Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 81
Filter
1.
Inorg Chem ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38842049

ABSTRACT

To improve our understanding of the interaction mechanism in trivalent lanthanide and actinide complexes, studies with structurally different hard and soft donor ligands are of great interest. For that reason, the coordination chemistry of An(III) and Ln(III) with 2,6-bis(5-(tert-butyl)-1H-pyrazol-3-yl)pyridine (C4-BPP) has been explored. Time-resolved laser fluorescence spectroscopy (TRLFS) studies have revealed the formation of [Cm(C4-BPP)n]3+ (n = 1-3) (log ß1' = 7.2 ± 0.4, log ß2' = 10.1 ± 0.5, and log ß3' = 11.8 ± 0.6) and [Eu(C4-BPP)m]3+ (m = 1-2) (log ß1' = 4.9 ± 0.2 and log ß2' = 8.0 ± 0.4). The absence of the [Eu(C4-BPP)3]3+ complex shows a more favorable complexation of Cm(III) over that of Eu(III). Additionally, complementary NMR measurements have been conducted to examine the M(III)-N bond in Ln(III) and Am(III) C4-BPP complexes. 15N NMR data have revealed notable differences in the chemical shifts of the coordinating nitrogen atoms between the Am(III) and Ln(III) complexes. In the Am(III) complex, the coordinating nitrogen atoms have shown a shift by 260 ppm, indicating a higher fraction of covalent bonding in the Am(III)-N bond compared with the Ln(III)-N bond. This observation aligns excellently with the differences in the stability constants obtained from TRLFS studies.

2.
Nature ; 625(7996): 703-709, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38267679

ABSTRACT

Red mud is the waste of bauxite refinement into alumina, the feedstock for aluminium production1. With about 180 million tonnes produced per year1, red mud has amassed to one of the largest environmentally hazardous waste products, with the staggering amount of 4 billion tonnes accumulated on a global scale1. Here we present how this red mud can be turned into valuable and sustainable feedstock for ironmaking using fossil-free hydrogen-plasma-based reduction, thus mitigating a part of the steel-related carbon dioxide emissions by making it available for the production of several hundred million tonnes of green steel. The process proceeds through rapid liquid-state reduction, chemical partitioning, as well as density-driven and viscosity-driven separation between metal and oxides. We show the underlying chemical reactions, pH-neutralization processes and phase transformations during this surprisingly simple and fast reduction method. The approach establishes a sustainable toxic-waste treatment from aluminium production through using red mud as feedstock to mitigate greenhouse gas emissions from steelmaking.

3.
J Hazard Mater ; 465: 133421, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38211523

ABSTRACT

Re-melting of scrap in an electric arc furnace (EAF) results in the accumulation of filter dust from off-gas treatment that predominantly consists of iron and zinc oxides. Filter dust is classified as hazardous waste due to its high contents of potentially toxic or ecotoxic elements such as Pb, Cr, Cd, and As. A promising processing route for this waste is selective chlorination, in which the non-ferrous metal oxides are chlorinated and selectively evaporated in form of their respective chlorides from the remaining solids via the process gas flow. Here, we investigate stepwise thermochemical treatment of EAF dust with either waste iron(II) chloride solution or hydrochloric acid at 650, 800, and 1100 °C. The Zn and Pb contents of the thermochemically processed EAF dust could be lowered from 29.9% and 1.63% to 0.09% and 0.004%, respectively. Stepwise heating allowed high separation between zinc chloride at the 650 °C step and sodium-, potassium-, and lead-containing chlorides at higher temperatures. Furthermore, the lab-scale results were transferred to the use of an experimental rotary kiln highlighting the possibilities of upscaling the presented process. Selective chlorination of EAF dust with liquid chlorine donors is, therefore, suggested as a potential recycling method for Zn-enriched steelworks dusts.

