Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Microorganisms ; 12(3)2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38543648

ABSTRACT

Agricultural management influences the soil ecosystem by affecting its physicochemical properties, residues of pesticides and microbiome. As vineyards grow crops with the highest incidence of pesticides, the aim of this study was to evaluate the impact of conventional and sustainable management systems of vineyards from DOP Ribeiro on the soil's condition. Samples from soils under three different management systems were collected, and the main soil physicochemical properties were evaluated. A selection of 50 pesticides were investigated by liquid chromatography with tandem mass spectrometry. The bacterial and fungal microbiomes were characterized through amplicon sequencing. The results show that organic agriculture positively influences soil pH and the concentration of some nutrients compared to conventional management. Our microbiome analysis demonstrated that transitioning from conventional to organic management significantly improves several BeCrop® indexes related to key microbial metabolism and soil bio-sustainability. Such a transition does not affect soil alpha diversity, but leads to a higher interconnected microbial network structure. Moreover, differential core genera and species for each management system are observed. In addition, the correlation of the microbiome with geographical distance is evidence of the existence of different microbial terroirs within DOP Ribeiro. Indeed, sustainable management leads to higher nutrient availability and enhances soil health in the short term, while lowering pesticide usage.

2.
Front Plant Sci ; 15: 1332840, 2024.
Article in English | MEDLINE | ID: mdl-38545390

ABSTRACT

Potato (Solanum tuberosum L.) is considered one of the most widely consumed crops worldwide, due to its high yield and nutritional profile, climate change-related environmental threats and increasing food demand. This scenario highlights the need of sustainable agricultural practices to enhance potato productivity, while preserving and maintaining soil health. Plant growth-promoting bacteria (PGPB) stimulate crop production through biofertilization mechanisms with low environmental impact. For instance, PGPB promote biological nitrogen fixation, phosphate solubilization, production of phytohormones, and biocontrol processes. Hence, these microbes provide a promising solution for more productive and sustainable agriculture. In this study, the effects of Bacillus amyloliquefaciens QST713 based-product (MINUET™, Bayer) were assessed in terms of yield, soil microbiome, potato peel and petiole nutrient profile as a promising PGPB in a wide range of potato cultivars across the United States of America. Depending on the location, potato yield and boron petiole content increased after biostimulant inoculation to maximum of 24% and 14%, respectively. Similarly, nutrient profile in potato peel was greatly improved depending on the location with a maximum of 73%, 62% and 36% for manganese, zinc and phosphorus. Notably, fungal composition was shifted in the treated group. Yield showed strong associations with specific microbial taxa, such as Pseudoarthrobacter, Ammoniphilus, Ideonella, Candidatus Berkiella, Dongia. Moreover, local networks strongly associated with yield, highlighting the important role of the native soil microbiome structure in indirectly maintaining soil health. Our results showed that treatment with B. amyloliquefaciens based product correlated with enhanced yield, with minor impacts on the soil microbiome diversity. Further studies are suggested to disentangle the underlying mechanisms of identified patterns and associations.

3.
Biology (Basel) ; 10(11)2021 Oct 31.
Article in English | MEDLINE | ID: mdl-34827113

ABSTRACT

Successional dynamics of plants and animals during tropical forest regeneration have been thoroughly studied, while fungal compositional dynamics during tropical forest succession remain unknown, despite the crucial roles of fungi in ecological processes. We combined tree data and soil fungal DNA metabarcoding data to compare richness and community composition along secondary forest succession in Costa Rica and assessed the potential roles of abiotic factors influencing them. We found a strong coupling of tree and soil fungal community structure in wet tropical primary and regenerating secondary forests. Forest age, edaphic variables, and regional differences in climatic conditions all had significant effects on tree and fungal richness and community composition in all functional groups. Furthermore, we observed larger site-to-site compositional differences and greater influence of edaphic and climatic factors in secondary than in primary forests. The results suggest greater environmental heterogeneity and greater stochasticity in community assembly in the early stages of secondary forest succession and a certain convergence on a set of taxa with a competitive advantage in the more persisting environmental conditions in old-growth forests. Our work provides unprecedented insights into the successional dynamics of fungal communities during secondary tropical forest succession.

4.
J Fungi (Basel) ; 7(10)2021 Sep 24.
Article in English | MEDLINE | ID: mdl-34682215

ABSTRACT

Understanding whether the occurrences of ectomycorrhizal species in a given tree host are phylogenetically determined can help in assessing different conservational needs for each fungal species. In this study, we characterized ectomycorrhizal phylogenetic composition and phylogenetic structure in 42 plots with five different Mediterranean pine forests: i.e., pure forests dominated by P. nigra, P. halepensis, and P. sylvestris, and mixed forests of P. nigra-P. halepensis and P. nigra-P. sylvestris, and tested whether the phylogenetic structure of ectomycorrhizal communities differs among these. We found that ectomycorrhizal communities were not different among pine tree hosts neither in phylogenetic composition nor in structure and phylogenetic diversity. Moreover, we detected a weak abiotic filtering effect (4%), with pH being the only significant variable influencing the phylogenetic ectomycorrhizal community, while the phylogenetic structure was slightly influenced by the shared effect of stand structure, soil, and geographic distance. However, the phylogenetic community similarity increased at lower pH values, supporting that fewer, closely related species were found at lower pH values. Also, no phylogenetic signal was detected among exploration types, although short and contact were the most abundant types in these forest ecosystems. Our results demonstrate that pH but not tree host, acts as a strong abiotic filter on ectomycorrhizal phylogenetic communities in Mediterranean pine forests at a local scale. Finally, our study shed light on dominant ectomycorrhizal foraging strategies in drought-prone ecosystems such as Mediterranean forests.

5.
Fungal Biol ; 125(6): 469-476, 2021 06.
Article in English | MEDLINE | ID: mdl-34024594

ABSTRACT

Soil sampling is a critical step affecting perceived fungal diversity, however sampling optimization for high-throughput-DNA sequencing studies have never been tested in Mediterranean forest ecosystems. We identified the minimum number of pooled samples needed to obtain a reliable description of fungal communities in terms of diversity and composition in three different Mediterranean forests (pine, oak, and mixed-pine-oak). Twenty soil samples were randomly selected in each of the three plots per type. Samples obtained in 100 m2 plots were pooled to obtain mixtures of 3, 6, 10, 15, 20 samples, and sequenced using Illumina MiSeq of fungal ITS2 amplicons. Pooling three soil samples in Pinus and Quercus stands provided consistent richness estimations, while at least six samples were needed in mixed-stands. ß-diversity decreased with increasing sample pools in monospecific-stands, while there was no effect of sample pool size on mixed-stands. Soil sample pooling had no effect over species composition. We estimate that three samples would be already optimal to describe fungal richness and composition in Mediterranean pure stands, while at least six samples would be needed in mixed stands.


Subject(s)
Biodiversity , Environmental Monitoring , Forests , Fungi , Soil Microbiology , DNA, Fungal/genetics , Environmental Monitoring/methods , Fungi/classification , Fungi/genetics , Pinus/microbiology , Quercus/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...