Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
Add more filters











Publication year range
1.
Chem Mater ; 36(11): 5611-5620, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38883434

ABSTRACT

Although the function and stability of catalysts are known to significantly depend on their dispersion state and support interactions, the mechanism of catalyst loading has not yet been elucidated. To address this gap in knowledge, this study elucidates the mechanism of Pt loading based on a detailed investigation of the interaction between Pt species and localized polarons (Ce3+) associated with oxygen vacancies on CeO2(100) facets. Furthermore, an effective Pt loading method was proposed for achieving high catalytic activity while maintaining the stability. Enhanced dispersibility and stability of Pt were achieved by controlling the ionic interactions between dissolved Pt species and CeO2 surface charges via pH adjustment and reduction pretreatment of the CeO2 support surface. This process resulted in strong interactions between Pt and the CeO2 support. Consequently, the oxygen-carrier performance was improved for CH4 chemical looping reforming reactions. This simple interaction-based loading process enhanced the catalytic performance, allowing the efficient use of noble metals with high performance and small loading amounts.

2.
J Am Chem Soc ; 146(23): 16324-16331, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38810220

ABSTRACT

Ultrasmall metal oxide nanoparticles (<5 nm) potentially have new properties, different from conventional nanoparticles. The precise size control of ultrasmall nanoparticles remains difficult for metal oxide. In this study, the size of CeO2 nanoparticles was precisely controlled (1.3-9.4 nm) using a continuous-flow hydrothermal reactor, and the atomic distortion that occurs in ultrasmall metal oxides was explored for CeO2. The crystalline nanoparticles grow rapidly like droplets via coalescence, although they reach a critical particle size (∼3 to 4 nm), beyond which they grow slowly and change shape through ripening. In the initial growth stage, the ultrasmall nanoparticles exhibit disordered atomic configurations, including stacking faults. In ultrasmall CeO2 nanoparticles (<3 to 4 nm), unusual electron localization occurs on Ce 4f orbitals (Ce3+) as a result of O disordering, regardless of O vacancy concentration. This behavior differs from ordinary electron localization caused by the presence of O vacancies. The ultrasmall metal oxides have extraordinary distortion states, making them promising for use in nanotechnology applications. Furthermore, the proposed synthesis method can be applied to various other metal oxides and allows exploration of their properties.

3.
Sci Adv ; 9(2): eadf6075, 2023 Jan 13.
Article in English | MEDLINE | ID: mdl-36630515

ABSTRACT

3D interconnected structures can be made with molecular precision or with micrometer size. However, there is no strategy to synthesize 3D structures with dimensions on the scale of tens of nanometers, where many unique properties exist. Here, we bridge this gap by building up nanosized gold cores and nickel branches that are directly connected to create hierarchical nanostructures. The key to this approach is combining cubic crystal-structured cores with hexagonal crystal-structured branches in multiple steps. The dimensions and 3D morphology can be controlled by tuning at each synthetic step. These materials have high surface area, high conductivity, and surfaces that can be chemically modified, which are properties that make them ideal electrocatalyst supports. We illustrate the effectiveness of the 3D nanostructures as electrocatalyst supports by coating with nickel-iron oxyhydroxide to achieve high activity and stability for oxygen evolution reaction. This work introduces a synthetic concept to produce a new type of high-performing electrocatalyst support.

4.
Nanomaterials (Basel) ; 11(5)2021 May 20.
Article in English | MEDLINE | ID: mdl-34065490

ABSTRACT

Silicon carbide materials are excellent candidates for high-performance applications due to their outstanding thermomechanical properties and their strong corrosion resistance. SiC materials can be processed in various forms, from nanomaterials to continuous fibers. Common applications of SiC materials include the aerospace and nuclear fields, where the material is used in severely oxidative environments. Therefore, it is important to understand the kinetics of SiC oxidation and the parameters influencing them. The first part of this review focuses on the oxidation of SiC in dry air according to the Deal and Grove model showing that the oxidation behavior of SiC depends on the temperature and the time of oxidation. The oxidation rate can also be accelerated with the presence of H2O in the system due to its diffusion through the oxide scales. Therefore, wet oxidation is studied in the second part. The third part details the effect of hydrothermal media on the SiC materials that has been explained by different models, namely Yoshimura (1986), Hirayama (1989) and Allongue (1992). The last part of this review focuses on the hydrothermal corrosion of SiC materials from an application point of view and determine whether it is beneficial (manufacturing of materials) or detrimental (use of SiC in latest nuclear reactors).