4.
Nature ; 623(7989): 938-941, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37783227

ABSTRACT

Large constellations of bright artificial satellites in low Earth orbit pose significant challenges to ground-based astronomy1. Current orbiting constellation satellites have brightnesses between apparent magnitudes 4 and 6, whereas in the near-infrared Ks band, they can reach magnitude 2 (ref. 2). Satellite operators, astronomers and other users of the night sky are working on brightness mitigation strategies3,4. Radio emissions induce further potential risk to ground-based radio telescopes that also need to be evaluated. Here we report the outcome of an international optical observation campaign of a prototype constellation satellite, AST SpaceMobile's BlueWalker 3. BlueWalker 3 features a 64.3 m2 phased-array antenna as well as a launch vehicle adaptor (LVA)5. The peak brightness of the satellite reached an apparent magnitude of 0.4. This made the new satellite one of the brightest objects in the night sky. Additionally, the LVA reached an apparent V-band magnitude of 5.5, four times brighter than the current International Astronomical Union recommendation of magnitude 7 (refs. 3,6); it jettisoned on 10 November 2022 (Universal Time), and its orbital ephemeris was not publicly released until 4 days later. The expected build-out of constellations with hundreds of thousands of new bright objects1 will make active satellite tracking and avoidance strategies a necessity for ground-based telescopes.

5.
Cancers (Basel) ; 15(9)2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37174007

ABSTRACT

Merkel cell carcinoma (MCC) is frequently caused by the Merkel cell polyomavirus (MCPyV), and MCPyV-positive tumor cells depend on expression of the virus-encoded T antigens (TA). Here, we identify 4-[(5-methyl-1H-pyrazol-3-yl)amino]-2H-phenyl-1-phthalazinone (PHT)-a reported inhibitor of Aurora kinase A-as a compound inhibiting growth of MCC cells by repressing noncoding control region (NCCR)-controlled TA transcription. Surprisingly, we find that TA repression is not caused by inhibition of Aurora kinase A. However, we demonstrate that ß-catenin-a transcription factor repressed by active glycogen synthase kinase 3 (GSK3)-is activated by PHT, suggesting that PHT bears a hitherto unreported inhibitory activity against GSK3, a kinase known to function in promoting TA transcription. Indeed, applying an in vitro kinase assay, we demonstrate that PHT directly targets GSK3. Finally, we demonstrate that PHT exhibits in vivo antitumor activity in an MCC xenograft mouse model, suggesting a potential use in future therapeutic settings for MCC.

6.
Front Plant Sci ; 13: 1041924, 2022.
Article in English | MEDLINE | ID: mdl-36570952

ABSTRACT

Sugarcane bagasse is commonly combusted to generate energy. Unfortunately, recycling strategies rarely consider the resulting ash as a potential fertilizer. To evaluate this recycling strategy for a sustainable circular economy, we characterized bagasse ash as a fertilizer and measured the effects of co-gasification and co-combustion of bagasse with either chicken manure or sewage sludge: on the phosphorus (P) mass fraction, P-extractability, and mineral P phases. Furthermore, we investigated the ashes as fertilizer for soybeans under greenhouse conditions. All methods in combination are reliable indicators helping to assess and predict P availability from ashes to soybeans. The fertilizer efficiency of pure bagasse ash increased with the ash amount supplied to the substrate. Nevertheless, it was not as effective as fertilization with triple-superphosphate and K2SO4, which we attributed to lower P availability. Co-gasification and co-combustion increased the P mass fraction in all bagasse-based ashes, but its extractability and availability to soybeans increased only when co-processed with chicken manure, because it enabled the formation of readily available Ca-alkali phosphates. Therefore, we recommend co-combusting biomass with alkali-rich residues to increase the availability of P from the ash to plants.

