Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 7 de 7
1.
Front Med (Lausanne) ; 9: 956123, 2022.
Article En | MEDLINE | ID: mdl-36160134

Background: The nitazoxanide plus atazanavir/ritonavir for COVID-19 (NACOVID) trial investigated the efficacy and safety of repurposed nitazoxanide combined with atazanavir/ritonavir for COVID-19. Methods: This is a pilot, randomized, open-label multicenter trial conducted in Nigeria. Mild to moderate COVID-19 patients were randomly assigned to receive standard of care (SoC) or SoC plus a 14-day course of nitazoxanide (1,000 mg b.i.d.) and atazanavir/ritonavir (300/100 mg od) and followed through day 28. Study endpoints included time to clinical improvement, SARS-CoV-2 viral load change, and time to complete symptom resolution. Safety and pharmacokinetics were also evaluated (ClinicalTrials.gov ID: NCT04459286). Results: There was no difference in time to clinical improvement between the SoC (n = 26) and SoC plus intervention arms (n = 31; Cox proportional hazards regression analysis adjusted hazard ratio, aHR = 0.898, 95% CI: 0.492-1.638, p = 0.725). No difference was observed in the pattern of saliva SARS-CoV-2 viral load changes from days 2-28 in the 35% of patients with detectable virus at baseline (20/57) (aHR = 0.948, 95% CI: 0.341-2.636, p = 0.919). There was no significant difference in time to complete symptom resolution (aHR = 0.535, 95% CI: 0.251-1.140, p = 0.105). Atazanavir/ritonavir increased tizoxanide plasma exposure by 68% and median trough plasma concentration was 1,546 ng/ml (95% CI: 797-2,557), above its putative EC90 in 54% of patients. Tizoxanide was undetectable in saliva. Conclusion: Nitazoxanide co-administered with atazanavir/ritonavir was safe but not better than standard of care in treating COVID-19. These findings should be interpreted in the context of incomplete enrollment (64%) and the limited number of patients with detectable SARS-CoV-2 in saliva at baseline in this trial. Clinical trial registration: [https://clinicaltrials.gov/ct2/show/NCT04459286], identifier [NCT04459286].

3.
Eur J Drug Metab Pharmacokinet ; 45(1): 81-88, 2020 Feb.
Article En | MEDLINE | ID: mdl-31642009

BACKGROUND AND OBJECTIVE: MAMA decoction (MD) is an antimalarial product prepared from the leaves of Mangifera indica L. (Anacardiaceae), Alstonia boonei De Wild (Apocynaceae), Morinda lucida Benth (Rubiaceae) and Azadirachta indica A. Juss (Meliaceae). A previous report showed that MD enhanced the efficacy of amodiaquine (AQ) in malaria-infected mice, thus suggesting a herb-drug interaction. The present study hence evaluated the effect of MD on the disposition of AQ in mice with a view to investigating a possible pharmacokinetic interaction. METHODS: In a 3-period study design, three groups of mice (n = 72) were administered oral doses of AQ (10 mg/kg/day) alone, concurrently with MD (120 mg/kg/day), and in the 3rd period, mice were given AQ after a 3-day pre-treatment with MD. Blood samples were collected between 0 and 96 h for quantification of AQ and its major metabolite, desethylamodiaquine, by a validated high-performance liquid chromatography method. RESULTS: Maximum concentrations of AQ increased by 12% with the concurrent dosing of MD and by 85% in the group of mice pre-treated with MD. The exposure and half-life of desethylamodiaquine increased by approximately 11% and 21%, respectively, with concurrent administration. Corresponding increases of approximately 20% and 33% of desethylamodiaquine were also observed in mice pre-treated with MD. CONCLUSION: MD influenced the pharmacokinetics of AQ and desethylamodiaquine, its major metabolite. The increase in the half-life and systemic exposure of AQ following its co-administration with MD may provide a basis for the enhanced pharmacological effect of the combination in an earlier study in Plasmodium-infected mice.


Amodiaquine/pharmacokinetics , Antimalarials/pharmacokinetics , Malaria/drug therapy , Plant Extracts/pharmacology , Amodiaquine/analogs & derivatives , Amodiaquine/blood , Amodiaquine/pharmacology , Animals , Antimalarials/blood , Antimalarials/pharmacology , Drug Combinations , Drug Interactions , Female , Herb-Drug Interactions , Male , Mice , Models, Animal , Plant Leaves/chemistry
4.
Pharmacogenomics ; 20(12): 915-926, 2019 08.
Article En | MEDLINE | ID: mdl-31453771

The Nigerian population exhibits huge ethnic and genetic diversity, typical of African populations, which can be harnessed for improved drug-response and disease management. Existing data on genes relevant to drug response, so far generated for the population, indeed confirm the prevalence of some clinically significant pharmacogenes. These reports detail prevailing genetic alleles and metabolic phenotypes of vital drug metabolizing monooxygenases, transferases and drug transporters. While the utilization of existing pharmacogenomic data for healthcare delivery remains unpopular, several past and on-going studies suggest that a future shift toward genotype-stratified dosing of drugs and disease management in the population is imminent. This review discusses the present state of pharmacogenomics in Nigeria and the potential benefits of sustained research in this field for the population.


