab/therapeutic use , Ventricular Function, Left/radiation effects
19.
Ann Surg Oncol ; 29(1): 460-466, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34324113

ABSTRACT

PURPOSE: Post-mastectomy radiation therapy (PMRT) improves locoregional control and overall survival in patients with breast cancer. With the evolution of systemic therapy, the benefit of PMRT in patients with triple-negative disease requires further evaluation. PATIENTS AND METHODS: BEATRICE is a phase III randomized clinical trial that examined the efficacy of bevacizumab in patients with triple-negative breast cancer (TNBC). The current study is a retrospective analysis of data on patients enrolled and treated with mastectomy and systemic therapy. The primary endpoint was determining the effect of PMRT on locoregional recurrence rates (LRR). Hazard ratios were estimated using Cox regression, and LRR curves were generated by the Kaplan-Meier method. RESULTS: In total, 940 patients were included in our analysis, of whom 359 (38.2%) received PMRT while 581 (61.8%) did not. At median follow-up of 5 years, no significant difference in LRR was noted between the PMRT and no PMRT groups in node-negative patients (HR = 1.09). Patients with N1 disease had 5-year LRR-free survival of 96% for PMRT versus 91% for no PMRT (HR = 0.46). Most N2 patients received PMRT and had 5-year LRR-free survival of 76%. CONCLUSION: PMRT benefit in TNBC patients treated with modern systemic therapy is lower than historical reports. Delivery of PMRT in patients with N1 disease enrolled in the BEATRICE trial was not shown to improve local control. As this might be due to patient selection for PMRT, future randomized controlled trials are required to assess the role of PMRT in this patient population.


Subject(s)
Triple Negative Breast Neoplasms , Humans , Mastectomy , Retrospective Studies , Triple Negative Breast Neoplasms/radiotherapy
20.
BMJ Support Palliat Care ; 12(1): 42-45, 2022 Mar.
Article in English | MEDLINE | ID: mdl-32943466

ABSTRACT

BACKGROUND: Patients with gastrointestinal (GI) cancers experience a high symptom burden due to the effects of both cancer and treatment. As such, trials assessing symptom burden and supportive interventions are crucial. Here, we characterise the landscape of phase III GI cancer clinical trials and explore study outcomes centred on the patient's quality of life (QoL). METHODS: We searched ClinicalTrials.gov for phase III randomised controlled trials (RCTs) registered between 2000 and 2017 that are assessing a therapeutic intervention in adult patients with cancer and grouped trials by GI disease sites. RESULTS: Overall, we identified 76 phase III trials specific to GI cancers that enrolled a total of 53 725 patients. When analysing the primary outcomes measured, the vast majority of studies (n=71, 86%) measured disease-related endpoints such as progression-free survival or overall survival. All trials had a secondary endpoint that measured adverse events, but only 30 trials (39%) included QoL measures as secondary endpoints. Of the 30 trials that included QoL secondary endpoints, only 16 (53%) reported these results. Only five trials (7%) assessed interventions aimed at supportive measures impacting disease-related or treatment-related toxicity. None of the supportive trials included QoL as a primary endpoint and only two of these trials (40%) included QoL as a secondary endpoint. CONCLUSIONS: Most GI cancer trials failed to incorporate patient-centred outcomes or QoL measures when studying new interventions. These findings call for greater integration of patient-reported metrics, which may lead to better care and outcomes for patients with GI malignancies.


Subject(s)
Gastrointestinal Neoplasms , Adult , Clinical Trials as Topic , Gastrointestinal Neoplasms/therapy , Humans , Quality of Life
SELECTION OF CITATIONS
SEARCH DETAIL