7.
Inorg Chem ; 61(46): 18400-18411, 2022 Nov 21.
Article in English | MEDLINE | ID: mdl-36331210

ABSTRACT

The challenging issue of spent nuclear fuel (SNF) management is being tackled by developing advanced technologies that point to reduce environmental footprint, long-term radiotoxicity, volumes and residual heat of the final waste, and to increase the proliferation resistance. The advanced recycling strategy provides several promising processes for a safer reprocessing of SNF. Advanced hydrometallurgical processes can extract minor actinides directly from Plutonium and Uranium Reduction Extraction raffinate by using selective hydrophilic and lipophilic ligands. This research is focused on a recently developed N-heterocyclic selective lipophilic ligand for actinides separation to be exploited in advanced Selective ActiNide EXtraction (SANEX)-like processes: 2,6-bis(1-(2-ethylhexyl)-1H-1,2,3-triazol-4-yl)pyridine (PyTri-Ethyl-Hexyl-PTEH). The formation and stability of metal-ligand complexes have been investigated by different techniques. Preliminary studies carried out by electrospray ionization mass spectrometry (ESI-MS) analysis enabled to qualitatively explore the PTEH complexes with La(III) and Eu(III) ions as representatives of lanthanides. Time-resolved laser fluorescence spectroscopy (TRLFS) experiments have been carried out to determine the ligand stability constants with Cm(III) and Eu(III) and to better investigate the ligand complexes involved in the extraction process. The contribution of a 1:3 M/L complex, barely identified by ESI-MS analyses, was confirmed as the dominant species by TRLFS experiments. To shed light on ligand selectivity toward actinides over lanthanides, NMR investigations have been performed on PTEH complexes with Lu(III) and Am(III) ions, thereby showing significant differences in chemical shifts of the coordinating nitrogen atoms providing proof of a different bond nature between actinides and lanthanides. These scientific achievements encourage consideration of this PyTri ligand for a potential large-scale implementation.

8.
Environ Sci Eur ; 34(1): 84, 2022.
Article in English | MEDLINE | ID: mdl-36091922

ABSTRACT

Phosphorus (P) recovery is obligatory for all sewage sludges with more than 20 g P/kg dry matter (DM) from 2029 in Germany. Nine wastewater treatment plants (WWTPs) were chosen to investigate variations of phosphorus contents and other parameters in sewage sludge over the year. Monthly sewage sludge samples from each WWTP were analyzed for phosphorus and other matrix elements (C, N, H, Ca, Fe, Al, etc.), for several trace elements (As, Cr, Mo, Ni, Pb, Sn) and loss of ignition. Among the nine WWTPs, there are four which have phosphorus contents both above and below the recovery limit of 20 g/kg DM along the year. Considering the average phosphorus content over the year, only one of them is below the limit. Compared to other matrix elements and parameters, phosphorus fluctuations are low with an average of 7% over all nine WWTPs. In total, only hydrogen and carbon are more constant in the sludge. In several WWTPs with chemical phosphorus elimination, phosphorus fluctuations showed similar courses like iron and/or aluminum. WWTPs with chamber filter presses rather showed dilution effects of calcium dosage. As result of this study, monthly phosphorus measurement is highly recommended to determine whether a WWTP is below the 20 g/kg DM limit. Supplementary Information: The online version contains supplementary material available at 10.1186/s12302-022-00658-4.

9.
Cancer Lett ; 524: 259-267, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34715251

ABSTRACT

Merkel cell carcinoma is an aggressive skin cancer frequently caused by the Merkel cell polyomavirus (MCPyV). Since proliferation of MCPyV-positive MCC tumor cells strictly depends on expression of the virus-encoded T antigens (TA), these proteins theoretically represent ideal targets for different kinds of therapeutic approaches. Here we developed a cell-based assay to identify compounds which specifically inhibit growth of MCC cells by repressing TA expression. Applying this technique we screened a kinase inhibitor library and identified six compounds targeting glycogen synthase kinase 3 (GSK3) such as CHIR99021 as suppressors of TA transcription in MCC cells. Involvement of GSK3α and -ß in the regulation of TA-expression was confirmed by combining GSK3A knockout with inducible GSK3B shRNA knockdown since double knockouts could not be generated. Finally, we demonstrate that CHIR99021 exhibits in vivo antitumor activity in an MCC xenograft mouse model suggesting GSK3 inhibitors as potential therapeutics for the treatment of MCC in the future.


