Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Mar Pollut Bull ; 208: 117052, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39357372

ABSTRACT

Permanently cold deep-sea sediments (2500-3500 m water depth) with and without indications of thermogenic hydrocarbon seepage were exposed to naphtha to examine the presence and potential of cold-adapted aerobic hydrocarbon-degrading microbial populations. Monitoring these microcosms for volatile hydrocarbons by GC-MS revealed sediments without in situ hydrocarbons responded more rapidly to naphtha amendment than hydrocarbon seep sediments overall, but seep sediments removed aromatic hydrocarbons benzene, toluene, ethylbenzene and xylene (BTEX) more readily. Naphtha-driven aerobic respiration was more evident in surface sediment (0-20 cmbsf) than deeper anoxic layers (>130 cmbsf) that responded less rapidly. In all cases, enrichment of Gammaproteobacteria included lineages of Oleispira, Pseudomonas, and Alteromonas known to be associated with marine oil spills. On the other hand, taxa known to be prevalent in situ and diagnostic for thermogenic hydrocarbon seepage in deep sea sediment, did not respond to naphtha amendment. This suggests a limited role for these prevalent seep-associated populations in the context of aerobic hydrocarbon biodegradation.

2.
Nat Commun ; 11(1): 5825, 2020 11 17.
Article in English | MEDLINE | ID: mdl-33203858

ABSTRACT

At marine cold seeps, gaseous and liquid hydrocarbons migrate from deep subsurface origins to the sediment-water interface. Cold seep sediments are known to host taxonomically diverse microorganisms, but little is known about their metabolic potential and depth distribution in relation to hydrocarbon and electron acceptor availability. Here we combined geophysical, geochemical, metagenomic and metabolomic measurements to profile microbial activities at a newly discovered cold seep in the deep sea. Metagenomic profiling revealed compositional and functional differentiation between near-surface sediments and deeper subsurface layers. In both sulfate-rich and sulfate-depleted depths, various archaeal and bacterial community members are actively oxidizing thermogenic hydrocarbons anaerobically. Depth distributions of hydrocarbon-oxidizing archaea revealed that they are not necessarily associated with sulfate reduction, which is especially surprising for anaerobic ethane and butane oxidizers. Overall, these findings link subseafloor microbiomes to various biochemical mechanisms for the anaerobic degradation of deeply-sourced thermogenic hydrocarbons.


Subject(s)
Geologic Sediments/microbiology , Hydrocarbons/metabolism , Metagenome/physiology , Adaptation, Biological , Alkanes/chemistry , Alkanes/metabolism , Anaerobiosis , Biodegradation, Environmental , Biodiversity , Chloroflexi/genetics , Chloroflexi/metabolism , Deltaproteobacteria/genetics , Deltaproteobacteria/metabolism , Genome, Microbial , Marine Biology , Metagenome/genetics , Methane/metabolism , Nova Scotia , Oceans and Seas , Phylogeny , RNA, Ribosomal, 16S
SELECTION OF CITATIONS
SEARCH DETAIL