Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 208
1.
Res Sq ; 2024 Mar 13.
Article En | MEDLINE | ID: mdl-38559222

Diabetic eye disease (DED) is a leading cause of blindness in the world. Early detection and treatment of DED have been shown to be both sight-saving and cost-effective. As such, annual testing for DED is recommended for adults with diabetes and is a Healthcare Effectiveness Data and Information Set (HEDIS) measure. However, adherence to this guideline has historically been low, and access to this sight-saving intervention has particularly been limited for specific populations, such as Black or African American patients. In 2018, the US Food and Drug Agency (FDA) De Novo cleared autonomous artificial intelligence (AI) for diagnosing DED in a primary care setting. In 2020, Johns Hopkins Medicine (JHM), an integrated healthcare system with over 30 primary care sites, began deploying autonomous AI for DED testing in some of its primary care clinics. In this retrospective study, we aimed to determine whether autonomous AI implementation was associated with increased adherence to annual DED testing, and whether this was different for specific populations. JHM primary care sites were categorized as "non-AI" sites (sites with no autonomous AI deployment over the study period and where patients are referred to eyecare for DED testing) or "AI-switched" sites (sites that did not have autonomous AI testing in 2019 but did by 2021). We conducted a difference-in-difference analysis using a logistic regression model to compare change in adherence rates from 2019 to 2021 between non-AI and AI-switched sites. Our study included all adult patients with diabetes managed within our health system (17,674 patients for the 2019 cohort and 17,590 patients for the 2021 cohort) and has three major findings. First, after controlling for a wide range of potential confounders, our regression analysis demonstrated that the odds ratio of adherence at AI-switched sites was 36% higher than that of non-AI sites, suggesting that there was a higher increase in DED testing between 2019 and 2021 at AI-switched sites than at non-AI sites. Second, our data suggested autonomous AI improved access for historically disadvantaged populations. The adherence rate for Black/African Americans increased by 11.9% within AI-switched sites whereas it decreased by 1.2% within non-AI sites over the same time frame. Third, the data suggest that autonomous AI improved health equity by closing care gaps. For example, in 2019, a large adherence rate gap existed between Asian Americans and Black/African Americans (61.1% vs. 45.5%). This 15.6% gap shrank to 3.5% by 2021. In summary, our real-world deployment results in a large integrated healthcare system suggest that autonomous AI improves adherence to a HEDIS measure, patient access, and health equity for patients with diabetes - particularly in historically disadvantaged patient groups. While our findings are encouraging, they will need to be replicated and validated in a prospective manner across more diverse settings.

2.
Nat Commun ; 15(1): 421, 2024 Jan 11.
Article En | MEDLINE | ID: mdl-38212308

Diabetic retinopathy can be prevented with screening and early detection. We hypothesized that autonomous artificial intelligence (AI) diabetic eye exams at the point-of-care would increase diabetic eye exam completion rates in a racially and ethnically diverse youth population. AI for Children's diabetiC Eye ExamS (NCT05131451) is a parallel randomized controlled trial that randomized youth (ages 8-21 years) with type 1 and type 2 diabetes to intervention (autonomous artificial intelligence diabetic eye exam at the point of care), or control (scripted eye care provider referral and education) in an academic pediatric diabetes center. The primary outcome was diabetic eye exam completion rate within 6 months. The secondary outcome was the proportion of participants who completed follow-through with an eye care provider if deemed appropriate. Diabetic eye exam completion rate was significantly higher (100%, 95%CI: 95.5%, 100%) in the intervention group (n = 81) than the control group (n = 83) (22%, 95%CI: 14.2%, 32.4%)(p < 0.001). In the intervention arm, 25/81 participants had an abnormal result, of whom 64% (16/25) completed follow-through with an eye care provider, compared to 22% in the control arm (p < 0.001). Autonomous AI increases diabetic eye exam completion rates in youth with diabetes.


Diabetes Mellitus, Type 2 , Diabetic Retinopathy , Child , Humans , Adolescent , Diabetic Retinopathy/diagnosis , Follow-Up Studies , Artificial Intelligence , Referral and Consultation
4.
Ophthalmol Sci ; 4(3): 100420, 2024.
Article En | MEDLINE | ID: mdl-38284099

Topic: The goal of this review was to summarize the current level of evidence on biomarkers to quantify diabetic retinal neurodegeneration (DRN) and diabetic macular edema (DME). Clinical relevance: With advances in retinal diagnostics, we have more data on patients with diabetes than ever before. However, the staging system for diabetic retinal disease is still based only on color fundus photographs and we do not have clear guidelines on how to incorporate data from the relatively newer modalities into clinical practice. Methods: In this review, we use a Delphi process with experts to identify the most promising modalities to identify DRN and DME. These included microperimetry, full-field flash electroretinogram, spectral-domain OCT, adaptive optics, and OCT angiography. We then used a previously published method of determining the evidence level to complete detailed evidence grids for each modality. Results: Our results showed that among the modalities evaluated, the level of evidence to quantify DRN and DME was highest for OCT (level 1) and lowest for adaptive optics (level 4). Conclusion: For most of the modalities evaluated, prospective studies are needed to elucidate their role in the management and outcomes of diabetic retinal diseases. Financial Disclosures: Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.