Subject(s)
Antigens, Viral, Tumor/genetics , Carcinoma, Merkel Cell/drug therapy , Glycogen Synthase Kinase 3/genetics , Skin Neoplasms/drug therapy , Animals , Carcinoma, Merkel Cell/genetics , Carcinoma, Merkel Cell/pathology , Carcinoma, Merkel Cell/virology , Cell Line, Tumor , Cell Proliferation/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Glycogen Synthase Kinase 3/antagonists & inhibitors , Humans , Merkel cell polyomavirus/drug effects , Merkel cell polyomavirus/pathogenicity , Mice , Pyridines/pharmacology , Pyrimidines/pharmacology , Skin Neoplasms/genetics , Skin Neoplasms/pathology
10.
J Environ Manage ; 302(Pt A): 113984, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34700086

ABSTRACT

Conventional phosphate fertilizers are usually highly water-soluble and rapidly solubilize when moistened by the soil solution. However, if this solubilization is not in alignment with plants demand, P can react with the soil colloidal phase, becoming less available over time. This is more pronounced in acidic, oxidic tropical soils, with high P adsorption capacity, reducing the efficiency of P fertilization. Furthermore, these fertilizers are derived from phosphate rock, a non-renewable resource, generating an environmental impact. To assess these concerns, waste-recycled P sources (struvite, hazenite and AshDec®) were studied for their potential of reducing P fixation by the soil and improving the agronomic efficiency of the P fertilization. In our work, we compared the solubilization dynamics of struvite, hazenite, AshDec® to triple superphosphate (TSP) in a sandy clay loam Ferralsol, as well as their effect on solution pH and on soil P pools (labile, moderately-labile and non-labile) via an incubation experiment. Leaching columns containing 50 g of soil with surface application of 100 mg per column (mg col-1) of P from each selected fertilizer and one control (nil-P) were evaluated for 60 days. Daily leachate samples from the column were analyzed for P content and pH. Soil was stratified in the end and submitted to P fractionation. All results were analyzed considering p < 0.05. Our findings showed that TSP and struvite promoted an acid P release reaction (reaching pHs of 4.3 and 5.5 respectively), while AshDec® and hazenite reaction was alkaline (reaching pHs of 8.4 and 8.5 respectively). Furthermore, TSP promoted the highest P release among all sources in 60 days (52.8 mg col-1) and showed rapid release dynamic in the beginning, while struvite and hazenite showed late release dynamics and lower total leached P (29.7 and 15.5 mg col-1 P respectively). In contrast, no P-release was detected in the leachate of the AshDec® over the whole trial period. Struvite promoted the highest soil labile P concentration (7938 mg kg-1), followed by hazenite (5877 mg kg-1) and AshDec® (4468 mg kg-1), all higher than TSP (3821 mg kg-1), while AshDec® showed high moderately-labile P (9214 mg kg-1), reaffirming its delayed release potential.


Subject(s)
Phosphorus , Soil , Sewage , Solubility , Wastewater
11.
Poult Sci ; 100(6): 101106, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33964739

ABSTRACT

A proportional mixture design was used to systematically create a total of 56 diets using ten feed ingredients. Diets differed widely with regards to chemical characteristics and ingredient inclusion levels. Apparent ileal digestibility of energy and protein of the diets were determined in broiler growers fed ad libitum from 21 to 24 d post-hatch. The chemical composition and the in vivo digestibility values were used to establish prediction equations for energy and protein digestibility, using multivariate data analysis. Root mean square error as percentage of the observed means (RMSE%) and residual error were used to evaluate the strength and accuracy of the predictions and to compare predictions based on chemical characteristics with estimates based on table values. The estimates of ileal digestibility of energy from table values were relatively accurate (RMSE% = 5.15) and was comparable to those predicted based on the chemical composition of diets. Estimates of ileal digestibility of protein based on table values were less accurate (RMSE% = 8.21); however, the prediction was improved by multivariate regression (RMSE% = 5.46) based on chemical composition of diets. The best predictors for ileal energy digestibility were starch, crude fiber and phytate contents (P < 0.01) and the best predictors for crude protein digestibility were starch, CF and fat contents (P < 0.05). In conclusion, the ileal digestibility of energy can be accurately predicted using table values; however, the accuracy of prediction of the ileal digestibility of protein can be improved when chemical characteristics of the diet are considered.