Ethnicity/genetics , Genetic Variation/genetics , Alleles , Animals , Genotype , Humans , Nigeria , Pharmacogenetics/methods , Phenotype
5.
Leuk Lymphoma ; 60(1): 216-221, 2019 01.
Article En | MEDLINE | ID: mdl-29741432

Imatinib has been successful in the management of chronic myeloid leukemia (CML) but some patients experience adverse reactions or develop resistance to its use. The roles of some polymorphisms in genes encoding enzymes critical for the biotransformation of imatinib have been previously examined. This study, hence, evaluated some other unstudied functionally significant polymorphisms in CYP1A2, CYP2C8, CYP2C9, and CYP3A5. Trough imatinib blood levels and genotypes were determined in 42 CML patients by an HPLC-UV technique and a Sequenom iPLEX assay, respectively. Statistical analysis of the influence of genetic polymorphisms on standardized trough level detected no significant relationship. However, higher trough levels were observed in two homozygous carriers of CYP2C8*2 while diminished imatinib levels were seen in two homozygous carriers of CYP3A5*7. The study findings suggest that polymorphisms in drug metabolizing enzymes may be significant for imatinib therapy only in instances where all copies of the relevant studied genes are functionally impaired.


Antineoplastic Agents/pharmacokinetics , Biological Variation, Population/genetics , Imatinib Mesylate/pharmacokinetics , Leukemia, Myeloid, Chronic-Phase/drug therapy , Adolescent , Adult , Aged , Antineoplastic Agents/therapeutic use , Biotransformation , Cytochrome P-450 CYP1A2/genetics , Cytochrome P-450 CYP1A2/metabolism , Cytochrome P-450 CYP2C8/genetics , Cytochrome P-450 CYP2C8/metabolism , Cytochrome P-450 CYP2C9/genetics , Cytochrome P-450 CYP2C9/metabolism , Cytochrome P-450 CYP3A/genetics , Cytochrome P-450 CYP3A/metabolism , Female , Humans , Imatinib Mesylate/therapeutic use , Leukemia, Myeloid, Chronic-Phase/genetics , Male , Middle Aged , Nigeria , Polymorphism, Single Nucleotide , Prospective Studies , Young Adult
6.
J Clin Pharmacol ; 58(8): 1061-1066, 2018 Aug.
Article En | MEDLINE | ID: mdl-29663414

Amodiaquine (AQ) and pioglitazone (PGZ) are both metabolized by CYP2C8, an enzyme also inhibited by PGZ. These drugs are likely to be administered in instances of comorbidity of malaria with type 2 diabetes. This study, hence, evaluated the possibility of a drug interaction resulting from the concurrent use of both drugs. A 3-period crossover design in 10 healthy subjects, that assessed the disposition of AQ and PGZ alone and when coadministered, was implemented with the administration of single oral doses of AQ and PGZ. Whole-blood samples collected between 0 and 24 hours on protein saver cards across the study periods were processed and analyzed for AQ and PGZ contents. Pharmacokinetic parameters were derived by a noncompartmental analysis. Geometric mean ratios for the Cmax , area under the concentration-time curve for 24 hours (AUC0-24h ), and AUC0-∞ , alongside their corresponding 90%CIs, were compared across the study periods to infer clinically significant changes in disposition. The coadministration of AQ and PGZ resulted in decreases of about 38% and 54% in the Cmax and AUC0-24h of AQ, respectively. For PGZ, the Cmax increased by about 50%, and AUC0-24 rose by 48%. The 90%CIs of geometric mean ratios for the Cmax , AUC0-24h , and AUC0-∞ were all outside the expected bioequivalence interval of 80% to 125% for both drugs, implying significant interactions. These findings suggest that a bidirectional interaction between AQ and PGZ, with likely implications for the therapy and toxicity of both drugs, may occur in the event of their coadministration.

7.
Am J Ther ; 23(2): e398-404, 2016.
Article En | MEDLINE | ID: mdl-25406952

This study evaluated the effects of concurrent ciprofloxacin administration on the disposition of quinine in healthy volunteers. Quinine (600-mg single dose) was administered either alone or with the 11th dose of ciprofloxacin (500 mg every 12 hours for 7 days) to 15 healthy volunteers in a crossover fashion. Blood samples collected at predetermined time intervals were analyzed for quinine and its major metabolite, 3-hydroxquinine, using a validated high-performance liquid chromatographic method. Administration of quinine plus ciprofloxacin resulted in significant increases (P < 0.05) in the total area under the concentration-time curve, maximum plasma concentration (Cmax), and terminal elimination half-life (T1/2b) of quinine compared with values with quinine dosing alone (AUC: 27.93 ± 8.04 vs. 41.62 ± 13.98 h·mg/L; Cmax: 1.37 ± 0.24 vs. 1.64 ± 0.38 mg/L; T1/2b: 16.28 ± 2.66 vs. 21.43 ± 3.22 hours), whereas the oral plasma clearance markedly decreased (23.17 ± 6.49 vs. 16.00 ± 5.27 L/h). In the presence of ciprofloxacin, there was a pronounced decrease in the ratio of AUC (metabolite)/AUC (unchanged drug) and highly significant decreases in Cmax and AUC of the metabolite (P < 0.05). Ciprofloxacin may increase the adverse effects of concomitantly administered quinine, which can have serious consequences on the patient. Thus, a downward dosage adjustment of quinine seems to be necessary when concurrently administered with ciprofloxacin.


Ciprofloxacin/pharmacology , Quinine/metabolism , Adult , Area Under Curve , Cross-Over Studies , Cytochrome P-450 CYP3A Inhibitors/pharmacology , Drug Interactions , Female , Humans , Male , Quinidine/analogs & derivatives , Quinidine/blood
...