5.
J Diabetes Sci Technol ; 18(2): 302-308, 2024 Mar.
Article En | MEDLINE | ID: mdl-37798955

OBJECTIVE: In the pivotal clinical trial that led to Food and Drug Administration De Novo "approval" of the first fully autonomous artificial intelligence (AI) diabetic retinal disease diagnostic system, a reflexive dilation protocol was used. Using real-world deployment data before implementation of reflexive dilation, we identified factors associated with nondiagnostic results. These factors allow a novel predictive dilation workflow, where patients most likely to benefit from pharmacologic dilation are dilated a priori to maximize efficiency and patient satisfaction. METHODS: Retrospective review of patients who were assessed with autonomous AI at Johns Hopkins Medicine (8/2020 to 5/2021). We constructed a multivariable logistic regression model for nondiagnostic results to compare characteristics of patients with and without diagnostic results, using adjusted odds ratio (aOR). P < .05 was considered statistically significant. RESULTS: Of 241 patients (59% female; median age = 59), 123 (51%) had nondiagnostic results. In multivariable analysis, type 1 diabetes (T1D, aOR = 5.82, 95% confidence interval [CI]: 1.45-23.40, P = .01), smoking (aOR = 2.86, 95% CI: 1.36-5.99, P = .005), and age (every 10-year increase, aOR = 2.12, 95% CI: 1.62-2.77, P < .001) were associated with nondiagnostic results. Following feature elimination, a predictive model was created using T1D, smoking, age, race, sex, and hypertension as inputs. The model showed an area under the receiver-operator characteristics curve of 0.76 in five-fold cross-validation. CONCLUSIONS: We used factors associated with nondiagnostic results to design a novel, predictive dilation workflow, where patients most likely to benefit from pharmacologic dilation are dilated a priori. This new workflow has the potential to be more efficient than reflexive dilation, thus maximizing the number of at-risk patients receiving their diabetic retinal examinations.


Delivery of Health Care, Integrated , Diabetes Mellitus, Type 1 , Diabetic Retinopathy , Female , Humans , Male , Middle Aged , Artificial Intelligence , Diabetic Retinopathy/diagnostic imaging , Dilatation , Risk Factors , United States , Workflow , Retrospective Studies , Clinical Trials as Topic
6.
NPJ Digit Med ; 6(1): 184, 2023 Oct 04.
Article En | MEDLINE | ID: mdl-37794054

Autonomous artificial intelligence (AI) promises to increase healthcare productivity, but real-world evidence is lacking. We developed a clinic productivity model to generate testable hypotheses and study design for a preregistered cluster-randomized clinical trial, in which we tested the hypothesis that a previously validated US FDA-authorized AI for diabetic eye exams increases clinic productivity (number of completed care encounters per hour per specialist physician) among patients with diabetes. Here we report that 105 clinic days are cluster randomized to either intervention (using AI diagnosis; 51 days; 494 patients) or control (not using AI diagnosis; 54 days; 499 patients). The prespecified primary endpoint is met: AI leads to 40% higher productivity (1.59 encounters/hour, 95% confidence interval [CI]: 1.37-1.80) than control (1.14 encounters/hour, 95% CI: 1.02-1.25), p < 0.00; the secondary endpoint (productivity in all patients) is also met. Autonomous AI increases healthcare system productivity, which could potentially increase access and reduce health disparities. ClinicalTrials.gov NCT05182580.

7.
NPJ Digit Med ; 6(1): 185, 2023 Oct 06.
Article En | MEDLINE | ID: mdl-37803209

Autonomous AI systems in medicine promise improved outcomes but raise concerns about liability, regulation, and costs. With the advent of large-language models, which can understand and generate medical text, the urgency for addressing these concerns increases as they create opportunities for more sophisticated autonomous AI systems. This perspective explores the liability implications for physicians, hospitals, and creators of AI technology, as well as the evolving regulatory landscape and payment models. Physicians may be favored in malpractice cases if they follow rigorously validated AI recommendations. However, AI developers may face liability for failing to adhere to industry-standard best practices during development and implementation. The evolving regulatory landscape, led by the FDA, seeks to ensure transparency, evaluation, and real-world monitoring of AI systems, while payment models such as MPFS, NTAP, and commercial payers adapt to accommodate them. The widespread adoption of autonomous AI systems can potentially streamline workflows and allow doctors to concentrate on the human aspects of healthcare.