Subject(s)
Animal Nutritional Physiological Phenomena , Digestion , Animal Feed/analysis , Animals , Chickens , Data Analysis , Diet/veterinary , Ileum
12.
J Phys Condens Matter ; 33(26)2021 May 26.
Article in English | MEDLINE | ID: mdl-33853046

ABSTRACT

Phase formation and evolution was investigated in the CaO-SiO2system in the range of 70-80 mol% CaO. The samples were container-less processed in an aerodynamic levitation system and crystallization was followedin situby synchrotron x-ray diffraction at the beamline P21.1 at the German electron synchrotron (DESY). Modification changes of di- and tricalcium silicate were observed and occurred at lower temperatures than under equilibrium conditions. Despite deep sample undercooling, no metastable phase formation was observed within the measurement timescale of 1 s. For the given cooling rates ranging from 300 K s-1to about 1 K s-1, no decomposition of tricalcium silicate was observed. No differences in phase evolution were observed between reducing and oxidizing conditions imposed by the levitation gas (Ar and Ar + O2). We demonstrate that this setup has great potential to follow crystallization in refractory oxide liquidsin situ. For sub-second primary phase formation faster detection and for polymorph detection adjustments in resolution have to be implemented.

13.
Poult Sci ; 100(5): 101068, 2021 May.
Article in English | MEDLINE | ID: mdl-33770543

ABSTRACT

The influence of feed ingredients on digestion kinetics of N and starch in complex diets was investigated in the current experiment. A total of 34 diets with different inclusion levels of 10 commonly used feed ingredients (corn, wheat, sorghum, soybean meal, canola meal, full-fat soybean meal [FFSB], palm kernel meal, meat and bone meal, wheat distillers grain with solubles and wheat bran) were randomly allocated to 170 cages with 8 birds in each. Apparent jejunal and ileal digestibility of N and starch was determined on a cage level in broilers feed the experimental diets ad libitum from 21 to 24 d after hatch. Disappearance rate of N and starch from the intestine was estimated through a first-order decay function fitted to the digesta data from the jejunum and ileum. The fit of the decay functions was evaluated with root mean squared error as percentage of the observed mean. The influence of the feed ingredients on the disappearance rates were found through a linear regression model, including the effect of the single ingredients, 2-way and 3-way interactions and evaluated with a Student t test test. Starch digestion kinetics were in general faster than N digestion kinetics. The N disappearance rate was both influenced by single ingredients and interaction amongst ingredients, whereas starch disappearance rate mainly was influenced by single ingredients. A combination of FFSB and soybean meal decreased the N digestion rate by 22 to 25% compared with diets with only soybean meal or FFSB, respectively. These results indicate that nutrients from 1 feed ingredient can influence the rate of disappearance of nutrients from other feed ingredients in a complex diet. This highlights the importance of understanding nutrient digestion kinetics and how these are influenced both additively and nonadditively by different feed ingredients in complex diets.


Subject(s)
Chickens , Digestion , Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Animals , Diet/veterinary , Ileum , Glycine max , Starch , Zea mays
14.
Br J Cancer ; 124(12): 1959-1969, 2021 06.
Article in English | MEDLINE | ID: mdl-33785874

