Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Exp Bot ; 75(11): 3209-3213, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38845354

ABSTRACT

This article comments on: Casaes PA, Ferreira dos Santos JM, Silva VC, Rhem MFK, Teixeira Cota MM, de Faria SM, Rando JG, James EK, Gross E. 2024. The radiation of nodulated Chamaecrista species from the rainforest into more diverse habitats has been accompanied by a reduction in growth form and a shift from fixation threads to symbiosomes. Journal of Experimental Botany 75, 3643-3662.


Subject(s)
Biological Evolution , Organelles , Symbiosis , Organelles/metabolism
2.
Plant Cell Environ ; 47(7): 2675-2692, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38600764

ABSTRACT

The restriction of plant-symbiont dinitrogen fixation by an insect semiochemical had not been previously described. Here we report on a glycosylated triketide δ-lactone from Nephrotoma cornicina crane flies, cornicinine, that causes chlorosis in the floating-fern symbioses from the genus Azolla. Only the glycosylated trans-A form of chemically synthesized cornicinine was active: 500 nM cornicinine in the growth medium turned all cyanobacterial filaments from Nostoc azollae inside the host leaf-cavities into akinetes typically secreting CTB-bacteriocins. Cornicinine further inhibited akinete germination in Azolla sporelings, precluding re-establishment of the symbiosis during sexual reproduction. It did not impact development of the plant Arabidopsis thaliana or several free-living cyanobacteria from the genera Anabaena or Nostoc but affected the fern host without cyanobiont. Fern-host mRNA sequencing from isolated leaf cavities confirmed high NH4-assimilation and proanthocyanidin biosynthesis in this trichome-rich tissue. After cornicinine treatment, it revealed activation of Cullin-RING ubiquitin-ligase-pathways, known to mediate metabolite signaling and plant elicitation consistent with the chlorosis phenotype, and increased JA-oxidase, sulfate transport and exosome formation. The work begins to uncover molecular mechanisms of cyanobiont differentiation in a seed-free plant symbiosis important for wetland ecology or circular crop-production today, that once caused massive CO2 draw-down during the Eocene geological past.


Subject(s)
Ferns , Lactones , Symbiosis , Animals , Lactones/metabolism , Ferns/physiology , Ferns/microbiology , Ferns/drug effects , Diptera/physiology , Glycosylation , Cyanobacteria/metabolism , Cyanobacteria/physiology , Cyanobacteria/genetics , Nostoc/physiology , Nostoc/genetics , Nostoc/metabolism , Plant Leaves/metabolism , Plant Leaves/physiology
3.
Trends Plant Sci ; 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38570278

ABSTRACT

Plant scientists are rapidly integrating single-cell RNA sequencing (scRNA-seq) into their workflows. Maximizing the potential of scRNA-seq requires a proper understanding of the spatiotemporal context of cells. However, positional information is inherently lost during scRNA-seq, limiting its potential to characterize complex biological systems. In this review we highlight how current single-cell analysis pipelines cannot completely recover spatial information, which confounds biological interpretation. Various strategies exist to identify the location of RNA, from classical RNA in situ hybridization to spatial transcriptomics. Herein we discuss the possibility of utilizing this spatial information to supervise single-cell analyses. An integrative approach will maximize the potential of each technology, and lead to insights which go beyond the capability of each individual technology.

SELECTION OF CITATIONS
SEARCH DETAIL