8.
Ophthalmol Sci ; 3(4): 100394, 2023 Dec.
Article En | MEDLINE | ID: mdl-37885755

The rapid progress of large language models (LLMs) driving generative artificial intelligence applications heralds the potential of opportunities in health care. We conducted a review up to April 2023 on Google Scholar, Embase, MEDLINE, and Scopus using the following terms: "large language models," "generative artificial intelligence," "ophthalmology," "ChatGPT," and "eye," based on relevance to this review. From a clinical viewpoint specific to ophthalmologists, we explore from the different stakeholders' perspectives-including patients, physicians, and policymakers-the potential LLM applications in education, research, and clinical domains specific to ophthalmology. We also highlight the foreseeable challenges of LLM implementation into clinical practice, including the concerns of accuracy, interpretability, perpetuating bias, and data security. As LLMs continue to mature, it is essential for stakeholders to jointly establish standards for best practices to safeguard patient safety. Financial Disclosures: Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.

9.
NPJ Digit Med ; 6(1): 170, 2023 Sep 12.
Article En | MEDLINE | ID: mdl-37700029

Health equity is a primary goal of healthcare stakeholders: patients and their advocacy groups, clinicians, other providers and their professional societies, bioethicists, payors and value based care organizations, regulatory agencies, legislators, and creators of artificial intelligence/machine learning (AI/ML)-enabled medical devices. Lack of equitable access to diagnosis and treatment may be improved through new digital health technologies, especially AI/ML, but these may also exacerbate disparities, depending on how bias is addressed. We propose an expanded Total Product Lifecycle (TPLC) framework for healthcare AI/ML, describing the sources and impacts of undesirable bias in AI/ML systems in each phase, how these can be analyzed using appropriate metrics, and how they can be potentially mitigated. The goal of these "Considerations" is to educate stakeholders on how potential AI/ML bias may impact healthcare outcomes and how to identify and mitigate inequities; to initiate a discussion between stakeholders on these issues, in order to ensure health equity along the expanded AI/ML TPLC framework, and ultimately, better health outcomes for all.

11.
NPJ Digit Med ; 6(1): 53, 2023 Mar 27.
Article En | MEDLINE | ID: mdl-36973403

The effectiveness of using artificial intelligence (AI) systems to perform diabetic retinal exams ('screening') on preventing vision loss is not known. We designed the Care Process for Preventing Vision Loss from Diabetes (CAREVL), as a Markov model to compare the effectiveness of point-of-care autonomous AI-based screening with in-office clinical exam by an eye care provider (ECP), on preventing vision loss among patients with diabetes. The estimated incidence of vision loss at 5 years was 1535 per 100,000 in the AI-screened group compared to 1625 per 100,000 in the ECP group, leading to a modelled risk difference of 90 per 100,000. The base-case CAREVL model estimated that an autonomous AI-based screening strategy would result in 27,000 fewer Americans with vision loss at 5 years compared with ECP. Vision loss at 5 years remained lower in the AI-screened group compared to the ECP group, in a wide range of parameters including optimistic estimates biased toward ECP. Real-world modifiable factors associated with processes of care could further increase its effectiveness. Of these factors, increased adherence with treatment was estimated to have the greatest impact.

12.
Br J Ophthalmol ; 107(5): 705-711, 2023 05.
Article En | MEDLINE | ID: mdl-34952836

BACKGROUND/AIMS: Markers to clinically evaluate structural changes from diabetic retinal neurodegeneration (DRN) have not yet been established. To study the potential role of peripapillary retinal nerve fibre layer (pRNFL) thickness as a marker for DRN, we evaluated the relationship between diabetes, as well as glycaemic control irrespective of diabetes status and pRNFL thickness. METHODS: Leveraging data from a population-based cohort, we used general linear mixed models (GLMMs) with a random intercept for patient and eye to assess the association between pRNFL thickness (measured using GDx) and demographic, systemic and ocular parameters after adjusting for typical scan score. GLMMs were also used to determine: (1) the relationship between: (A) glycated haemoglobin (HbA1c) irrespective of diabetes diagnosis and pRNFL thickness, (B) diabetes and pRNFL thickness and (2) which quadrants of pRNFL may be affected in participants with diabetes and in relation to HbA1c. RESULTS: 7076 participants were included. After controlling for covariates, inferior pRNFL thickness was 0.94 µm lower (95% CI -1.28 µm to -0.60 µm), superior pRNFL thickness was 0.83 µm lower (95% CI -1.17 µm to -0.49 µm) and temporal pRNFL thickness was 1.33 µm higher (95% CI 0.99 µm to 1.67 µm) per unit increase in HbA1c. Nasal pRNFL thickness was not significantly associated with HbA1c (p=0.23). Similar trends were noted when diabetes was used as the predictor. CONCLUSION: Superior and inferior pRNFL was significantly thinner among those with higher HbA1c levels and/or diabetes, representing areas of the pRNFL that may be most affected by diabetes.