ABSTRACT

BACKGROUND: Most colorectal cancers (CRC) arise sporadically from precursor lesions: colonic polyps. Polyp resection prevents progression to CRC. Risk of future polyps is proportional to the number and size of polyps detected at screening, allowing identification of high-risk individuals who may benefit from effective chemoprophylaxis. We aimed to investigate the potential of 5-aminosalicylic acid (5-ASA), a medication used in the treatment of ulcerative colitis, as a possible preventative agent for sporadic CRC. METHODS: Human colorectal adenoma (PC/AA/C1, S/AN/C1 and S/RG/C2), transformed adenoma PC/AA/C1/SB10 and carcinoma cell lines (LS174T and SW620) were treated with 5-ASA. The effect on growth in two- and three-dimensional (3D) culture, ß-catenin transcriptional activity and on cancer stemness properties of the cells were investigated. RESULTS: 5-ASA was shown, in vitro, to inhibit the growth of adenoma cells and suppress ß-catenin transcriptional activity. Downregulation of ß-catenin was found to repress expression of stem cell marker LGR5 (leucine-rich G protein-coupled receptor-5) and functionally suppress stemness in human adenoma and carcinoma cells using 3D models of tumorigenesis. CONCLUSIONS: 5-ASA can suppress the cancer stem phenotype in adenoma-derived cells. Affordable and well-tolerated, 5-ASA is an outstanding candidate as a chemoprophylactic medication to reduce the risk of colorectal polyps and CRC in those at high risk.


Subject(s)
Adenoma/pathology , Colorectal Neoplasms/pathology , Mesalamine/pharmacology , Neoplastic Stem Cells/drug effects , Adenoma/drug therapy , Adenoma/genetics , Adenoma/prevention & control , Carcinogenesis/drug effects , Carcinogenesis/genetics , Carcinogenesis/pathology , Carcinoma/genetics , Carcinoma/pathology , Carcinoma/prevention & control , Cell Line, Tumor , Cell Transformation, Neoplastic/drug effects , Cell Transformation, Neoplastic/genetics , Chemoprevention/methods , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/genetics , Colitis, Ulcerative/pathology , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/prevention & control , Gene Expression Regulation, Neoplastic/drug effects , Humans , Mesalamine/therapeutic use , Neoplastic Stem Cells/physiology , Wnt Signaling Pathway/drug effects , Wnt Signaling Pathway/genetics
15.
Inorg Chem ; 60(2): 1092-1098, 2021 Jan 18.
Article in English | MEDLINE | ID: mdl-33405914

ABSTRACT

A combined NMR spectroscopic and theoretical study on the complexation of diamagnetic Th(IV) with 2,6-bis(5,6-dipropyl-1,2,4-triazin-3-yl)pyridine (nPr-BTP) was performed. Different ligand configurations were observed for [Th(nPr-BTP)3]4+ complexes depending on the solvent's ability to actively form hydrogen bonds. In polar aprotic solvents, a complex is observed, which is isostructural with [M(nPr-BTP)3]3+ (M = Am, Ln) complexes studied earlier. In contrast, 1H, 13C, and 15N NMR spectra recorded in polar protic solvents showed twice as many signals, indicating a breakdown of symmetry. Supported by density functional theory (DFT) calculations, this difference is explained by the solvent effect on the steric arrangement of the propyl moieties located on the triazine rings. Important information on bonding properties was obtained by 15N NMR. In contrast to the respective Am(III) complex showing a significant covalent contribution, the Th(IV)-BTP interaction is mainly electrostatic.

16.
J Hazard Mater ; 402: 123511, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33254735

ABSTRACT

One of the typical wastes produced in blast-furnace (BF) ironmaking is BF sludge, which mostly consists of carbon and iron oxides, but also contains toxic trace metals such as Zn, Pb, Cd, As, and Hg that render the material hazardous. Due to the lack of an established recycling process, BF sludges are landfilled, which is ecologically questionable and costly. Here, we investigate selective removal of Zn, Pb, and Cd from BF sludge by chlorination-evaporation reactions using thermodynamic modelling and laboratory-scale experiments. Specifically, BF sludge was thermochemically treated at 650-1000 °C with a spent iron(II) chloride solution from steel pickling and the effects of process temperature and retention time on removal of Zn, Pb, and Cd were investigated. Zinc and Pb were quantitatively removed from BF sludge thermochemically treated at 900-1000 °C, whereas Fe and C as well as other major elements were mostly retained. The Zn, Pb, and Cd contents in the thermochemically treated BF sludge could be lowered from ∼56 g/kg, ∼4 g/kg, and ∼0.02 g/kg to ≤0.7 g/kg, ≤0.02 g/kg, and ≤0.008 g/kg, respectively, thus rendering the processed mineral residue a non-hazardous raw material that may be re-utilized in the blast furnace or on the sinter band.

