Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(9): e30671, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38756610

ABSTRACT

Background: The COVID-19 pandemic in Latin America generated the need to develop low-cost, fast-manufacturing mechanical ventilators. The Universidad de La Sabana and the Fundacion Neumologica Colombiana designed and manufactured the Unisabana-HERONS (USH) ventilator. Here, we present the preclinical and clinical study results to evaluate its effectiveness and safety characteristics in an animal model (Yorkshire Sow) and five patients with acute respiratory failure receiving mechanical ventilatory support for 24 h. Methods: The effectiveness and safety outcomes included maintaining arterial blood gases and pulse oximetry saturation (SpO2), respiratory pressures and volumes (during continuous monitoring) in the range of ARDS and lung-protective strategy goals, and the occurrence of barotrauma. A significance level of 0.05 was used for statistical tests. This clinical trial was registered on Clinicaltrials.gov (NCT04497623) and approved by the ethics committee. Results: Among patients treated with the Unisabana-HERONS, the most frequent causes of acute respiratory failure were pneumonia in 3/5 (60 %) and ARDS in 2/5 (40 %). During the treatment, the ventilatory parameters related to lung protection protocols were kept within the safety range, and vital signs and blood gas were stable. The percentage of time that the respiratory pressures or volumes were out of safety range were plateau pressure >30 cm H2O: 0.00 %; driving pressure >15 cm H2O: 0.06 %; mechanical power >15 J/min: 0.00 %; and Tidal volume >8 mL/kg: 0.00 %. There were no adverse events related to the ventilator. The usability questionnaire retrieved a median score for all items between 9 and 10 (best score: 10), indicating great ease of use. Conclusion: The Unisabana-HERONS ventilator effectively provided adequate gas exchange and maintained the ventilatory parameters in the range of lung protection strategies in humans and an animal model. Furthermore, it is straightforward to use and is a low-cost medical device.

2.
Article in English | MEDLINE | ID: mdl-35682516

ABSTRACT

Obstructive sleep apnea (OSA) is a common sleep disorder characterized by repetitive upper airway obstruction, intermittent hypoxemia, and recurrent awakenings during sleep. The most used treatment for this syndrome is a device that generates a positive airway pressure­Continuous Positive Airway Pressure (CPAP), but it works continuously, whether or not there is apnea. An alternative consists on systems that detect apnea episodes and produce a stimulus that eliminates them. Article focuses on the development of a simple and autonomous processing system for the detection of obstructive sleep apneas, using polysomnography (PSG) signals: electroencephalography (EEG), electromyography (EMG), respiratory effort (RE), respiratory flow (RF), and oxygen saturation (SO2). The system is evaluated using, as a gold standard, 20 PSG tests labeled by sleep experts and it performs two analyses. A first analysis detects awake/sleep stages and is based on the accumulated amplitude in a channel-dependent frequency range, according to the criteria of the American Academy of Sleep Medicine (AASM). The second analysis detects hypopneas and apneas, based on analysis of the breathing cycle and oxygen saturation. The results show a good estimation of sleep events, where for 75% of the cases of patients analyzed it is possible to determine the awake/asleep states with an effectiveness of >92% and apneas and hypopneas with an effectiveness of >55%, through a simple processing system that could be implemented in an electronic device to be used in possible OSA treatments.


Subject(s)
Sleep Apnea, Obstructive , Continuous Positive Airway Pressure , Humans , Polysomnography/methods , Signal Processing, Computer-Assisted , Sleep , Sleep Apnea, Obstructive/therapy
3.
Biomed Eng Online ; 15(1): 52, 2016 May 10.
Article in English | MEDLINE | ID: mdl-27160751

ABSTRACT

BACKGROUND: Laryngo-pharyngeal mechano-sensitivity (LPMS) is involved in dysphagia, sleep apnea, stroke, irritable larynx syndrome and cough hypersensitivity syndrome among other disorders. These conditions are associated with a wide range of airway reflex abnormalities. However, the current device for exploring LPMS is limited because it assesses only the laryngeal adductor reflex during fiber-optic endoscopic evaluations of swallowing and requires a high degree of expertise to obtain reliable results, introducing intrinsic expert variability and subjectivity. METHODS: We designed, developed and validated a new air-pulse laryngo-pharyngeal endoscopic esthesiometer with a built-in laser range-finder (LPEER) based on the evaluation and control of air-pulse variability determinants and on intrinsic observer variability and subjectivity determinants of the distance, angle and site of stimulus impact. The LPEER was designed to be capable of delivering precise and accurate stimuli with a wide range of intensities that can explore most laryngo-pharyngeal reflexes. RESULTS: We initially explored the potential factors affecting the reliability of LPMS tests and included these factors in a multiple linear regression model. The following factors significantly affected the precision and accuracy of the test (P < 0.001): the tube conducting the air-pulses, the supply pressure of the system, the duration of the air-pulses, and the distance and angle between the end of the tube conducting the air-pulses and the site of impact. To control all of these factors, an LPEER consisting of an air-pulse generator and an endoscopic laser range-finder was designed and manufactured. We assessed the precision and accuracy of the LPEER's stimulus and range-finder according to the coefficient of variation (CV) and by looking at the differences between the measured properties and the desired values, and we performed a pilot validation on ten human subjects. The air-pulses and range-finder exhibited good precision and accuracy (CV < 0.06), with differences between the desired and measured properties at <3 % and a range-finder measurement error of <1 mm. The tests in patients demonstrated obtainable and reproducible thresholds for the laryngeal adductor, cough and gag reflexes. CONCLUSIONS: The new LPEER was capable of delivering precise and accurate stimuli for exploring laryngo-pharyngeal reflexes.


Subject(s)
Air , Endoscopy/instrumentation , Larynx , Pharynx , Aged , Aged, 80 and over , Equipment Design , Female , Humans , Larynx/physiology , Male , Middle Aged , Pharynx/physiology , Pressure , Reflex , Sensation
SELECTION OF CITATIONS
SEARCH DETAIL
...