Diabetes Mellitus , Diabetic Retinopathy , Humans , Retinal Ganglion Cells , Diabetic Retinopathy/diagnosis , Glycated Hemoglobin , Tomography, Optical Coherence , Nerve Fibers
13.
NPJ Digit Med ; 5(1): 177, 2022 Dec 03.
Article En | MEDLINE | ID: mdl-36463327

The "Taxonomy of Artificial Intelligence for Medical Services and Procedures" became part of the Current Procedural Terminology (CPT®) code set effective January 1, 2022. It provides a framework for discrete and differentiable CPT codes which; are consistent with the features of the devices' output, characterize interaction between the device and the physician or other qualified health care professional, and foster appropriate payment. Descriptors include "Assistive", "Augmentative", and "Autonomous". As software increasingly augments the provision of medical services the taxonomy will foster consistent language in coding enabling patient, provider, and payer access to the benefits of innovation.

14.
BMJ Open Ophthalmol ; 7(1)2022 09.
Article En | MEDLINE | ID: mdl-36329022

AIM: To determine whether macular retinal nerve fibre layer (mRNFL) and ganglion cell-inner plexiform layer (GC-IPL) thicknesses vary by ethnicity after accounting for total retinal thickness. METHODS: We included healthy participants from the UK Biobank cohort who underwent macula-centred spectral domain-optical coherence tomography scans. mRNFL and GC-IPL thicknesses were determined for groups from different self-reported ethnic backgrounds. Multivariable regression models adjusting for covariables including age, gender, ethnicity and refractive error were built, with and without adjusting for total retinal thickness. RESULTS: 20237 participants were analysed. Prior to accounting for total retinal thickness, mRNFL thickness was on average 0.9 µm (-1.2, -0.6; p<0.001) lower among Asians and 1.5 µm (-2.3, -0.6; p<0.001) lower among black participants compared with white participants. Prior to accounting for total retinal thickness, the average GC-IPL thickness was 1.9 µm (-2.5, -1.4; p<0.001) lower among Asians compared with white participants, and 2.4 µm (-3.9, -1.0; p=0.001) lower among black participants compared with white participants. After accounting for total retinal thickness, the layer thicknesses were not significantly different among ethnic groups. When considered as a proportion of total retinal thickness, mRNFL thickness was ~0.1 and GC-IPL thickness was ~0.2 across age, gender and ethnic groups. CONCLUSIONS: The previously reported ethnic differences in layer thickness among groups are likely driven by differences in total retinal thickness. Our results suggest using layer thickness ratio (retinal layer thicknesses/total retinal thickness) rather than absolute thickness values when comparing retinal layer thicknesses across groups.


Macula Lutea , Nerve Fibers , Humans , Nerve Fibers/physiology , Retinal Ganglion Cells/physiology , Tomography, Optical Coherence/methods , Retina/diagnostic imaging
15.
Transl Vis Sci Technol ; 11(9): 17, 2022 09 01.
Article En | MEDLINE | ID: mdl-36135979

Purpose: Despite popularity of optical coherence tomography (OCT) in glaucoma studies, it's unclear how well OCT-derived metrics compare to traditional measures of retinal ganglion cell (RGC) abundance. Here, Diversity Outbred (J:DO) mice are used to directly compare ganglion cell complex (GCC) thickness measured by OCT to metrics of retinal anatomy measured ex vivo with retinal wholemounts and optic nerve histology. Methods: J:DO mice (n = 48) underwent fundoscopic and OCT examinations, with automated segmentation of GCC thickness. RGC axons were quantified from para-phenylenediamine-stained optic nerve cross-sections and somas from BRN3A-immunolabeled retinal wholemounts, with total inner retinal cellularity assessed by TO-PRO and subsequent hematoxylin staining. Results: J:DO tissues lacked overt disease. GCC thickness, RGC abundance, and total cell abundance varied broadly across individuals. GCC thickness correlated significantly to RGC somal density (r = 0.58) and axon number (r = 0.44), but not total cell density. Retinal area and nerve cross-sectional area varied widely. No metrics were significantly influenced by sex. In bilateral comparisons, GCC thickness (r = 0.95), axon (r = 0.72), and total cell density (r = 0.47) correlated significantly within individuals. Conclusions: Amongst outbred mice, OCT-derived measurements of GCC thickness correlate significantly to RGC somal and axon abundance. Factors limiting correlation are likely both biological and methodological, including differences in retinal area that distort sampling-based estimates of RGC abundance. Translational Relevance: There are significant-but imperfect-correlations between GCC thickness and RGC abundance across genetic contexts in mice, highlighting valid uses and ongoing challenges for meaningful use of OCT-derived metrics.