17.
Waste Manag ; 116: 31-39, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32784119

ABSTRACT

This paper presents an inventory of sewage sludge ashes (SSA) generated in the mono-incineration plants for municipal sewage sludge in Poland. This research focused on the detailed study of mass flows, chemical composition, and phosphorus recovery potential. There are currently 11 sludge mono-incineration plants operated with a total capacity of 160,300 Mg dry weight (d.w.) of sludge annually. Recently, a significant increase in the amount of SSA generated in these plants has been observed, reaching 26,756 Mg in 2018. Chemical composition of SSA showed significant amounts of the main nutrients: calcium (~14%), phosphorus (~13%), magnesium (~3%), and potassium (~1%). Additional main elements were iron (~14.5%), silicon (~13%), and aluminium (~6%). The main trace elements in the SSA were zinc (~3750 mg/kg) and copper (~899 mg/kg). Pollutants, according to fertilizer regulations of different countries, present in Polish SSA were chromium (~703 mg/kg), nickel (~260 mg/kg), lead (~94 mg/kg), and cadmium (~9 mg/kg). The radionuclides, uranium, and thorium often present in higher amounts in commercial phosphate rock-based fertilizers, were only detected in SSA at low levels of 4-9 mg/kg and 2-3 mg/kg, respectively. Theoretical phosphorus recovery potential from the SSA (from plants in Cracow, Lodz, Gdansk, Gdynia, Szczecin, and Kielce) was estimated at 1613.8 Mg, of which 33.9% is bioavailable. Currently, in Poland, the recommended approach is the production of fertilizers as a result of the extraction of phosphorus from the SSA with its use in the production of secondary mineral fertilizers. Further research in this area is required considering Polish conditions and legislation.


Subject(s)
Phosphorus/analysis , Sewage , Fertilizers , Incineration , Poland
18.
J Invest Dermatol ; 140(12): 2455-2465.e10, 2020 12.
Article in English | MEDLINE | ID: mdl-32376279

ABSTRACT

Cutaneous melanoma is a highly malignant tumor typically driven by somatic mutation in the oncogenes BRAF or NRAS, leading to uncontrolled activation of the MEK/ERK MAPK pathway. Despite the availability of immunotherapy, MAPK pathway‒targeting regimens are still a valuable treatment option for BRAF-mutant melanoma. Unfortunately, patients with NRAS mutation do not benefit from such therapies owing to the lack of targetable BRAF mutations and a high degree of intrinsic and acquired resistance toward MEK inhibition. Here, we demonstrate that concomitant inhibition of ERK5 removes this constraint and effectively sensitizes NRAS-mutant melanoma cells for MAPK pathway‒targeting therapy. Using approved MEK inhibitors or a pharmacologic ERK inhibitor, we demonstrate that MAPK inhibition triggers a delayed activation of ERK5 through a PDGFR inhibitor-sensitive pathway in NRAS-mutant melanoma cells, resulting in sustained proliferation and survival. ERK5 phosphorylation also occurred naturally in NRAS-mutant melanoma cells and correlated with nuclear localization of its stem cell-associated effector KLF2. Importantly, MEK/ERK5 co-inhibition prevented long-term growth of human NRAS-mutant melanoma cells in vitro and effectively repressed tumor progression in a xenotransplant mouse model. Our findings suggest MEK/ERK5 cotargeting as a potential treatment option for NRAS-mutant melanoma, which currently is not amenable for targeted therapies.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , MAP Kinase Signaling System/drug effects , Melanoma/drug therapy , Protein Kinase Inhibitors/pharmacology , Skin Neoplasms/drug therapy , Animals , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Cell Line, Tumor , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Female , GTP Phosphohydrolases/genetics , Humans , Melanoma/genetics , Melanoma/pathology , Membrane Proteins/genetics , Mice , Mitogen-Activated Protein Kinase 1/antagonists & inhibitors , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/antagonists & inhibitors , Mitogen-Activated Protein Kinase 3/metabolism , Mitogen-Activated Protein Kinase 7/antagonists & inhibitors , Mitogen-Activated Protein Kinase 7/metabolism , Molecular Targeted Therapy/methods , Mutation , Protein Kinase Inhibitors/therapeutic use , Skin/pathology , Skin Neoplasms/genetics , Skin Neoplasms/pathology , Xenograft Model Antitumor Assays
19.
Environ Sci Pollut Res Int ; 27(19): 24320-24328, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32306248