5.
Nanoscale ; 13(23): 10393-10401, 2021 Jun 17.
Article in English | MEDLINE | ID: mdl-34076010

ABSTRACT

Surfactant plays a remarkable role in determining the growth process (facet exposition) of colloidal nanocrystals (NCs) and the formation of self-assembled NC superstructures, the underlying mechanism of which, however, still requires elucidation. In this work, the mechanism of surfactant-mediated morphology evolution and self-assembly of CeO2 nanocrystals is elucidated by exploring the effect that surfactant modification has on the shape, size, exposed facets, and arrangement of the CeO2 NCs. It is directly proved that surfactant molecules determine the morphologies of the CeO2 NCs by preferentially bonding onto Ce-terminated {100} facets, changing from large truncated octahedra (mostly {111} and {100} exposed), to cubes (mostly {100} exposed) and small cuboctahedra (mostly {100} and {111} exposed) by increasing the amount of surfactant. The exposure degree of the {100} facets largely affects the concentration of Ce3+ in the CeO2 NCs, thus the cubic CeO2 NCs exhibit superior oxygen storage capacity and excellent supercapacitor performance due to a high fraction of exposed active {100} facets with great superstructure stability.

6.
Nanomaterials (Basel) ; 11(5)2021 Apr 27.
Article in English | MEDLINE | ID: mdl-33925291

ABSTRACT

The observation of neutrinoless double beta decay is an important issue in nuclear and particle physics. The development of organic liquid scintillators with high transparency and a high concentration of the target isotope would be very useful for neutrinoless double beta decay experiments. Therefore, we propose a liquid scintillator loaded with metal oxide nanoparticles containing the target isotope. In this work, 6-phenylhexanoic acid-modified ZrO2 nanoparticles, which contain 96Zr as the target isotope, were synthesized under sub/supercritical hydrothermal conditions. The effects of the synthesis temperature on the formation and surface modification of the nanoparticles were investigated. Performing the synthesis at 250 and 300 °C resulted in the formation of nanoparticles with smaller particle sizes and higher surface modification densities than those prepared at 350 and 400 °C. The highest modification density (3.1 ± 0.2 molecules/nm2) and Zr concentration of (0.33 ± 0.04 wt.%) were obtained at 300 °C. The surface-modified ZrO2 nanoparticles were dispersed in a toluene-based liquid scintillator. The liquid scintillator was transparent to the scintillation wavelength, and a clear scintillation peak was confirmed by X-ray-induced radioluminescence spectroscopy. In conclusion, 6-phenylhexanoic acid-modified ZrO2 nanoparticles synthesized at 300 °C are suitable for loading in liquid scintillators.

7.
J Colloid Interface Sci ; 587: 574-580, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33250177

ABSTRACT

The dispersibility of nanoparticles in solvents remains difficult to predict and control. In this paper, the dispersibility of organically-modified nanoparticles in various solvents with different solvent properties and molecular sizes are investigated. The study indicates that solvent molecular size, in addition to the affinity between organic modifier and solvent molecules, affects the dispersibility of the nanoparticles. The experimental results imply that solvents with molecular size small enough can disperse nanoparticles more efficiently. In addition, based on the concept that solvent accommodation induces the enhancement of dispersibility, two approaches to improve nanoparticle dispersibility in desired solvents are proposed. One is the addition of a small amount of solvent with the right size and properties to both penetrate the modifier shell and to act as intermediate between the desired solvent and the organic modifier molecules. The other is dual-molecule modification to create additional space at modifier-shell surface for the penetration of the desired solvent molecules. The results of these approaches based on the concept of the solvent accommodation can enhance the dispersibility trends.

8.
Small ; 14(42): e1802915, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30260567

ABSTRACT

Atomic-scale analysis of the cation valence state distribution will help to understand intrinsic features of oxygen vacancies (VO ) inside metal oxide nanocrystals, which, however, remains a great challenge. In this work, the distribution of cerium valence states across the ultrafine CeO2 nanocubes (NCs) perpendicular to the {100} exposed facet is investigated layer-by-layer using state-of-the-art scanning transmission electron microscopy-electron energy loss spectroscopy. The effect of size on the distribution of Ce valence states inside CeO2 NCs is demonstrated as the size changed from 11.8 to 5.4 nm, showing that a large number of Ce3+ cations exist not only in the surface layers, but also in the center layers of smaller CeO2 NCs, which is in contrast to those in larger NCs. Combining with the atomic-scale analysis of the local structure inside the CeO2 NCs and theoretical calculation on the VO forming energy, the mechanism of size effect on the Ce valence states distribution and lattice expansion are elaborated: nano-size effect induces the overall lattice expansion as the size decreased to ≈5 nm; the expanded lattice facilitates the formation of VO due to the lower formation energy required for the smaller size, which, in principle, provides a fundamental understanding of the formation and distribution of Ce3+ inside ultrafine CeO2 NCs.