Glaucoma , Optic Nerve Diseases , Animals , Glaucoma/diagnosis , Hematoxylin , Mice , Optic Nerve Diseases/pathology , Retinal Ganglion Cells/pathology , Tomography, Optical Coherence/methods
16.
NPJ Digit Med ; 5(1): 100, 2022 Jul 19.
Article En | MEDLINE | ID: mdl-35854145

The use of digital technology is increasing rapidly across surgical specialities, yet there is no consensus for the term 'digital surgery'. This is critical as digital health technologies present technical, governance, and legal challenges which are unique to the surgeon and surgical patient. We aim to define the term digital surgery and the ethical issues surrounding its clinical application, and to identify barriers and research goals for future practice. 38 international experts, across the fields of surgery, AI, industry, law, ethics and policy, participated in a four-round Delphi exercise. Issues were generated by an expert panel and public panel through a scoping questionnaire around key themes identified from the literature and voted upon in two subsequent questionnaire rounds. Consensus was defined if >70% of the panel deemed the statement important and <30% unimportant. A final online meeting was held to discuss consensus statements. The definition of digital surgery as the use of technology for the enhancement of preoperative planning, surgical performance, therapeutic support, or training, to improve outcomes and reduce harm achieved 100% consensus agreement. We highlight key ethical issues concerning data, privacy, confidentiality and public trust, consent, law, litigation and liability, and commercial partnerships within digital surgery and identify barriers and research goals for future practice. Developers and users of digital surgery must not only have an awareness of the ethical issues surrounding digital applications in healthcare, but also the ethical considerations unique to digital surgery. Future research into these issues must involve all digital surgery stakeholders including patients.

19.
Ophthalmology ; 129(2): e14-e32, 2022 02.
Article En | MEDLINE | ID: mdl-34478784

IMPORTANCE: The development of artificial intelligence (AI) and other machine diagnostic systems, also known as software as a medical device, and its recent introduction into clinical practice requires a deeply rooted foundation in bioethics for consideration by regulatory agencies and other stakeholders around the globe. OBJECTIVES: To initiate a dialogue on the issues to consider when developing a bioethically sound foundation for AI in medicine, based on images of eye structures, for discussion with all stakeholders. EVIDENCE REVIEW: The scope of the issues and summaries of the discussions under consideration by the Foundational Principles of Ophthalmic Imaging and Algorithmic Interpretation Working Group, as first presented during the Collaborative Community on Ophthalmic Imaging inaugural meeting on September 7, 2020, and afterward in the working group. FINDINGS: Artificial intelligence has the potential to improve health care access and patient outcome fundamentally while decreasing disparities, lowering cost, and enhancing the care team. Nevertheless, substantial concerns exist. Bioethicists, AI algorithm experts, as well as the Food and Drug Administration and other regulatory agencies, industry, patient advocacy groups, clinicians and their professional societies, other provider groups, and payors (i.e., stakeholders) working together in collaborative communities to resolve the fundamental ethical issues of nonmaleficence, autonomy, and equity are essential to attain this potential. Resolution impacts all levels of the design, validation, and implementation of AI in medicine. Design, validation, and implementation of AI warrant meticulous attention. CONCLUSIONS AND RELEVANCE: The development of a bioethically sound foundation may be possible if it is based in the fundamental ethical principles of nonmaleficence, autonomy, and equity for considerations for the design, validation, and implementation for AI systems. Achieving such a foundation will be helpful for continuing successful introduction into medicine before consideration by regulatory agencies. Important improvements in accessibility and quality of health care, decrease in health disparities, and lower cost thereby can be achieved. These considerations should be discussed with all stakeholders and expanded on as a useful initiation of this dialogue.


Artificial Intelligence , Diagnostic Imaging , Eye Diseases/diagnostic imaging , Optical Imaging , Bioethics , Humans , Software , Translational Research, Biomedical
...