ABSTRACT

Phosphorus (P) fertilizers from secondary resources became increasingly important in the last years. However, these novel P-fertilizers can also contain toxic pollutants such as chromium in its hexavalent state (Cr(VI)). This hazardous form of chromium is therefore regulated with low limit values for agricultural products even though the correct determination of Cr(VI) in these fertilizers may be hampered by redox processes, leading to false results. Thus, we applied the novel diffusive gradients in thin-films (DGT) technique for Cr(VI) in fertilizers and compared the results with the standard wet chemical extraction method (German norm DIN EN 15192) and Cr K-edge X-ray absorption near-edge structure (XANES) spectroscopy. We determined an overall good correlation between the wet chemical extraction and the DGT method. DGT was very sensitive and for most tested materials selective for the analysis of Cr(VI) in P-fertilizers. However, hardly soluble Cr(VI) compounds cannot be detected with the DGT method since only mobile Cr(VI) is analyzed. Furthermore, Cr K-edge XANES spectroscopy showed that the DGT binding layer also adsorbs small amounts of mobile Cr(III) so that Cr(VI) values are overestimated. Since certain types of the P-fertilizers contain mobile Cr(III) or partly immobile Cr(VI), it is necessary to optimize the DGT binding layers to avoid aforementioned over- or underestimation. Furthermore, our investigations showed that the Cr K-edge XANES spectroscopy technique is unsuitable to determine small amounts of Cr(VI) in fertilizers (below approx. 1% of Cr(VI) in relation to total Cr).


Subject(s)
Fertilizers/analysis , Phosphorus , Chromium , Diffusion , X-Ray Absorption Spectroscopy
20.
Cancers (Basel) ; 12(4)2020 Apr 09.
Article in English | MEDLINE | ID: mdl-32283634

ABSTRACT

Merkel cell carcinoma (MCC) is a rare and highly aggressive skin cancer with frequent viral etiology. Indeed, in about 80% of cases, there is an association with Merkel cell polyomavirus (MCPyV); the expression of viral T antigens is crucial for growth of virus-positive tumor cells. Since artesunate-a drug used to treat malaria-has been reported to possess additional anti-tumor as well as anti-viral activity, we sought to evaluate pre-clinically the effect of artesunate on MCC. We found that artesunate repressed growth and survival of MCPyV-positive MCC cells in vitro. This effect was accompanied by reduced large T antigen (LT) expression. Notably, however, it was even more efficient than shRNA-mediated downregulation of LT expression. Interestingly, in one MCC cell line (WaGa), T antigen knockdown rendered cells less sensitive to artesunate, while for two other MCC cell lines, we could not substantiate such a relation. Mechanistically, artesunate predominantly induces ferroptosis in MCPyV-positive MCC cells since known ferroptosis-inhibitors like DFO, BAF-A1, Fer-1 and ß-mercaptoethanol reduced artesunate-induced death. Finally, application of artesunate in xenotransplanted mice demonstrated that growth of established MCC tumors can be significantly suppressed in vivo. In conclusion, our results revealed a highly anti-proliferative effect of the approved and generally well-tolerated anti-malaria compound artesunate on MCPyV-positive MCC cells, suggesting its potential usage for MCC therapy.

SELECTION OF CITATIONS
SEARCH DETAIL
...