9.
Small ; : e1801093, 2018 Jul 01.
Article in English | MEDLINE | ID: mdl-29961954

ABSTRACT

Organic surfactant controls the synthesis of nanocrystals (NCs) with uniform size and morphology by attaching on the surface of NCs and further facilitates their assembly into ordered superstructure, which produces versatile functional nanomaterials for practical applications. It is essential to directly resolve the surfactant molecules on the surface of NCs to improve the understanding of surface chemistry of NCs. However, the imaging resolution and contrast are insufficient for a single molecule of organic surfactant on NCs. In this work, direct characterization of organic surfactant on CeO2 NCs is conducted by using the state-of-the-art aberration corrected scanning transmission electron microscopy (STEM) imaging and electron energy loss spectra (EELS) techniques. The explicit evidence for the existence and distribution of organic surfactant on CeO2 NCs are obtained on the atomic scale by EELS elemental mapping. Besides, STEM imaging parameters are systematically adjusted and optimized for the direct imaging of a single molecular chain of organic surfactant on CeO2 NCs. Such direct visualization of organic surfactant molecule on the surface of NCs can be a significant step forward in the fields of nanomaterials surface chemistry and materials characterization.

10.
Chem Commun (Camb) ; 53(94): 12638-12641, 2017 Nov 23.
Article in English | MEDLINE | ID: mdl-29119188

ABSTRACT

Visible-light driven H2 evolution in water is achieved using catechol-photosensitised TiO2 nanoparticles with a molecular nickel catalyst. Layer-by-layer immobilisation of catechol-TiO2 onto tin-doped indium oxide electrodes generates photocathodic currents in the presence of an electron acceptor. This approach represents a new strategy for controlling photocurrent direction in dye-sensitised photoelectrochemical applications.

11.
ChemElectroChem ; 4(8): 1959-1968, 2017 08.
Article in English | MEDLINE | ID: mdl-28920010

ABSTRACT

Coupling light-harvesting semiconducting nanoparticles (NPs) with redox enzymes has been shown to create artificial photosynthetic systems that hold promise for the synthesis of solar fuels. High quantum yields require efficient electron transfer from the nanoparticle to the redox protein, a property that can be difficult to control. Here, we have compared binding and electron transfer between dye-sensitized TiO2 nanocrystals or CdS quantum dots and two decaheme cytochromes on photoanodes. The effect of NP surface chemistry was assessed by preparing NPs capped with amine or carboxylic acid functionalities. For the TiO2 nanocrystals, binding to the cytochromes was optimal when capped with a carboxylic acid ligand, whereas for the CdS QDs, better adhesion was observed for amine capped ligand shells. When using TiO2 nanocrystals, dye-sensitized with a phosphonated bipyridine Ru(II) dye, photocurrents are observed that are dependent on the redox state of the decaheme, confirming that electrons are transferred from the TiO2 nanocrystals to the surface via the decaheme conduit. In contrast, when CdS NPs are used, photocurrents are not dependent on the redox state of the decaheme, consistent with a model in which electron transfer from CdS to the photoanode bypasses the decaheme protein. These results illustrate that although the organic shell of NPs nanoparticles crucially affects coupling with proteinaceous material, the coupling can be difficult to predict or engineer.

12.
Small ; 13(36)2017 09.
Article in English | MEDLINE | ID: mdl-28805041

ABSTRACT

Although, varieties of micro- to nanoscale fabrication technologies have been invented and refined for silicon (Si) processing because Si is the basic material of integrated circuits, the layouts are based on layer-by-layer approaches, making it difficult to realize three-dimensional (3D) structures with complicated shapes normal to the planar surface (along the out-of-plane direction) of the wafers used. Here, a novel and direct Si-processing technology that enables to bend thin layers of Si surfaces into various 3D curved structures at the micrometer scale is introduced. This bending is achieved by porosifying a Si wafer surface using anodic oxidation and then performing conventional photolithography patterning and wet etching. The porosity gradient in the depth direction gives rise to a stress-internalized layer in which self-rolling action is induced via subsequent patterning and wet etching. A subsequent oxidation process further enhances the curvature deformation, leading to the formation of tubes, for example. The rolling directions can be controlled by 2D patterning of the porous Si layer, which is explained well from a structural dynamics perspective. This technology has a wide range of capabilities for realizing 3D structures on Si substrates, enabling new design possibilities for Si-based on-chip devices.

13.
ACS Appl Mater Interfaces ; 8(51): 35132-35137, 2016 Dec 28.
Article in English | MEDLINE | ID: mdl-27966849

ABSTRACT

Efficient water splitting through electrocatalysis has been studied extensively in modern energy devices, while the development of catalysts with activity and stability comparable to those of Pt is still a great challenge. In this work, we successfully developed a facile route to synthesize graphene-like layered carbon (GLC) from a layered silicate template. The obtained GLC has layered structure similar to that of the template and can be used as support to load ultrasmall Ru nanoparticles on it in supercritical water. The specific structure and surface properties of GLC enable Ru nanoparticles to disperse highly uniformly on it even at a large loading amount (62 wt %). When the novel Ru/GLC was used as catalyst on a glass carbon electrode for hydrogen evolution reaction (HER) in a 0.5 M H2SO4 solution, it exhibits an extremely low onset potential of only 3 mV and a small Tafel slope of 46 mV/decade. The outstanding performance proved that Ru/GLC is highly active catalyst for HER, comparable with transition-metal dichalcogenides or selenides. As the price of ruthenium is much lower than platinum, our study shows that Ru/GLC might be a promising candidate as an HER catalyst in future energy applications.

14.
Adv Mater ; 28(46): 10304-10310, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27726184

ABSTRACT

Nanoporous graphene- based electric-double-layer transistors (EDLTs) are successfully fabricated. Transport measurements of the EDLTs demonstrate that the ambipolar electronic states of massless Dirac fermions with a high carrier mobility are well preserved in 3D nanoporous graphene along with anomalous nonlinear Hall resistance and exceptional transistor on/off ratio. This study may open a new avenue for device applications of graphene.

15.
Adv Mater ; 28(48): 10644-10651, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27723132

ABSTRACT

The interplay between chemical dopants and topological defects plays a crucial role in electrocatalysis of doped graphene. By systematically tuning the curvatures, thereby the density of topological defects, of 3D nanoporous graphene, the intrinsic correlation of topological defects with chemical doping contents and dopant configurations is revealed, shining lights into the structural and chemical origins of HER activities of graphene.

16.
Philos Trans A Math Phys Eng Sci ; 373(2057)2015 Dec 28.
Article in English | MEDLINE | ID: mdl-26574524

ABSTRACT

This paper describes a supercritical hydrothermal synthesis method as a green solvent process, along with products based on this method that can be used as green materials that contribute to solving environmental problems. The first part of this paper summarizes the basics of this method, including the mechanism of the reactions, specific features of the supercritical state for nanoparticle synthesis, the continuous flow-type reactor and applications; this provides a better understanding of the suitability of this method to synthesize green materials. The second part of the paper describes the method used to synthesize Cr-doped CeO(2) nanoparticles, which show an extremely high oxygen storage capacity, suggesting their high potential as an environmental catalyst. Transmission electron microscopy and scanning electron microscope images showed octahedral Cr-doped CeO(2) nanoparticles with sizes of 15-30 nm and cubic Cr-doped CeO(2) nanoparticles with sizes of 5-8 nm. Octahedral Cr-doped CeO(2) nanoparticles exposing (111) facets and cubic Cr-doped CeO(2) nanoparticles exposing (100) facets were determined by high-resolution transmission electron microscopy and selected area electron diffraction. The X-ray diffraction peaks shifted to a high angle because the radius of the Cr ion is smaller than that of the Ce ion.

17.
ACS Nano ; 9(11): 11003-13, 2015 Nov 24.
Article in English | MEDLINE | ID: mdl-26426418

ABSTRACT

We report the observation of kinesin driven quantum dots (QDs) trapped in a microtubule loop, allowing the investigation of moving QDs for a long time and an unprecedented long distance. The QD conjugates did not depart from our observational field of view, enabling the tracking of specific conjugates for more than 5 min. The unusually long run length and the periodicity caused by the loop track allow comparing and studying the trajectory of the kinesin driven QDs for more than 2 full laps, i.e., about 70 µm, enabling a statistical analysis of interactions of the same kinesin driven object with the same obstacle. The trajectories were extracted and analyzed from kymographs with a newly developed algorithm. Despite dispersion, several repetitive trajectory patterns can be identified. A method evaluating the similarity is introduced allowing a quantitative comparison between the trajectories. The velocity variations appear strongly correlated to the presence of obstacles. We discuss the reasons making this long continuous travel distances on the loop track possible.


Subject(s)
Kinesins/metabolism , Microtubules/metabolism , Quantum Dots/metabolism , Animals , Biological Assay , Dynamic Light Scattering , Kymography , Microscopy, Fluorescence , Particle Size , Probability , Sus scrofa , Video Recording
18.
Adv Funct Mater ; 25(15): 2308-2315, 2015 Apr.
Article in English | MEDLINE | ID: mdl-26180522

ABSTRACT

In nature, charge recombination in light-harvesting reaction centers is minimized by efficient charge separation. Here, it is aimed to mimic this by coupling dye-sensitized TiO2 nanocrystals to a decaheme protein, MtrC from Shewanella oneidensis MR-1, where the 10 hemes of MtrC form a ≈7-nm-long molecular wire between the TiO2 and the underlying electrode. The system is assembled by forming a densely packed MtrC film on an ultra-flat gold electrode, followed by the adsorption of approximately 7 nm TiO2 nanocrystals that are modified with a phosphonated bipyridine Ru(II) dye (RuP). The step-by-step construction of the MtrC/TiO2 system is monitored with (photo)electrochemistry, quartz-crystal microbalance with dissipation (QCM-D), and atomic force microscopy (AFM). Photocurrents are dependent on the redox state of the MtrC, confirming that electrons are transferred from the TiO2 nanocrystals to the surface via the MtrC conduit. In other words, in these TiO2/MtrC hybrid photodiodes, MtrC traps the conduction-band electrons from TiO2 before transferring them to the electrode, creating a photobioelectrochemical system in which a redox protein is used to mimic the efficient charge separation found in biological photosystems.

19.
Langmuir ; 30(29): 8956-64, 2014 Jul 29.
Article in English | MEDLINE | ID: mdl-25017213

ABSTRACT

The thermal dewetting of polystyrene composite thin films with oleic acid-modified CeO2 nanoparticles prepared by the supercritical hydrothermal synthesis method was investigated, varying the nanoparticle concentration (0-30 wt %), film thickness (approximately 50 and 100 nm), and surface energy of silanized silicon substrates on which the composite films were coated. The dewetting behavior of the composite thin films during thermal annealing was observed by an optical microscope. The presence of nanoparticles in the films affected the morphology of dewetting holes, and moreover suppressed the dewetting itself when the concentration was relatively high. It was revealed that there was a critical value of the surface energy of the substrate at which the dewetting occurred. In addition, the spatial distributions of nanoparticles in the composite thin films before thermal annealing were investigated using AFM and TEM. As a result, we found that most of nanoparticles segregated to the surface of the film, and that such distributions of nanoparticles contribute to the stabilization of the films, by calculating the interfacial potential of the films with nanoparticles.

20.
Dalton Trans ; 43(28): 10778-86, 2014 Jul 28.
Article in English | MEDLINE | ID: mdl-24878608

ABSTRACT

Highly crystalline cobalt nanoparticles with low surface oxidation were synthesized by the reductive supercritical hydrothermal process in the temperature range from 340 to 420 °C. Under these reaction conditions, hydrogen generated from formic acid decomposition is maximally soluble in water, enabling the effective reduction of cobalt ions and cobalt oxide. The reaction mechanism was investigated by kinetic analysis on the formation of cobalt nanoparticles. This analysis assumed the first order irreversible reaction and two different types of shrinking core models (chemical reaction and inter-diffusion dominated). According to the proposed reaction mechanism, cobalt monoxide is probably formed at the early reaction stage, where insufficient H2 is available, or under high temperature conditions. Moreover, cobalt monoxide influences the entire reaction rate. Thus, suppressing the formation and growth of cobalt monoxide is of primary importance in the optimal synthesis of cobalt nanoparticles by the reductive supercritical hydrothermal process.

SELECTION OF CITATIONS
SEARCH DETAIL